
2026/02/04 21:23 1/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:27

LUF105 - La Ligne de Commande

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.I). Il est utilisé comme interface pour donner des
instructions ou commandes au système d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

Shell Nom Date de
Sortie Inventeur Commande Commentaires

tsh Thompson Shell 1971 Ken Thompson sh Le premier shell
sh Bourne Shell 1977 Stephen Bourne sh Le shell commun à tous les Unix. Sous Ubuntu 16.04 : /bin/sh
csh C-Shell 1978 Bill Joy csh Le shell BSD. Sous Ubuntu 16.04 : /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous Ubuntu 16.04 : /usr/bin/tcsh
ksh Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous Ubuntu 16.04 : /usr/bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous Ubuntu 16.04 : /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh est plutôt orienté pour l'interactivité avec l'utilisateur. Sous Ubuntu 16.04 :
/usr/bin/zsh

Sous Ubuntu 16.04 le shell /bin/sh est un lien symbolique vers /bin/dash :

trainee@ubuntu1604:~$ ls -l /bin/sh
lrwxrwxrwx 1 root root 4 mai 3 2016 /bin/sh -> dash

2026/02/04 21:23 2/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le Shell /bin/bash

Ce module concerne l'utilisation du shell bash sous Linux. Le shell bash permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaînes de caractères
Utiliser les fonctions

Une commande commence toujours par un mot clef. Ce mot clef est interpréter par le shell selon le type de commande et dans l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type :

trainee@ubuntu1604:~$ type cd
cd is a shell builtin

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /bin, /sbin, /usr/bin ou /usr/sbin :

trainee@ubuntu1604:~$ type passwd
passwd is /usr/bin/passwd

2026/02/04 21:23 3/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les alias

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
qu'à l'environnement de l'utilisateur :

trainee@ubuntu1604:~$ type ls
ls is aliased to `ls --color=auto'

[stextbox id='black' image='null'] Important : Notez que dans ce cas l'alias ls est en effet un alias qui utilise la commande ls elle-même. [/stextbox]

Un alias se définit en utilisant la commande alias :

trainee@ubuntu1604:~$ alias dir='ls -l'
trainee@ubuntu1604:~$ dir
total 48
-rw-rw-r-- 1 trainee trainee 0 oct. 4 14:24 aac
-rw-rw-r-- 1 trainee trainee 0 oct. 4 14:24 abc
-rw-rw-r-- 1 trainee trainee 0 oct. 4 14:24 bca
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Desktop
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Documents
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Downloads
-rw-r--r-- 1 trainee trainee 8980 mai 3 2016 examples.desktop
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Music
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Pictures
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Public
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Templates
drwxr-xr-x 2 trainee trainee 4096 mai 3 2016 Videos
-rw-rw-r-- 1 trainee trainee 442 sept. 30 11:35 vitext
-rw-rw-r-- 1 trainee trainee 0 oct. 4 14:24 xyz

[stextbox id='black' image='null'] Important : Notez que la commande dir existe vraiment. Le fait de créer un alias qui s'appelle dir implique que
l'alias sera exécuté à la place de la commande dir. [/stextbox]

2026/02/04 21:23 4/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La liste des alias définis peut être visualisée en utilisant la commande alias :

trainee@ubuntu1604:~$ alias
alias alert='notify-send --urgency=low -i "$([$? = 0] && echo terminal || echo error)" "$(history|tail -n1|sed
-e '\''s/^\s*[0-9]\+\s*//;s/[;&|]\s*alert$//'\'')"'
alias dir='ls -l'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -CF'
alias la='ls -A'
alias ll='ls -alF'
alias ls='ls --color=auto'

[stextbox id='black' image='null'] Important : Notez que cette liste contient, sans distinction, les alias définis dans les fichiers de démarrage du
système ainsi que l'alias dir créé par trainee qui n'est que disponible à trainee dans le terminal courant. [/stextbox]

Pour forcer l'exécution d'une commande et non l'alias il faut faire précéder la commande par le caractère \ :

trainee@ubuntu1604:~$ \dir
aac bca Documents examples.desktop Pictures Templates vitext
abc Desktop Downloads Music Public Videos xyz

Pour supprimer un alias, il convient d'utiliser la commande unalias :

trainee@ubuntu1604:~$ unalias dir
trainee@ubuntu1604:~$ dir
aac bca Documents examples.desktop Pictures Templates vitext
abc Desktop Downloads Music Public Videos xyz

Le shell des utilisateurs est défini par root dans le dernier champs du fichier /etc/passwd :

trainee@ubuntu1604:~$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash

2026/02/04 21:23 5/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-timesync:x:100:102:systemd Time Synchronization,,,:/run/systemd:/bin/false
systemd-network:x:101:103:systemd Network Management,,,:/run/systemd/netif:/bin/false
systemd-resolve:x:102:104:systemd Resolver,,,:/run/systemd/resolve:/bin/false
systemd-bus-proxy:x:103:105:systemd Bus Proxy,,,:/run/systemd:/bin/false
syslog:x:104:108::/home/syslog:/bin/false
_apt:x:105:65534::/nonexistent:/bin/false
messagebus:x:106:110::/var/run/dbus:/bin/false
uuidd:x:107:111::/run/uuidd:/bin/false
lightdm:x:108:114:Light Display Manager:/var/lib/lightdm:/bin/false
whoopsie:x:109:116::/nonexistent:/bin/false
avahi-autoipd:x:110:119:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:111:120:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
dnsmasq:x:112:65534:dnsmasq,,,:/var/lib/misc:/bin/false
colord:x:113:123:colord colour management daemon,,,:/var/lib/colord:/bin/false
speech-dispatcher:x:114:29:Speech Dispatcher,,,:/var/run/speech-dispatcher:/bin/false
hplip:x:115:7:HPLIP system user,,,:/var/run/hplip:/bin/false
kernoops:x:116:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false

2026/02/04 21:23 6/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

pulse:x:117:124:PulseAudio daemon,,,:/var/run/pulse:/bin/false
rtkit:x:118:126:RealtimeKit,,,:/proc:/bin/false
saned:x:119:127::/var/lib/saned:/bin/false
usbmux:x:120:46:usbmux daemon,,,:/var/lib/usbmux:/bin/false
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/bash
sshd:x:121:65534::/var/run/sshd:/usr/sbin/nologin

Cependant l'utilisateur peut changer son shell grâce à la commande chsh. Les shells disponibles aux utilisateurs du système sont inscrits dans le
fichier /etc/shells. Saisissez la commande cat /etc/shells :

trainee@ubuntu1604:~$ cat /etc/shells
/etc/shells: valid login shells
/bin/sh
/bin/dash
/bin/bash
/bin/rbash
/usr/bin/screen

