
2026/02/04 14:11 1/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:28

SO105 - La Ligne de Commande

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.I). Il est utilisé comme interface pour donner des
instructions ou commandes au système d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

Shell Nom Date de Sortie Inventeur Commande Commentaires
tsh Thompson Shell 1971 Ken Thompson sh Le premier shell
sh Bourne Shell 1977 Stephen Bourne sh Le shell commun à tous les Unix. Sous Solaris : /usr/bin/sh
csh C-Shell 1978 Bill Joy csh Le shell BSD. Sous Solaris : /usr/bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous Solaris : /usr/bin/tcsh
ksh Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous Solaris : /usr/bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous Solaris : /usr/bin/bash
zsh Z Shell 1990 Paul Falstad zsh Zsh est plutôt orienté pour l'interactivité avec l'utilisateur.

Cette unité concerne l'utilisation du shell ksh sous Unix. Cependant, il peut aussi être utile aux utilisateurs de bash sous UNIX car les commandes sont
pratiquement identiques.

Le shell /bin/ksh permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaines de caractères

2026/02/04 14:11 2/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Utiliser les fonctions

Une commande commence toujours par un mot clef. Ce mot clef est interpréter par le shell selon le type de commande et dans l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

Le shell par défaut de root sous Solaris est /bin/sh.

Le shell des utilisateurs est défini par root dans le fichier /etc/passwd :

cat /etc/passwd
root:x:0:0:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
smmsp:x:25:25:SendMail Message Submission Program:/:
listen:x:37:4:Network Admin:/usr/net/nls:
gdm:x:50:50:GDM Reserved UID:/:
webservd:x:80:80:WebServer Reserved UID:/:
postgres:x:90:90:PostgreSQL Reserved UID:/:/usr/bin/pfksh
svctag:x:95:12:Service Tag UID:/:
nobody:x:60001:60001:NFS Anonymous Access User:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x NFS Anonymous Access User:/:
test:x:100:1:Test:/export/home/test:/bin/ksh

2026/02/04 14:11 3/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Ne modifiez jamais le shell de root dans le fichier /etc/passwd.

Devenez maintenant l'utilisateur test grâce à la commande su - :

su - test
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
$

Vérifiez que le shell de l'utilisateur test soit bien ksh grâce à la consultation de la valeur de la variable système SHELL :

$ echo $SHELL
/bin/ksh

Il convient maintenant de modifier le shell de test en bash :

$ which bash
/usr/bin/bash

passez en tant que root grâce à la commande exit puis éditez le fichier /etc/passwd :

test:x:101:1:Test:/export/home/test:/usr/bin/bash

Ensuite connectez-vous de nouveau en tant que l'utilisateur test et utilisez la commande echo pour visualiser le contenu de la variable système SHELL
:

su - test
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
-bash-3.00$ echo $SHELL
/usr/bin/bash

Définissez de nouveau le CLI de l'utilisateur test en /bin/ksh avant de poursuivre.

2026/02/04 14:11 4/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Une commande tapée dans un CLI commence toujours par un mot clef. Ce mot clef est interprétée par le shell selon le type de commande et dans
l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

La suite de ce cours concerne l'utilisation du shell ksh sous Solaris. Le shell ksh permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaînes de caractères
Utiliser les fonctions

Defenissez le shell courant de root en tant que /bin/ksh :

/bin/ksh
#

Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type en tant que root
:

type cd
cd est une commande prédéfinie du shell

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /usr/sbin, /usr/bin, /usr/openwin/bin ou
/usr/ucb :

2026/02/04 14:11 5/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

type ifconfig
ifconfig est /usr/sbin/ifconfig

Les Aliases

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
qu'à l'environnement de l'utilisateur :

type stop
stop est un alias exporté pour kill -STOP

ou

su - test
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
$ type ls
ls est un alias suivi pour /usr/bin/ls

Notez que dans ce cas l'alias ls est en effet un alias qui utilise la commande ls elle-même.