Ensuite utilisez la commande echo pour afficher le shell actuel de trainee :

trainee@ubuntu1604:~$ echo $SHELL
/bin/bash

Changez ensuite le shell de trainee en utilisant la commande chsh en indiquant la valeur de /bin/sh pour le nouveau shell :

trainee@ubuntu1604:~$ chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/sh

[stextbox id='black' image='null'] Important : Notez que le mot de passe saisi ne sera pas visible. [/stextbox]

Vérifiez ensuite le shell actif pour trainee :

2026/02/04 21:23 7/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ echo $SHELL
/bin/bash

Dernièrement contrôlez le shell stipulé dans le fichier /etc/passwd pour trainee :

trainee@ubuntu1604:~$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/sh

[stextbox id='black' image='null'] Important : Vous noterez que le shell actif est toujours /bin/bash tandis que le shell stipulé dans le fichier
/etc/passwd est le /bin/sh. Le shell /bin/sh ne deviendra le shell actif de trainee que lors de sa prochaine connexion au système. [/stextbox]

Modifiez votre shell à /bin/bash de nouveau en utilisant la commande chsh :

trainee@ubuntu1604:~$ chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/sh]: /bin/bash

[stextbox id='black' image='null'] Important : Notez que le mot de passe saisi ne sera pas visible. [/stextbox]

Le Prompt

Le prompt d'un utilisateur dépend de son statut :

$ pour un utilisateur normal sous Ubuntu,
pour root.

Rappeler des Commandes

Le shell /bin/bash permet le rappel des dernières commandes saisies. Afin de connaître la liste des commandes mémorisées, utilisez la commande

2026/02/04 21:23 8/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

history :

trainee@ubuntu1604:~$ history | more
 1 sudo su -
 2 vi vitext
 3 view vitext
 4 vi vitext
 5 vi .exrc
 6 vi vitext
 7 clear
 8 stty -a
 9 date
 10 locale
 11 LANG=en_GB.UTF-8
 12 export LANG
 13 locale
 14 date
 15 LC_ALL=en_GB.UTF-8
 16 export LC_ALL
 17 locale
 18 date
 19 who
 20 df
 21 df -h
 22 free
 23 free -h
--More--

[stextbox id='black' image='null'] Important: L'historique est spécifique à chaque utilisateur. [/stextbox]

L'historique des commandes est en mode emacs par défaut. De ce fait, le rappel de la dernière commande se fait en utilisant la touche [Flèche vers
le haut] ou bien les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant la touche [Flèche vers le bas] ou bien les touches
[CTRL]-[N] :

2026/02/04 21:23 9/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère de Contrôle Définition
[CTRL]-[P] (= flèche vers le haut) Rappelle la commande précédente
[CTRL]-[N] (= flèche vers le bas) Rappelle la commande suivante

Pour se déplacer dans la ligne de l'historique :

Caractère de Contrôle Définition
[CTRL]-[A] Se déplacer au début de la ligne
[CTRL]-[E] Se déplacer à la fin de la ligne
[CTRL]-[B] Se déplacer un caractère à gauche
[CTRL]-[F] Se déplacer un caractère à droite
[CTRL]-[D] Supprimer le caractère sous le curseur

Pour rechercher dans l'historique il convient d'utiliser les touches :

Caractère de Contrôle Définition

[CTRL]-[R] chaine Recherche en arrière de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[S] chaine Recherche en avant de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[G] Sortir du mode recherche

Il est aussi possible de rappeler la dernière commande de l'historique en utilisant les caractères !!:

trainee@ubuntu1604:~$ ls
aac bca Documents examples.desktop Pictures Templates vitext
abc Desktop Downloads Music Public Videos xyz
trainee@ubuntu1604:~$!!
ls
aac bca Documents examples.desktop Pictures Templates vitext
abc Desktop Downloads Music Public Videos xyz

Vous pouvez rappeler une commande spécifique de l'historique en utilisant le caractère ! suivi du numéro de la commande à rappeler :

2026/02/04 21:23 10/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$!107
ls
aac bca Documents examples.desktop Pictures Templates vitext
abc Desktop Downloads Music Public Videos xyz

Le paramétrage de la fonction du rappel des commandes est fait pour chaque utilisateur individuellement dans le fichier ~/.bashrc où ~/ indique le
répertoire personnel de l'utilisateur concerné. Dans ce fichier, les variables concernant le rappel des commandes peuvent être définis. Le plus
important est HISTSIZE :

trainee@ubuntu1604:~$ cat .bashrc | grep HISTSIZE
for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000

Vous noterez que dans le cas précédent, la valeur de HISTSIZE est de 1000. Ceci implique que les dernières mille commandes sont mémorisées.

Les commandes mémorisées sont stockées dans le fichier ~/.bash_history. Les commandes de la session en cours ne sont sauvegardées dans ce
fichier qu'à la fermerture de la session :

trainee@ubuntu1604:~$ nl .bash_history | more
 1 sudo su -
 2 vi vitext
 3 view vitext
 4 vi vitext
 5 vi .exrc
 6 vi vitext
 7 clear
 8 stty -a
 9 date
 10 locale
 11 LANG=en_GB.UTF-8
 12 export LANG
 13 locale
 14 date
 15 LC_ALL=en_GB.UTF-8

2026/02/04 21:23 11/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

 16 export LC_ALL
 17 locale
 18 date
 19 who
 20 df
 21 df -h
 22 free
 23 free -h
--More--

[stextbox id='black' image='null'] Important : Notez l'utilisation de la commande nl pour numéroter les lignes de l'affichage du contenu du fichier
.bash_history. [/stextbox]

Générer les fins de noms de fichiers

Le shell /bin/bash permet la génération des fins de noms de fichiers. Celle-ci est accomplie grâce à l'utilisation de la touche [Tab]. Dans l'exemple qui
suit, la commande saisie est :

$ ls .b [Tab][Tab][Tab]

trainee@ubuntu1604:~$ ls .bash
.bash_history .bash_logout .bashrc

[stextbox id='black' image='null'] Important : Notez qu'en appuyant sur la touche Tab trois fois le shell propose 3 ou 4 possibilités de complétion de
nom de fichier. En effet, sans plus d'information, le shell ne sait pas quel fichier est concerné. [/stextbox]

La même possibilité existe pour la génération des fins de noms de commandes. Dans ce cas saisissez la commande suivante :

$ mo [Tab][Tab]

Appuyez sur la touche Tab deux fois. Vous obtiendrez une fenêtre similaire à celle-ci :

2026/02/04 21:23 12/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ mo
moc mogrify-im6 mount mount.ntfs
modinfo montage mountall mount.ntfs-3g
modprobe montage-im6 mount.fuse mountpoint
mogrify more mount.lowntfs-3g mousetweaks

Le shell interactif

Lors de l'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractères spéciaux.

Caractère Spéciaux Description
* Représente 0 ou plus de caractères
? Représente un caractère
[abc] Représente un caractère parmi ceux entre crochets
[!abc] Représente un caractère ne trouvant pas parmi ceux entre crochets
?(expression1|expression2| …) Représente 0 ou 1 fois l'expression1 ou 0 ou 1 fois l'expression2 …
*(expression1|expression2| …) Représente 0 à x fois l'expression1 ou 0 à x fois l'expression2 …
+(expression1|expression2| …) Représente 1 à x fois l'expression1 ou 1 à x fois l'expression2 …
@(expression1|expression2| …) Représente 1 fois l'expression1 ou 1 fois l'expression2 …
!(expression1|expression2| …) Représente 0 fois l'expression1 ou 0 fois l'expression2 …

Caractère *

Dans votre répertoire individuel, créez un répertoire training. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

trainee@ubuntu1604:~$ mkdir training
trainee@ubuntu1604:~$ cd training
trainee@ubuntu1604:~/training$ touch f1 f2 f3 f4 f5

Afin de démontrer l'utilisation du caractère spécial *, saisissez la commande suivante :

2026/02/04 21:23 13/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ echo f*
f1 f2 f3 f4 f5

[stextbox id='black' image='null'] Important : Notez que le caractère * remplace un caractère ou une suite de caractères. [/stextbox]

Caractère ?

Créez maintenant les fichiers f52 et f62 :

trainee@ubuntu1604:~/training$ touch f52 f62

Saisissez ensuite la commande suivante :

trainee@ubuntu1604:~/training$ echo f?2
f52 f62

[stextbox id='black' image='null'] Important : Notez que le caractère ? remplace un seul caractère. [/stextbox]

Caractères []

L'utilisation peut prendre plusieurs formes différentes :

Joker Description
[xyz] Représente le caractère x ou y ou z
[m-t] Représente le caractère m ou n …. t
[!xyz] Représente un caractère autre que x ou y ou z
[!m-t] Représente un caractère autre que m ou n …. t

Afin de démontrer l'utilisation des caractères [et], créez le fichier a100 :

2026/02/04 21:23 14/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ touch a100

Ensuite saisissez les commandes suivantes et notez le résultat :

trainee@ubuntu1604:~/training$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
trainee@ubuntu1604:~/training$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

[stextbox id='black' image='null'] Important : Notez ici que tous les fichiers commençant par les lettres a, b, c, d, e ou f sont affichés à l'écran.
[/stextbox]

trainee@ubuntu1604:~/training$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

[stextbox id='black' image='null'] Important : Notez ici que tous les fichiers sont affichés à l'écran, à l'exception d'un fichier commençant par la lettre
a . [/stextbox]

trainee@ubuntu1604:~/training$ echo [a-b]*
a100

[stextbox id='black' image='null'] Important : Notez ici que seul le fichier commençant par la lettre a est affiché à l'écran car il n'existe pas de fichiers
commençant par la lettre b. [/stextbox]

trainee@ubuntu1604:~/training$ echo [a-f]
[a-f]

[stextbox id='black' image='null'] Important : Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, c, d, e ou f. Pour cette raison, n'ayant
trouvé aucune correspondance entre le filtre utilisé et les objets dans le répertoire courant, le commande echo retourne le filtre passé en argument,
c'est-à-dire [a-f]. [/stextbox]

2026/02/04 21:23 15/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

L'option extglob

Activez l'option extglob du shell bash afin de pouvoir utiliser ?(expression), *(expression), +(expression), @(expression) et !(expression) :

trainee@ubuntu1604:~/training$ shopt -s extglob

La commande shopt est utilisée pour activer ou désactiver les options du comportement optional du shell. La liste des options peut être visualisée en
exécutant la commande shopt sans options :

trainee@ubuntu1604:~/training$ shopt
autocd off
cdable_vars off
cdspell off
checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off
compat42 off
complete_fullquote on
direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on

2026/02/04 21:23 16/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

globstar off
globasciiranges off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off
progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo off

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

trainee@ubuntu1604:~/training$ touch f f.txt f123.txt f123123.txt f123123123.txt

Saisissez la commande suivante :

2026/02/04 21:23 17/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ ls f?(123).txt
f123.txt f.txt

[stextbox id='black' image='null'] Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1 occurence de la chaîne
123. [/stextbox]

*(expression)

Saisissez la commande suivante :

trainee@ubuntu1604:~/training$ ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

[stextbox id='black' image='null'] Important : Notez ici que la commande affiche les fichiers ayant un nom contenant de 0 jusqu'à x occurences de la
chaîne 123. [/stextbox]

+(expression)

Saisissez la commande suivante :

trainee@ubuntu1604:~/training$ ls f+(123).txt
f123123123.txt f123123.txt f123.txt

[stextbox id='black' image='null'] Important : Notez ici que la commande affiche les fichiers ayant un nom contenant entre 1 et x occurences de la
chaîne 123. [/stextbox]

@(expression)

Saisissez la commande suivante :

2026/02/04 21:23 18/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ ls f@(123).txt
f123.txt

[stextbox id='black' image='null'] Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 1 seule occurence de la chaîne
123. [/stextbox]

!(expression)

Saisissez la commande suivante :

trainee@ubuntu1604:~/training$ ls f!(123).txt
f123123123.txt f123123.txt f.txt

[stextbox id='black' image='null'] Important : Notez ici que la commande n'affiche que les fichiers ayant un nom qui ne contient pas la chaîne 123.
[/stextbox]

Caractères d'Échappement

Afin d'utiliser un caractère spécial dans un contexte littéral, il faut utiliser un caractère d'échappement. Il existe trois caractères d'échappement :

Caractère Description
\ Protège le caractère qui le suit
' ' Protège tout caractère, à l'exception du caractère ' lui-même, se trouvant entre les deux '
“ ” Protège tout caractère, à l'exception des caractères “ lui-même, $, \ et ', se trouvant entre les deux “

Afin d'illustrer l'utilisation des caractères d'échappement, considérons la commande suivante :

$ echo * est un caractère spécial [Entrée]

Lors de la saisie de cette commande dans votre répertoire training, vous obtiendrez une fenêtre similaire à celle-ci :

2026/02/04 21:23 19/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ echo * est un caractère spécial
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

trainee@ubuntu1604:~/training$ echo * est un caractère spécial
* est un caractère spécial

trainee@ubuntu1604:~/training$ echo "* est un caractère spécial"
* est un caractère spécial

trainee@ubuntu1604:~/training$ echo '* est un caractère spécial'
* est un caractère spécial

Codes Retour

Chaque commande retourne un code à la fin de son exécution. La variable spéciale $? sert à stocker le code retour de la dernière commande
exécutée.