La liste des alias définis peut être visualisée en utilisant la commande alias :

$ alias
autoload='typeset -fu'
command='command '
functions='typeset -f'
history='fc -l'
integer='typeset -i'
local=typeset

2026/02/04 14:11 6/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

ls=/usr/bin/ls
nohup='nohup '
r='fc -e -'
stop='kill -STOP'
suspend='kill -STOP $$'

Un alias se définit en utilisant de nouveau la commande alias :

$ alias dir='ls -l'
$ alias
autoload='typeset -fu'
command='command '
dir='ls -l'
functions='typeset -f'
history='fc -l'
integer='typeset -i'
local=typeset
ls=/usr/bin/ls
nohup='nohup '
r='fc -e -'
stop='kill -STOP'
suspend='kill -STOP $$'
$ dir
total 6
-rw-r--r-- 1 test other 136 août 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 août 15 10:19 local.login
-rw-r--r-- 1 test other 174 août 15 10:19 local.profile

Notez que la liste des alias contient, sans distinction, les alias définis dans les fichiers de démarrage du système ainsi que l'alias dir créé
par test qui n'est que disponible à test dans le terminal courant.

2026/02/04 14:11 7/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Pour supprimer un alias, il convient d'utiliser la commande unalias :

$ unalias dir
$ alias
autoload='typeset -fu'
cat=/usr/bin/cat
command='command '
functions='typeset -f'
history='fc -l'
integer='typeset -i'
local=typeset
ls=/usr/bin/ls
nohup='nohup '
r='fc -e -'
stop='kill -STOP'
suspend='kill -STOP $$'

Pour forcer l'exécution d'une commande et non l'alias il faut faire précéder la commande par le caractère \ :

$ alias ls='ls -l'
$ ls
total 6
-rw-r--r-- 1 test other 136 août 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 août 15 10:19 local.login
-rw-r--r-- 1 test other 174 août 15 10:19 local.profile
$ \ls
local.cshrc local.login local.profile

Dans l'exemple ci-dessus, la première commande étant un alias, la sortie est celle de la commande ls -l tandis que la deuxième est celle
de la commande ls simple.

2026/02/04 14:11 8/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le Prompt

Le prompt d'un utilisateur dépend de son statut :

$ pour un utilisateur normal
pour root

Rappeler des Commandes

Le shell ksh permet le rappel des dernières commandes saisies. Afin de connaître la liste des commandes mémorisées, utilisez la commande history
en tant que l'utilisateur test :

$ history
5 exit
6 type ls
7 alias
8 alias dir='ls -l'
9 alias
10 cat /etc/shells
11 dir
12 \dir
13 unalias dir
14 alias
15 alias ls='ls -l'
16 ls
17 \ls
18 which chsh
19 ls -a
20 history

Rappelez-vous que la commande history est un alias :

2026/02/04 14:11 9/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ alias
...
history='fc -l'
...

En réalité donc c'est la commande fc qui est appelée.

L'historique des commandes est en mode emacs par défaut. Afin de pouvoir rappeler les dernières commandes saisies, il convient de passer en mode
emacs :

$ set -o emacs

Le rappel de la dernière commande se fait en utilisant les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant les touches
[CTRL]-[N] :

Caractère de Contrôle Définition
[CTRL]-[P] Rappelle la commande précédente
[CTRL]-[N] Rappelle la commande suivante

Le paramétrage de la fonction du rappel des commandes est fait en définissant des variables système.

Afin de faciliter la définition de ces variables, créez le fichier /etc/kshrc en tant que root :

#
This file is the common Environment setup for Korn Shell
#
HISTSIZE=256
HISTFILE=$HOME/.sh_history
export HISTFILE HISTSIZE
set -o emacs

Vous noterez que dans ce fichier, la valeur de HISTSIZE est de 256. Ceci implique que les dernières 256 commandes sont mémorisées.

Devenez maintenant l'utilisateur standard test :

2026/02/04 14:11 10/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

su - test
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
$

Les commandes mémorisées sont stockées dans le fichier $HOME/.sh_history ou $HOME indique le répertoire personnel de l'utilisateur concerné :

$ cat $HOME/.sh_history
��echo $SHELL
whereis bash
which bash
exit
exit
type ls
alias
alias dir='ls -l'
alias
cat /etc/shells
dir
\dir
unalias dir
alias
alias ls='ls -l'
ls
\ls
ls -a
history
alias
set -o emacs
exit
cat $HOME/.sh_history

La comparaison du contenu de ce fichier avec la sortie de la commande history démontre que les deux sont identiques, à part bien

2026/02/04 14:11 11/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

évidemment, la dernière commande saisie, soit history.