Par exemple :

trainee@ubuntu1604:~/training$ cd ..
trainee@ubuntu1604:~$ mkdir codes
trainee@ubuntu1604:~$ echo $?
0
trainee@ubuntu1604:~$ touch codes/exit.txt
trainee@ubuntu1604:~$ rmdir codes
rmdir: failed to remove 'codes': Directory not empty
trainee@ubuntu1604:~$ echo $?
1

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.

La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un un.

2026/02/04 21:23 20/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Si le code retour est zéro la dernière commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la dernière commande s'est déroulée avec une erreur.

Redirections

Votre dialogue avec le système Linux utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et l’écran, le canal
de sortie standard :

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande à l’écran.

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette façon, le résultat d’une commande telle free peut être
stocké dans un fichier pour une consultation ultérieure :

Cet effet est obtenu en utilisant une redirection :

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aubuntu%3A14%3Autilisateur%3Al105&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aubuntu%3A14%3Autilisateur%3Al105&media=free:redirection.png

2026/02/04 21:23 21/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ pwd
/home/trainee
trainee@ubuntu1604:~$ cd training
trainee@ubuntu1604:~/training$ free > file
trainee@ubuntu1604:~/training$ cat file
 total used free shared buff/cache available
Mem: 500144 160208 6548 5168 333388 307548
Swap: 1997820 0 1997820

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande free.

Par contre si le fichier existe déjà, il sera écrasé :

trainee@ubuntu1604:~/training$ date > file
trainee@ubuntu1604:~/training$ cat file
Mon 28 Nov 15:51:07 CET 2016

Pour ajouter des données supplémentaires au même fichier cible, il faut utiliser une double redirection :

trainee@ubuntu1604:~/training$ free >> file
trainee@ubuntu1604:~/training$ cat file
Mon 28 Nov 15:51:07 CET 2016
 total used free shared buff/cache available
Mem: 500144 160208 6436 5168 333500 307548
Swap: 1997820 0 1997820

De cette façon, la date du jour sera rajoutée à la fin de votre fichier après les informations de la commande free.

[stextbox id='black' image='null'] Important : Notez que la sortie standard ne peut être redirigée que dans une seule direction. [/stextbox]

Les canaux d’entrées et de sorties sont numérotés :

0 = Le Canal d’entrée Standard
1 = Le Canal de Sortie Standard

2026/02/04 21:23 22/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

2 = Le Canal d’erreur

La commande suivante créera un fichier nommé errorlog qui contient les messages d’erreur de l’exécution de la commande rmdir :

trainee@ubuntu1604:~/training$ cd ..
trainee@ubuntu1604:~$ rmdir training/ 2>errorlog
trainee@ubuntu1604:~$ cat erreurlog
rmdir: failed to remove 'training/': Directory not empty

En effet l'erreur est générée parce que le répertoire training n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche à
droite.

Dans l’exemple suivant, nous réunissons le canal de sortie et le canal d’erreurs :

trainee@ubuntu1604:~$ free > file 2>&1

La syntaxe 2>&1 envoie la sortie du canal 2 au même endroit que le canal 1, à savoir le fichier dénommé file.

Il est possible de modifier le canal d'entrée standard afin de lire des informations à partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractère < :

$ wc -w < erreurlog [Entrée]

Dans cet exemple la commande wc compte le nombre de mots (-w) dans le fichier errorlog et l’affiche à l’écran :

trainee@ubuntu1604:~$ wc -w < errorlog
8

D'autres redirections existent :

Caractères Définition
&> Rediriger les canaux 1 et 2 au même endroit

2026/02/04 21:23 23/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractères Définition

<< Permet d'utiliser le texte taper ensuite en tant que entrée standard. Par exemple programme << EOF utilisera le texte taper après en
tant qu'entrée standard jusqu'à l'apparition de EOF sur une ligne seule.

<> Permet d'utiliser le fichier specifié en tant que entrée standard et sortie standard

Tubes

Il est aussi possible de relier des commandes avec un tube | .

Dans ce cas, le canal de sortie de la commande à gauche du tube est envoyé au canal d’entrée de la commande à droite du tube :

$ ls | wc -w [Entrée]

Cette commande, lancée dans votre répertoire personnel, prend la sortie de la commande ls et demande à la commande wc de compter le nombre de
mots inclus dans la sortie de ls :

trainee@ubuntu1604:~$ ls | wc -w
17

[stextbox id='black' image='null'] Important : Il est à noter qu'il est possible de relier plusieurs tubes dans la même commande. [/stextbox]

Rappelez-vous que la sortie standard ne peut être redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
la visualiser à l'écran, nous devons utiliser la commande tee avec un pipe :

trainee@ubuntu1604:~$ date | tee file1
Mon 28 Nov 16:14:22 CET 2016
trainee@ubuntu1604:~$ cat file1
Mon 28 Nov 16:14:22 CET 2016

Cette même technique nous permet de créer deux fichiers :

$ date | tee fichier1 > fichier2 [Entrée]

2026/02/04 21:23 24/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ date | tee fichier1 > fichier2
trainee@ubuntu1604:~$ cat fichier1
Mon 28 Nov 16:15:56 CET 2016
trainee@ubuntu1604:~$ cat fichier2
Mon 28 Nov 16:15:56 CET 2016

[stextbox id='black' image='null'] Important : Par défaut la commande tee écrase le fichier de destination. Pour ajouter des données supplémentaires
au même fichier cible, il convient d'utiliser l'option -a de la commande tee. [/stextbox]

Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par sa valeur de sa sortie. Afin d'illustrer ce point, considérons les
commandes suivantes :

trainee@ubuntu1604:~$ echo date
date
trainee@ubuntu1604:~$ echo $(date)
Mon 28 Nov 16:19:33 CET 2016
trainee@ubuntu1604:~$ echo `date`
Mon 28 Nov 16:19:33 CET 2016

[stextbox id='black' image='null'] Important : Notez le format de chaque substitution $(commande) ou `commande`. Sur un clavier français, l'anti-
côte est accessible en utilisant les touches Alt Gr et 77 . [/stextbox]

Chainage de Commandes

Il est possible de regrouper des commandes à l’aide d’un sous-shell :

$ (ls -l; ps; who) > list [Entrée]

Cet exemple envoie le résultat des trois commandes vers le fichier list en les traitant en tâches de fond.