Vous pouvez rappeler une commande spécifique de l'historique en utilisant la commande fc -e - suivi du numéro de la commande à rappeler :

$ history
...
52 ls
53 pwd
54 vmstat
55 df
56 history
$ fc -e - 52
ls
local.cshrc local.login local.profile

Afin de faire appel à au fichier /etc/kshrc, éditez maintenant le fichier /etc/profile :

$ exit
vi /etc/profile

en y ajoutant les lignes suivantes :

ENV=/etc/kshrc
export ENV

Vous obtiendrez une fenêtre similaire à celle-ci :

#ident "@(#)profile 1.19 01/03/13 SMI" /* SVr4.0 1.3 */

The profile that all logins get before using their own .profile.

trap "" 2 3

2026/02/04 14:11 12/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

export LOGNAME PATH

ENV=/etc/kshrc
export ENV

if ["$TERM" = ""]
then
 if /bin/i386
 then
 TERM=sun-color
 else
 TERM=sun
 fi
 export TERM
fi

Login and -su shells get /etc/profile services.
-rsh is given its environment in its .profile.

Connectez-vous de nouveau en tant que test :

su - test
Sun Microsystems Inc. SunOS 5.10 Generic January 2005

Vérifiez que vous pouvez rappeler les dernières commandes dans votre console.

Générer les fins de noms de fichiers

Le shell ksh permet la génération des fins de noms de fichiers. Celle-ci est accomplie grâce à l'utilisation de la touche [echap]. Dans l'exemple qui
suit, la commande saisie est :

$ ls [echap] [echap]

2026/02/04 14:11 13/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Vous obtiendrez :

$ ls local.

Vous noterez que le shell propose local.. En effet, sans plus d'information, le shell ne sait pas quel fichier parmi les trois présents doit être ouvert :

$ ls | grep local.
local.cshrc
local.login
local.profile

Par contre si vous ajoutez la lettre c :

$ ls local.c [echap] [echap]

vous noterez que le nom du fichier est complété automatiquement. Ceci est du au fait qu'il n'existe qu'un seul élément dans le répertoire commençant
par la chaîne local.c :

$ ls local.cshrc

Le shell interactif

Lors de l'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractères spéciaux.

Caractère Spéciaux Description
* Représente un ou une suite de caractères
? Représente un caractères
[abc] Représente un caractère parmi ceux entre crochets
[!abc] Représente un caractère ne trouvant pas parmi ceux entre crochets
?(expression1|expression2| …) Représente 0 ou 1 fois l'expression1 ou 0 ou 1 fois l'expression2 …
*(expression1|expression2| …) Représente 0 à x fois l'expression1 ou 0 à x fois l'expression2 …

2026/02/04 14:11 14/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère Spéciaux Description
+(expression1|expression2| …) Représente 1 à x fois l'expression1 ou 1 à x fois l'expression2 …
@(expression1|expression2| …) Représente 1 fois l'expression1 ou 1 fois l'expression2 …
!(expression1|expression2| …) Représente 0 fois l'expression1 ou 0 fois l'expression2 …

Caractère *

Dans votre répertoire individuel, créez un répertoire formation. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

$ pwd
/export/home/test
$ mkdir formation
$ cd formation
$ touch f1 f2 f3 f4 f5
$ ls -l
total 0
-rw-r--r-- 1 test other 0 août 15 16:00 f1
-rw-r--r-- 1 test other 0 août 15 16:00 f2
-rw-r--r-- 1 test other 0 août 15 16:00 f3
-rw-r--r-- 1 test other 0 août 15 16:00 f4
-rw-r--r-- 1 test other 0 août 15 16:00 f5

Afin de démontrer l'utilisation du caractère spécial *, saisissez la commande suivante :

$ echo f*
f1 f2 f3 f4 f5

Notez que le caractère * remplace un caractère ou une suite de caractères.

2026/02/04 14:11 15/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère ?