2026/02/04 21:23 25/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les commandes peuvent être aussi chainées en fonction du code retour de la commande précédente.

&& est utilisé afin de s’assurer que la deuxième commande s’exécute dans le cas où la valeur du statut de sortie est 0, autrement dit qu’il n’y a pas eu
d’erreurs.

|| est utilisé afin de s’assurer de l’inverse.

Le syntaxe de cette commande est :

Commande1 && Commande2

Dans ce cas, Commande 2 est exécutée uniquement dans le cas où Commande1 s’est exécuté sans erreur

Ou :

Commande1 || Commande2

Dans ce cas, Commande2 est exécuté si Commande1 a rencontré une erreur.

Affichage des variables du shell

Une variable du shell peut être affichée grâce à la commande :

$ echo $VARIABLE [Entrée]

Les variables principales

Variable Description
BASH Le chemin complet du shell.
BASH_VERSION La version du shell.
EUID EUID de l'utilisateur courant.
UID UID de l'utilisateur courant.

2026/02/04 21:23 26/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
PPID Le PID du processus père.
PWD Le répertoire courant.
OLDPWD Le répertoire avant la dernière commande cd. Même chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767
SECONDS Le nombre de scondes écoules depuis le lancement du shell
LINES Le nombre de lignes de l'écran.
COLUMNS La largeur de l'écran.
HISTFILE Le fichier historique
HISTFILESIZE La taille du fichier historique
HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HISTCMD Le numéro de la commande courante dans l'historique
HISTCONTROL ignorespace ou ignoredups ou ignoreboth
HOME Le répertoire de connexion.
HOSTTYPE Le type de machine.
OSTYPE Le système d'exploitation.
MAIL Le fichier contenant le courrier.
MAILCHECK La fréquence de vérification du courrier en secondes.
PATH Le chemin de recherche des commandes.
PROMPT_COMMAND La commande exécutée avant chaque affichage du prompt.
PS1 Le prompt par défaut.
PS2 Le deuxième prompt par défaut
PS3 Le troisième prompt par défaut
PS4 Le quatrième prompt par défaut
SHELL Le shell de préférence.
SHLVL Le nombre d'instances du shell.
TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.

Les Variables de Régionalisation et d'Internationalisation

L'Internationalisation, aussi appelé i18n car il y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste à adapter un

2026/02/04 21:23 27/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

logiciel aux paramètres variant d'une région à l'autre :

longueur des mots,
accents,
écriture de gauche à droite ou de droite à gauche,
unité monétaire,
styles typographiques et modèles rédactionnels,
unités de mesures,
affichage des dates et des heures,
formats d'impression,
format du clavier,
etc …

Le Régionalisation, aussi appelé l10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste à modifier l'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractères. Par exemple, pour la langue anglaise les valeurs de langue-PAYS
sont :

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,
en_ZA = South Africa,
en_CA = Canada.

Les variables système les plus importants contenant les informations concernant le régionalisation sont :

Variable Description
LC_ALL Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE Détermine les paramètres régionaux pour l'interprétation de séquence d'octets de données texte en caractères.

Par exemple :

2026/02/04 21:23 28/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ echo $LC_ALL
en_GB.UTF-8
trainee@ubuntu1604:~$ echo $LC_CTYPE

trainee@ubuntu1604:~$ echo $LANG
en_GB.UTF-8

trainee@ubuntu1604:~$ locale
LANG=en_GB.UTF-8
LANGUAGE=
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=en_GB.UTF-8

Les variables spéciales

Variable Description
$LINENO Contient le numéro de la ligne courante du script ou de la fonction
$$ Contient le PID du shell en cours
$PPID Contient le PID du processus parent du shell en cours
$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 … Contient respectivement le premier argument, deuxième argument etc passés au script
$# Contient le nombre d'arguments passés au script

2026/02/04 21:23 29/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
$* Contient l'ensemble des arguments passés au script
$@ Contient l'ensemble des arguments passés au script

La Commande env

La commande env envoie sur la sortie standard les valeurs des variables système de l'environnement de l'utilisateur qui l'invoque :

trainee@ubuntu1604:~$ env
LC_PAPER=fr_FR.UTF-8
LC_ADDRESS=fr_FR.UTF-8
XDG_SESSION_ID=1
LC_MONETARY=fr_FR.UTF-8
TERM=xterm-256color
SHELL=/bin/bash
SSH_CLIENT=10.0.2.2 40266 22
LC_NUMERIC=fr_FR.UTF-8
OLDPWD=/home/trainee/training
SSH_TTY=/dev/pts/8
LC_ALL=en_GB.UTF-8
USER=trainee
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=00:su=37
;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=0
1;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31
:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*
.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=
01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35
:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.ti
ff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=
01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;3
5:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl
=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36
:*.flac=00;36:*.m4a=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.w

2026/02/04 21:23 30/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

av=00;36:*.oga=00;36:*.opus=00;36:*.spx=00;36:*.xspf=00;36:
LC_TELEPHONE=fr_FR.UTF-8
MAIL=/var/mail/trainee
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
QT_QPA_PLATFORMTHEME=appmenu-qt5
LC_IDENTIFICATION=fr_FR.UTF-8
PWD=/home/trainee
LANG=en_US.UTF-8
LC_MEASUREMENT=fr_FR.UTF-8
SHLVL=1
HOME=/home/trainee
LOGNAME=trainee
SSH_CONNECTION=10.0.2.2 40266 10.0.2.15 22
LESSOPEN=| /usr/bin/lesspipe %s
XDG_RUNTIME_DIR=/run/user/1000
LESSCLOSE=/usr/bin/lesspipe %s %s
LC_TIME=fr_FR.UTF-8
LC_NAME=fr_FR.UTF-8
_=/usr/bin/env

La commande peut aussi être utilisée pour fixer une variable lors de l'exécution d'une commande. Par exemple, pour lancer xterm avec la variable
EDITOR fixée à vi :

$ env EDITOR=vim xterm

Options du Shell Bash

Pour visualiser les options du shell bash, il convient d'utiliser la commande set :

$ set -o [Entrée]

Par exemple :

2026/02/04 21:23 31/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

Pour activer une option il convient de nouveau à utiliser la commande set :

set -o allexport [Entrée]

Par exemple :

2026/02/04 21:23 32/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ set -o allexport
trainee@ubuntu1604:~$ set -o
allexport on
braceexpand on
...

Notez que l'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec l'option +o :

$ set +o allexport [Entrée]

trainee@ubuntu1604:~$ set +o allexport
trainee@ubuntu1604:~$ set -o
allexport off
braceexpand on
...

Parmi les options, voici la description des plus intéressantes :

Option Valeur par Défaut Description
allexport off Le shell export automatiquement toute variable
emacs on L'édition de la ligne de commande est au style emacs
history on L'historique des commandes est activé
noclobber off Les simples re-directions n'écrasent pas le fichier de destination
noglob off Désactive l'expansion des caractères génériques
nounset off Le shell retourne une erreur lors de l'expansion d'une variable inconnue
verbose off Affiche les lignes de commandes saisies
vi off L'édition de la ligne de commande est au style vi

Exemples

2026/02/04 21:23 33/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

noclobber

trainee@ubuntu1604:~$ set -o noclobber
trainee@ubuntu1604:~$ pwd > file
trainee@ubuntu1604:~$ pwd > file
-bash: file: cannot overwrite existing file
trainee@ubuntu1604:~$ pwd >| file
trainee@ubuntu1604:~$ set +o noclobber

[stextbox id='black' image='null'] Important : Notez que l'option noclobber peut être contournée en utilisant la redirection suivi par le caractère |.
[/stextbox]

noglob

trainee@ubuntu1604:~$ set -o noglob
trainee@ubuntu1604:~$ echo *
*
trainee@ubuntu1604:~$ set +o noglob
trainee@ubuntu1604:~$ echo *
aac abc bca codes Desktop Documents Downloads errorlog examples.desktop file file1 Music Pictures Public
Templates training Videos vitext xyz

[stextbox id='black' image='null'] Important : Notez que l'effet du caractère spécial est annulé sous l'influence de l'option noglob. [/stextbox]

nounset

trainee@ubuntu1604:~$ set -o nounset
trainee@ubuntu1604:~$ echo $FENESTROS
-bash: FENESTROS: unbound variable
trainee@ubuntu1604:~$ set +o nounset
trainee@ubuntu1604:~$ echo $FENESTROS

2026/02/04 21:23 34/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$

[stextbox id='black' image='null'] Important : Notez que la variable inexistante $FENESTROS est identifiée comme telle sous l'influence de l'option
nounset. Or le comportement habituel de Linux est de retourner une ligne vide qui n'indique pas si la variable n’existe pas ou si elle est simplement
vide. [/stextbox]

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient

2026/02/04 21:23 35/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

de le lancer ainsi :

. myscript et ./myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

trainee@ubuntu1604:~$ script
Script started, file is typescript
trainee@ubuntu1604:~$ pwd
/home/trainee
trainee@ubuntu1604:~$ ls
aac codes Downloads fichier1 file1 Public typescript xyz
abc Desktop errorlog fichier2 Music Templates Videos
bca Documents examples.desktop file Pictures training vitext
trainee@ubuntu1604:~$ exit
exit
Script done, file is typescript
trainee@ubuntu1604:~$ cat typescript
Script started on Tue 29 Nov 2016 03:57:47 CET
trainee@ubuntu1604:~$ pwd
/home/trainee
trainee@ubuntu1604:~$ ls
aac codes Downloads fichier1 file1 Public typescript xyz

2026/02/04 21:23 36/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

abc Desktop errorlog fichier2 Music Templates Videos
bca Documents examples.desktop file Pictures training vitext
trainee@ubuntu1604:~$ exit
exit

Script done on Tue 29 Nov 2016 03:57:58 CET

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, éditez le fichier myscript avec vi :

$ vi myscript [Entrée]

Éditez votre fichier ainsi :

pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

trainee@ubuntu1604:~$ vi myscript
trainee@ubuntu1604:~$ /bin/bash myscript
/home/trainee
aac codes Downloads fichier1 file1 Pictures training vitext
abc Desktop errorlog fichier2 myscript Public typescript xyz
bca Documents examples.desktop file Music Templates Videos

Lancez ensuite le script en redirigeant son entrée standard :

trainee@ubuntu1604:~$ /bin/bash < myscript
/home/trainee
aac codes Downloads fichier1 file1 Pictures training vitext
abc Desktop errorlog fichier2 myscript Public typescript xyz

2026/02/04 21:23 37/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

bca Documents examples.desktop file Music Templates Videos

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

trainee@ubuntu1604:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

Dans le cas d'Ubuntu, ceci n'est pas le cas. La raison pour ceci devient évidente en regardant le fichier .profile dans /home/trainee:

trainee@ubuntu1604:~$ cat .profile
~/.profile: executed by the command interpreter for login shells.
...
set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

Comme on peut constater, la valeur de PATH ne contiendra $HOME/bin que dans le cas où le répertoire existe :

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

Pour modifier la valeur de PATH, créez le répertoire $HOME/bin et rechargez le fichier .profile :

trainee@ubuntu1604:~$ mkdir bin
trainee@ubuntu1604:~$ source .profile
trainee@ubuntu1604:~$ echo $PATH
/home/trainee/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/
bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

2026/02/04 21:23 38/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~$ mv myscript ~/bin
trainee@ubuntu1604:~$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

trainee@ubuntu1604:/tmp$ myscript
/tmp
hsperfdata_root
systemd-private-2596faf2be00473d9dc6da53af5711d5-colord.service-K4xRp2
systemd-private-2596faf2be00473d9dc6da53af5711d5-rtkit-daemon.service-iKio6G
systemd-private-2596faf2be00473d9dc6da53af5711d5-systemd-timesyncd.service-AlOq91

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

./myscript

. myscript

trainee@ubuntu1604:/tmp$ cd ~/bin
trainee@ubuntu1604:~/bin$./myscript
/home/trainee/bin
myscript
trainee@ubuntu1604:~/bin$. myscript
/home/trainee/bin
myscript

[stextbox id='black' image='null'] A faire : Notez bien la différence entre les sorties de cette dernière commande et la précédente. Expliquez pourquoi.
[/stextbox]

La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

2026/02/04 21:23 39/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/bin$ read var1 var2 var3 var4
fenestros edu is great!
trainee@ubuntu1604:~/bin$ echo $var1
fenestros
trainee@ubuntu1604:~/bin$ echo $var2
edu
trainee@ubuntu1604:~/bin$ echo $var3
is
trainee@ubuntu1604:~/bin$ echo $var4
great!