Créez maintenant les fichiers f52 et f62 :

$ touch f52 f62

Saisissez ensuite la commande suivante :

$ echo f?2
f52 f62

Notez que le caractère ? remplace un seul caractère.

Caractères []

L'utilisation peut prendre plusieurs formes différentes :

Joker Description
[xyz] Représente le caractère x ou y ou z
[m-t] Représente le caractère m ou n …. t
[!xyz] Représente un caractère autre que x ou y ou z
[!m-t] Représente un caractère autre que m ou n …. t

Afin de démontrer l'utilisation des caractères [et], créez le fichier a100 :

$ touch a100

Ensuite saisissez les commandes suivantes et notez le résultat :

2026/02/04 14:11 16/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Notez ici que tous les fichiers commençant par les lettres a, b, c, d, e ou f sont affichés à l'écran.

$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Notez ici que tous les fichiers sont affichés à l'écran, à l'exception d'un fichier commençant par la lettre a .

$ echo [a-b]*
a100

Notez ici que seul le fichier commençant par la lettre a est affiché à l'écran car il n'existe pas de fichiers commençant par la lettre b.

$ echo [a-f]
[a-f]

Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, c, d, e ou f. Pour cette raison, n'ayons trouvé aucune correspondance
entre le filtre utilisé et les objets dans le répertoire courant, le commande echo retourne le filtre passé en argument, c'est-à-dire [a-f].

2026/02/04 14:11 17/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

$ touch f f.txt f123.txt f123123.txt f123123123.txt

Saisissez la commande suivante :

$ ls f?(123).txt
f.txt f123.txt

Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1 occurence de la chaîne 123.

*(expression)

Saisissez la commande suivante :

$ ls f*(123).txt
f.txt f123.txt f123123.txt f123123123.txt

Notez ici que la commande affiche les fichiers ayant un nom contenant de 0 jusqu'à x occurences de la chaîne 123.

+(expression)

2026/02/04 14:11 18/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Saisissez la commande suivante :

$ ls f+(123).txt
f123.txt f123123.txt f123123123.txt

Notez ici que la commande affiche les fichiers ayant un nom contenant entre 1 et x occurences de la chaîne 123.

@(expression)

Saisissez la commande suivante :

$ ls f@(123).txt
f123.txt

Notez ici que la commande affiche les fichiers ayant un nom contenant 1 seule occurence de la chaîne 123.

!(expression)

Saisissez la commande suivante :

$ ls f!(123).txt
f.txt f123123.txt f123123123.txt

Notez ici que la commande n'affiche que les fichiers ayant un nom qui ne contient pas la chaîne 123.

2026/02/04 14:11 19/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractères d'Échappement

Afin d'utiliser un caractère spécial dans un contexte littéral, il faut utiliser un caractère d'échappement. Il existe trois caractères d'échappement :

Caractère Description
\ Protège le caractère qui le suit
' ' Protège tout caractère, à l'exception du caractère ' lui-même, se trouvant entre les deux '
“ ” Protège tout caractère, à l'exception des caractères “ lui-même, $, \ et ', se trouvant entre les deux “

Afin d'illustrer l'utilisation des caractères d'échappement, considérons la commande suivante :

$ echo * est un caractère spécial [Entrée]

Lors de la saisie de cette commande dans votre répertoire formation, vous obtiendrez une fenêtre similaire à celle-ci :

$ echo * est un caractère spécial
a100 f1 f2 f3 f4 f5 f52 f62 est un caractère spécial

Vous noterez que le caractère spécial * a bien été interprété par le shell.

Afin de protéger le caractère *, nous devons utiliser un caractère d'échappement. Commençons par l'utilisation du caractère \ :

$ echo * est un caractère spécial
* est un caractère spécial

Vous noterez que le caractère spécial * n'a pas été interprété par le shell.

Le même résultat peut être obtenu en utilisant ainsi :

$ echo "* est un caractère spécial"
* est un caractère spécial
$ echo '* est un caractère spécial'
* est un caractère spécial

2026/02/04 14:11 20/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Codes Retour

Chaque commande retourne un code à la fin de son exécution. La variable spéciale $? sert à stocker le code retour de la dernière commande
exécutée.