[stextbox id='black' image='null'] Important: Notez que chaque champs a été placé dans une variable différente. Notez aussi que par convention les
variables déclarées par des utilisateurs sont en miniscules afin de les distinguer des variables système qui sont en majuscules. [/stextbox]

trainee@ubuntu1604:~/bin$ read var1 var2
fenestros edu is great!
trainee@ubuntu1604:~/bin$ echo $var1
fenestros
trainee@ubuntu1604:~/bin$ echo $var2
edu is great!

[stextbox id='black' image='null'] Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros est mis dans $var2.
[/stextbox]

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

trainee@ubuntu1604:~/bin$ read var

↵ Entrée

2026/02/04 21:23 40/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/bin$ echo $?
0
trainee@ubuntu1604:~/bin$ echo $var

trainee@ubuntu1604:~/bin$

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

trainee@ubuntu1604:~/bin$ read var

Ctrl+D

trainee@ubuntu1604:~/bin$ echo $?
1
trainee@ubuntu1604:~/bin$ echo $var

trainee@ubuntu1604:~/bin$

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

trainee@ubuntu1604:~/bin$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

[stextbox id='black' image='null'] Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée standard au format octal.
Ceci est utile afin de visualiser les caractères non-imprimables. L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier
ou dans le contenu fourni à l'entrée standard. [/stextbox]

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

2026/02/04 21:23 41/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/bin$ OLDIFS="$IFS"
trainee@ubuntu1604:~/bin$ IFS=":"
trainee@ubuntu1604:~/bin$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

trainee@ubuntu1604:~/bin$ read var1 var2 var3
fenestros:edu is:great!
trainee@ubuntu1604:~/bin$ echo $var1
fenestros
trainee@ubuntu1604:~/bin$ echo $var2
edu is
trainee@ubuntu1604:~/bin$ echo $var3
great!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

trainee@ubuntu1604:~/bin$ IFS="$OLDIFS"
trainee@ubuntu1604:~/bin$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

2026/02/04 21:23 42/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

LAB #1

Testez si le fichier a100 est un fichier ordinaire :

trainee@ubuntu1604:~/bin$ cd ../training/
trainee@ubuntu1604:~/training$ test -f a100
trainee@ubuntu1604:~/training$ echo $?
0
trainee@ubuntu1604:~/training$ [-f a100]
trainee@ubuntu1604:~/training$ echo $?
0

Testez si le fichier a101 existe :

trainee@ubuntu1604:~/training$ [-f a101]
trainee@ubuntu1604:~/training$ echo $?
1

2026/02/04 21:23 43/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Testez si /home/trainee/training est un répertoire :

trainee@ubuntu1604:~/training$ [-d /home/trainee/training]
trainee@ubuntu1604:~/training$ echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

LAB #2

Testez si les deux chaînes sont égales :

trainee@ubuntu1604:~/training$ string1="root"
trainee@ubuntu1604:~/training$ string2="fenestros"
trainee@ubuntu1604:~/training$ [$string1 = $string2]
trainee@ubuntu1604:~/training$ echo $?
1

Testez si la string1 n'a pas de longueur 0 :

trainee@ubuntu1604:~/training$ [-n $string1]
trainee@ubuntu1604:~/training$ echo $?
0

Testez si la string1 a une longueur de 0 :

2026/02/04 21:23 44/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@ubuntu1604:~/training$ [-z $string1]
trainee@ubuntu1604:~/training$ echo $?
1

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

LAB #3

Comparez les deux nombres value1 et value2 :

trainee@ubuntu1604:~/training$ read value1
35
trainee@ubuntu1604:~/training$ read value2
23
trainee@ubuntu1604:~/training$ [$value1 -lt $value2]
trainee@ubuntu1604:~/training$ echo $?
1
trainee@ubuntu1604:~/training$ [$value2 -lt $value1]
trainee@ubuntu1604:~/training$ echo $?
0
trainee@ubuntu1604:~/training$ [$value2 -eq $value1]
trainee@ubuntu1604:~/training$ echo $?
1

2026/02/04 21:23 45/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

LAB #4

Testez si $file n'est pas un répertoire :

trainee@ubuntu1604:~/training$ file=a1OO
trainee@ubuntu1604:~/training$ [! -d $file]
trainee@ubuntu1604:~/training$ echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

trainee@ubuntu1604:~/training$ directory=/usr
trainee@ubuntu1604:~/training$ [-d $directory -a -x $directory]
trainee@ubuntu1604:~/training$ echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@ubuntu1604:~/training$ [-w a100 -a \(-d /usr -o -d /tmp \)]
trainee@ubuntu1604:~/training$ echo $?
0

2026/02/04 21:23 46/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

LAB #5

trainee@ubuntu1604:~/training$ [-o allexport]
trainee@ubuntu1604:~/training$ echo $?
1

La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

2026/02/04 21:23 47/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

LAB #6

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@ubuntu1604:~/training$ [[-w a100 && (-d /usr || -d /tmp)]]
trainee@ubuntu1604:~/training$ echo $?
0

Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

LAB #7

trainee@ubuntu1604:~/training$ [[-d /root]] && echo "The root directory exists"
The root directory exists
trainee@ubuntu1604:~/training$ [[-d /root]] || echo "The root directory exists"
trainee@ubuntu1604:~/training$

L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

2026/02/04 21:23 48/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

2026/02/04 21:23 49/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
\| ou logique
\& et logique

LAB #8

Ajoutez 2 à la valeur de $x :

trainee@ubuntu1604:~/training$ x=2
trainee@ubuntu1604:~/training$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

trainee@ubuntu1604:~/training$ expr $x+2
2+2

Les opérateurs doivent être protégés :

trainee@ubuntu1604:~/training$ expr $x * 2
expr: syntax error
trainee@ubuntu1604:~/training$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

trainee@ubuntu1604:~/training$ resultat=`expr $x + 10`
trainee@ubuntu1604:~/training$ echo $resultat
12

2026/02/04 21:23 50/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

2026/02/04 21:23 51/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

LAB #9

trainee@ubuntu1604:~/training$ x=2
trainee@ubuntu1604:~/training$ ((x=$x+10))
trainee@ubuntu1604:~/training$ echo $x
12
trainee@ubuntu1604:~/training$ ((x=$x+20))
trainee@ubuntu1604:~/training$ echo $x
32

Structures de contrôle

If

2026/02/04 21:23 52/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

ou encore :

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

fi

2026/02/04 21:23 53/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

LAB #10

Créez le script user_check suivant :

#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

trainee@ubuntu1604:~/training$ chmod 770 user_check
trainee@ubuntu1604:~/training$./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@ubuntu1604:~/training$./user_check root
Utilisateur root est défini sur ce système
trainee@ubuntu1604:~/training$./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@ubuntu1604:~/training$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

2026/02/04 21:23 54/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

Exemple

 case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start
 ;;
 status)
 status
 ;;

2026/02/04 21:23 55/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

[stextbox id='black' image='null'] Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du script contenant la clause
case est start, la fonction start sera exécutée. La fonction start n'a pas besoin d'être définie dans case et est donc en règle générale définie en début
de script. La même logique est appliquée dans le cas où le premier argument est stop, restart ou reload et status. Dans tous les autres cas,
représentés par une étoile, case affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom du script. [/stextbox]

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

2026/02/04 21:23 56/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas d'Ubuntu, le système exécute le fichier ~/.profile

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

LAB #11

[stextbox id='black' image='null'] A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts suivants ligne par ligne.
[/stextbox]

2026/02/04 21:23 57/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

~/.profile

trainee@ubuntu1604:~/training$ cat ~/.profile
~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
exists.
see /usr/share/doc/bash/examples/startup-files for examples.
the files are located in the bash-doc package.

the default umask is set in /etc/profile; for setting the umask
for ssh logins, install and configure the libpam-umask package.
#umask 022

if running bash
if [-n "$BASH_VERSION"]; then
 # include .bashrc if it exists
 if [-f "$HOME/.bashrc"]; then
 . "$HOME/.bashrc"
 fi
fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

~/.bashrc

trainee@ubuntu1604:~/training$ cat ~/.bashrc
~/.bashrc: executed by bash(1) for non-login shells.
see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
for examples

2026/02/04 21:23 58/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

If not running interactively, don't do anything
case $- in
 i) ;;
 *) return;;
esac

don't put duplicate lines or lines starting with space in the history.
See bash(1) for more options
HISTCONTROL=ignoreboth

append to the history file, don't overwrite it
shopt -s histappend

for setting history length see HISTSIZE and HISTFILESIZE in bash(1)
HISTSIZE=1000
HISTFILESIZE=2000

check the window size after each command and, if necessary,
update the values of LINES and COLUMNS.
shopt -s checkwinsize

If set, the pattern "**" used in a pathname expansion context will
match all files and zero or more directories and subdirectories.
#shopt -s globstar

make less more friendly for non-text input files, see lesspipe(1)
[-x /usr/bin/lesspipe] && eval "$(SHELL=/bin/sh lesspipe)"

set variable identifying the chroot you work in (used in the prompt below)
if [-z "${debian_chroot:-}"] && [-r /etc/debian_chroot]; then
 debian_chroot=$(cat /etc/debian_chroot)
fi

set a fancy prompt (non-color, unless we know we "want" color)

2026/02/04 21:23 59/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

case "$TERM" in
 xterm-color|*-256color) color_prompt=yes;;
esac

uncomment for a colored prompt, if the terminal has the capability; turned
off by default to not distract the user: the focus in a terminal window
should be on the output of commands, not on the prompt
#force_color_prompt=yes

if [-n "$force_color_prompt"]; then
 if [-x /usr/bin/tput] && tput setaf 1 >&/dev/null; then
 # We have color support; assume it's compliant with Ecma-48
 # (ISO/IEC-6429). (Lack of such support is extremely rare, and such
 # a case would tend to support setf rather than setaf.)
 color_prompt=yes
 else
 color_prompt=
 fi
fi

if ["$color_prompt" = yes]; then
 PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
else
 PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
fi
unset color_prompt force_color_prompt

If this is an xterm set the title to user@host:dir
case "$TERM" in
xterm*|rxvt*)
 PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
 ;;
*)
 ;;

2026/02/04 21:23 60/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

esac

enable color support of ls and also add handy aliases
if [-x /usr/bin/dircolors]; then
 test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
 alias ls='ls --color=auto'
 #alias dir='dir --color=auto'
 #alias vdir='vdir --color=auto'

 alias grep='grep --color=auto'
 alias fgrep='fgrep --color=auto'
 alias egrep='egrep --color=auto'
fi

colored GCC warnings and errors
#export GCC_COLORS='error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01'

some more ls aliases
alias ll='ls -alF'
alias la='ls -A'
alias l='ls -CF'

Add an "alert" alias for long running commands. Use like so:
sleep 10; alert
alias alert='notify-send --urgency=low -i "$([$? = 0] && echo terminal || echo error)" "$(history|tail -n1|sed
-e '\''s/^\s*[0-9]\+\s*//;s/[;&|]\s*alert$//'\'')"'

Alias definitions.
You may want to put all your additions into a separate file like
~/.bash_aliases, instead of adding them here directly.
See /usr/share/doc/bash-doc/examples in the bash-doc package.

if [-f ~/.bash_aliases]; then
 . ~/.bash_aliases

2026/02/04 21:23 61/61 LUF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

fi

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and /etc/profile
sources /etc/bash.bashrc).
if ! shopt -oq posix; then
 if [-f /usr/share/bash-completion/bash_completion]; then
 . /usr/share/bash-completion/bash_completion
 elif [-f /etc/bash_completion]; then
 . /etc/bash_completion
 fi
fi

<html>

Copyright © 2004-2018 Hugh Norris.

</html>

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:ubuntu:14:utilisateur:l105

Last update: 2020/01/30 03:27

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:ubuntu:14:utilisateur:l105

	LUF105 - La Ligne de Commande
	Le Shell
	Le Shell /bin/bash
	Les Commandes Internes et Externes au shell
	Les alias
	Le Prompt
	Rappeler des Commandes
	Générer les fins de noms de fichiers
	Le shell interactif
	Caractère *
	Caractère ?
	Caractères []
	L'option extglob
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	Codes Retour
	Redirections
	Tubes
	Substitutions de Commandes
	Chainage de Commandes
	Affichage des variables du shell
	Les variables principales
	Les Variables de Régionalisation et d'Internationalisation
	Les variables spéciales

	La Commande env
	Options du Shell Bash
	Exemples
	noclobber
	noglob
	nounset

	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	LAB #1

	Tests de chaînes de caractère
	LAB #2

	Tests sur des nombres
	LAB #3

	Les opérateurs
	LAB #4

	Tests d'environnement utilisateur
	LAB #5

	La commande [[expression]]
	LAB #6

	Opérateurs du shell
	LAB #7

	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	LAB #8

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	LAB #9

	Structures de contrôle
	If
	LAB #10
	case
	Exemple

	Boucles
	for
	while
	Exemple

	Scripts de Démarrage
	LAB #11
	~/.profile
	~/.bashrc