Par exemple :

$ cd ..
$ mkdir codes
$ echo $?
0
$ touch codes/retour
$ rmdir codes
rmdir: échec de suppression de « codes »: Le dossier n'est pas vide
$ echo $?
2

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.

La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un deux.

Si le code retour est zéro la dernière commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la dernière commande s'est déroulée avec une erreur.

Redirections

Votre dialogue avec le système Solaris utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et l’écran, le canal
de sortie standard :

2026/02/04 14:11 21/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

;#; ;#;

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande à l’écran.

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette façon, le résultat d’une commande telle free peut être
stocké dans un fichier pour une consultation ultérieure :

;#; ;#;

Cet effet est obtenu en utilisant une redirection :

$ vmstat > fichier [Entrée]

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande vmstat. Par contre si le fichier existe déjà, il sera écrasé.

Pour ajouter des données supplémentaires au même fichier cible, il faut utiliser une double redirection :

$ date >> fichier [Entrée]

De cette façon, la date du jour sera rajoutée à la fin de votre fichier après les informations de la commande free.

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Asolaris%3A10%3Auser%3Al105&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Asolaris%3A10%3Auser%3Al105&media=free:redirection.png

2026/02/04 14:11 22/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Pour visualiser le contenu du fichier fichier nous utilisons la commande cat :

$ vmstat > fichier
$ date >> fichier
$ cat fichier
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd s0 -- -- in sy cs us sy id
 0 0 0 907680 469372 139 1580 8 0 0 0 14 3 -1 0 0 454 2712 367 2 4 94
mercredi 15 août 2012 17 h 33 CEST

Notez que la sortie standard ne peut être redirigée que dans une seule direction.

Les canaux d’entrées et de sorties sont numérotés :

0 = Le Canal d’entrée Standard
1 = Le Canal de Sortie Standard
2 = Le Canal d’erreur

La commande suivante créera un fichier nommé erreurlog qui contient les messages d’erreur de l’exécution de la commande rmdir :

$ rmdir formation/ 2> erreurlog
$ cat erreurlog
rmdir : répertoire "formation/" : Répertoire non vide

En effet l'erreur est générée parce que le répertoire formation n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche à
droite.

Dans l’exemple suivant, nous réunissons le canal de sortie et le canal d’erreurs :

2026/02/04 14:11 23/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ vmstat > nom_du_fichier 2>&1

La syntaxe 2>&1 envoie la sortie du canal 2 au même endroit que le canal 1, à savoir le fichier dénommé fichier.

Il est possible de modifier le canal d'entrée standard afin de lire des informations à partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractère < :

$ wc -w < erreurlog
 8

Tubes

Il est aussi possible de relier des commandes avec un tube | .

Dans ce cas, le canal de sortie de la commande à gauche du tube est envoyé au canal d’entrée de la commande à droite du tube :

$ ls | wc -w
 6

Veuillez noter qu'il est possible de relier plusieurs tubes dans la même commande.

Rappelez-vous que la sortie standard ne peut être redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
le visualiser à l'écran, nous devons utiliser la commande tee avec un pipe :

$ date | tee fichier1
mercredi 15 août 2012 17 h 31 CEST
$ cat fichier1
mercredi 15 août 2012 17 h 31 CEST

Cette même technique nous permet de créer deux fichiers :

2026/02/04 14:11 24/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ date | tee fichier1 > fichier2
$ cat fichier1
mercredi 15 août 2012 17 h 31 CEST
$ cat fichier2
mercredi 15 août 2012 17 h 31 CEST

Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par la valeur de sa sortie. Afin d'illustrer ce point, considérons la
commande suivante :

$echo $(date) [Entrée]

$ echo date
date
$ echo $(date)
mercredi 15 août 2012 17 h 22 CEST
$ echo `date`
mercredi 15 août 2012 17 h 22 CEST

Notez le format de chaque substitution $(commande) ou `commande`. Sur un clavier français, l'anti-côte est accessible en utilisant les
touches Alt Gr et 77 .

Chainage de Commandes

Il est possible de regrouper des commandes à l’aide d’un sous-shell :

$ (ls -l; ps; who) > liste

2026/02/04 14:11 25/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ cat liste
total 10
drwxr-xr-x 2 test other 512 août 15 16:10 codes
drwxr-xr-x 2 test other 512 août 15 16:03 formation
-rw-r--r-- 1 test other 0 août 15 17:25 liste
-rw-r--r-- 1 test other 136 août 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 août 15 10:19 local.login
-rw-r--r-- 1 test other 174 août 15 10:19 local.profile
 PID TTY TIME CMD
 4356 pts/3 0:00 ksh
 4358 pts/3 0:00 ps
 23399 pts/3 0:00 ksh
root console août 12 10:48 (:0)
root pts/3 août 15 15:37 (:0.0)

Cet exemple envoie le résultat des trois commandes vers le fichier liste en les traitant en sous-tâches (en tâches de fond).

Rappelez-vous que chaque commande transmet la façon dont elle a été exécutée (Code Retour). Dans le cas d’un traitement sans erreurs, la valeur du
Code retour est 0, sinon elle est autre que 0.

De cette façon, en utilisant les caractères && ou ||, les commandes peuvent être chainées en fonction du Code Retour de la commande précédente.

&& est utilisé afin de s’assurer que la deuxième commande s’exécute dans le cas où la valeur du Code Retour de la première commande est 0,
autrement dit qu’il n’y a pas eu d’erreurs.

Le syntaxe de cette commande est :

Commande1 && Commande2

Par exemple :

$ ls && pwd
codes liste local.login
formation local.cshrc local.profile
/export/home/test

et :

$ rmdir formation && pwd
rmdir : répertoire "formation" : Répertoire non vide

Dans ce cas, Commande 2 est exécutée uniquement dans le cas où Commande1 s’est exécuté sans erreur

Ou :

Commande1 || Commande2

Dans ce cas, Commande2 est exécuté si Commande1 a rencontré une erreur.

Par exemple :

$ ls || pwd
codes liste local.login
formation local.cshrc local.profile

et :

$ rmdir formation || pwd
rmdir : répertoire "formation" : Répertoire non vide
/export/home/test

2026/02/04 14:11 26/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Affichage des variables du shell

Une variable du shell peut être affichée grâce à la commande :

$echo $nom_de_la_variable [Entrée]

Les variables principales

Variable Description
PWD Le répertoire courant.
OLDPWD Le répertoire avant la dernière commande cd. Même chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767
SECONDS Le nombre de secondes écoules depuis le lancement du shell
HISTFILE Le fichier historique
HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HOME Le répertoire de connexion.
MAIL Le fichier contenant le courrier.
MAILCHECK La fréquence de vérification du courrier en secondes.
PATH Le chemin de recherche des commandes.
PS1 Le prompt par défaut.
PS2 Le deuxième prompt par défaut
PS3 Le troisième prompt par défaut
PS4 Le quatrième prompt par défaut
SHELL Le shell de préférence.
TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.
LANG La valeur générique pour l'internationalisation
LC_MONETARY Le symbole monétaire
LC_TIME Le format de l'heure et de la date
LC_COLLATE Le jeu de caractères utilisé dans les tris.
LC_NUMERIC Le code pour le symbole décimal et le séparateur de milliers.

2026/02/04 14:11 27/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
LC_CTYPE Le code pour la classification des caractères.
ERRNO Code de retour du dernier appel système
ENV Variable contenant le nom du script à exécuter à chaque démarrage d'un shell intéractif
FCEDIT Editeur de texte utilisé par la commande fc

Les Variables de Régionalisation et d'Internationalisation

L'Internationalisation, aussi appelé i18n car il y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste à adapter un
logiciel aux paramètres variant d'une région à l'autre :

longueur des mots,
accents,
écriture de gauche à droite ou de droite à gauche,
unité monétaire,
styles typographiques et modèles rédactionnels,
unités de mesures,
affichage des dates et des heures,
formats d'impression,
format du clavier,
etc …

Le Régionalisation, aussi appelé i10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste à modifier l'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractères. Par exemple, pour la langue française les valeurs de langue-PAYS
sont :

fr-BE = la Belgique francophone,
fr-CA = le Québec,
fr-FR = la France,
fr-LU = le Luxembourg,
fr-MC = Monaco,
fr-CH = la Suisse francophone.

2026/02/04 14:11 28/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les variables système les plus importants contenant les informations concernant le régionalisation sont :

Variable Description
LC_ALL Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE Détermine les paramètres régionaux pour l'interprétation de séquence d'octets de données texte en caractères.

Par exemple :

$ echo $LC_ALL

$ echo $LC_CTYPE
fr_FR.ISO8859-1
$ echo $LANG
fr_FR.ISO8859-1

Les variables spéciales

Variable Description
$LINENO Contient le numéro de la ligne courante du script ou de la fonction
$$ Contient le PID du shell en cours
$PPID Contient le PID du processus parent du shell en cours
$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 … Contient respectivement le premier argument, deuxième argument etc passés au script
$# Contient le nombre d'arguments passés au script
$* Contient l'ensemble des arguments passés au script
$@ Contient l'ensemble des arguments passés au script

Options du Shell ksh

Pour visualiser les options du shell ksh, il convient d'utiliser la commande set :

2026/02/04 14:11 29/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ set -o
Paramétrage courant des options
allexport off
bgnice on
emacs on
errexit off
gmacs off
ignoreeof off
interactive on
keyword off
markdirs off
monitor on
noexec off
noclobber off
noglob off
nolog off
notify off
nounset off
privileged off
restricted off
trackall off
verbose off
vi off
viraw off
xtrace off

Pour activer une option il convient de nouveau à utiliser la commande set :

$ set -o allexport
$ set -o
Paramétrage courant des options
allexport on
bgnice on
emacs on

2026/02/04 14:11 30/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

errexit off
gmacs off
ignoreeof off
interactive on
keyword off
markdirs off
monitor on
noexec off
noclobber off
noglob off
nolog off
notify off
nounset off
privileged off
restricted off
trackall off
verbose off
vi off
viraw off
xtrace off

Notez que l'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec l'option +o :

$ set +o allexport
$ set -o
Paramétrage courant des options
allexport off
bgnice on
emacs on
errexit off
gmacs off
ignoreeof off

2026/02/04 14:11 31/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

interactive on
keyword off
markdirs off
monitor on
noexec off
noclobber off
noglob off
nolog off
notify off
nounset off
privileged off
restricted off
trackall off
verbose off
vi off
viraw off
xtrace off

Parmi les options, voici la description des plus intéressantes :

Option Valeur par Défaut Description
allexport off Le shell export automatiquement toute variable
emacs off L'édition de la ligne de commande est au style emacs
noclobber off Les simples redirections n'ecrasent pas le fichier de destination
noglob off Désactive l'expansion des caractères génériques
nounset off Le shell retourne une erreur lors de l'expansion d'une variable inconnue
verbose off Affiche les lignes de commandes saisies
vi on L'édition de la ligne de commande est au style vi

Exemples

2026/02/04 14:11 32/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

noclobber

$ set -o noclobber
$ pwd > file
$ pwd > file
ksh: file: ce fichier existe déjà
$ pwd >| file
$ set +o noclobber

noglob

$ set -o noglob
$ echo *
*
$ set +o noglob
$ echo *
core Desktop Documents erreurlog fichier1 fichier2 file formation kshrc kshrc1 liste local.cshrc local.login
local.profile nom_du_fichier

nounset

$ set -o nounset
$ echo $FENESTROS
ksh: FENESTROS: paramètre non défini
$ set +o nounset
$ echo $FENESTROS

$

2026/02/04 14:11 33/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

verbose

$ set -o verbose
$ echo fenestros
echo fenestros
fenestros
$ set +o verbose
set +o verbose
$ echo fenestros
fenestros

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/usr/bin/ksh monscript

soit en redirigeant son entrée standard :

/usr/bin/ksh < monscript

2026/02/04 14:11 34/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

monscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, mais qu'il se trouve dans un
répertoire autre qu'un des répertoires spécifiés dans le PATH de l'utilisateur qui le lance, il convient de naviguer au répertoire concerné et de lancer la
commande suivante :

./monscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. monscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Pour illustrer l'écriture et l'exécution d'un script, créez le fichier monscript avec vi :

$ vi monscript [Entrée]

Editez votre fichier ainsi :

#debut du fichier monscript
pwd
ls

2026/02/04 14:11 35/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

#fin du fichier monscript

Sauvegardez votre fichier et sortez du programme vi. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/ksh :

$ /usr/bin/ksh monscript
/export/home/test
codes fichier1 liste local.profile
erreurlog fichier2 local.cshrc monscript
fichier formation local.login

Lancez ensuite le script en redirigeant son entrée standard :

$ /usr/bin/ksh < monscript
/export/home/test
codes fichier1 liste local.profile
erreurlog fichier2 local.cshrc monscript
fichier formation local.login

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH.

Saisissez les commandes suivantes :

$ pwd
/export/home/test
$ mkdir bin
$ PATH=$PATH:$HOME/bin
$ export PATH
$ echo $PATH
/usr/bin::/export/home/test/bin

Vous constaterez que le répertoire /export/home/test/bin a été rajouté à votre PATH grâce à la ligne PATH=$PATH:$HOME/bin. Déplacez votre
script dans ce répertoire, vérifiez les permissions de votre script, rendez-le exécutable pour votre utilisateur et vérifiez qu'il est bien exécutable:

$ mv monscript ~/bin

2026/02/04 14:11 36/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ cd ~/bin
$ chmod u+x monscript
$ ls -l
total 2
-rwxr--r-- 1 test other 61 août 15 17:45 monscript

Positionnez-vous dans le répertoire /tmp et exécutez maintenant votre script en l'appelant par son nom :

$ cd /tmp
$ monscript
/tmp
breg_business_logic_20120812104901282.log
breg_business_logic_20120812104901282.log.lck
hsperfdata_noaccess
hsperfdata_root
ogl_select270
rootswup.trc
sh6826.1

Dans les trois cas précédents, le script a été exécuté dans un shell fils. Pour l'exécuter dans le shell en cours, rappelez-vous que la commande est :

$. monscript
/tmp
breg_business_logic_20120812104901282.log
breg_business_logic_20120812104901282.log.lck
hsperfdata_noaccess
hsperfdata_root
ogl_select270
rootswup.trc
sh6826.1

2026/02/04 14:11 37/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande read

Vous êtes actuellement connecté en tant que l'utilisateur test. Devenez maintenant root grâce à la commande exit.

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument :

read var1 var2
fenestros edu
echo $var1
fenestros
echo $var2
edu

La séparation entre le contenu des variables est l'espace. Par conséquent il est intéressant de noter les exmples suivants :

read var1 var2 var3 var4
fenestros edu est super!
echo $var1
fenestros
echo $var2
edu
echo $var3
est
echo $var4
super!

read var1 var2
fenestros edu est super!
echo $var1
fenestros
echo $var2

2026/02/04 14:11 38/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

edu est super!

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D :

read var
fenestros
echo $?
0
echo $var
fenestros

Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

read var

echo $?
0
echo $var

#

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

read var
^D
echo $?
1
echo $var

#

2026/02/04 14:11 39/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

echo "$IFS" | od -c
0000000 \t \n \n
0000004

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

OLDIFS="$IFS"
echo "$OLDIFS" | od -c
0000000 \t \n \n
0000004
IFS=":"
echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

read var1 var2 var3
fenestros:edu est:super!
echo $var1
fenestros
echo $var2
edu est
echo $var3
super!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

2026/02/04 14:11 40/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

Exemples

Testez si le fichier a100 est un fichier ordinaire :

cd formation
test -f a100
echo $?

2026/02/04 14:11 41/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

0
[-f a100]
echo $?
0

Testez si le fichier a101 existe :

[-f a101]
echo $?
1

Testez si /export/home/test/formation est un répertoire :

[-d /export/home/test/formation]
echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
chaîne1 = chaîne2 Retourne vrai si chaîne1 est égale à chaîne2
chaîne1 != chaîne2 Retourne vrai si chaîne1 est différente de chaîne2
chaîne1 Retourne vrai si chaîne1 n'est pas vide

Exemples

Testez si les deux chaînes sont égales :

chaine1="root"
chaine2="fenestros"

2026/02/04 14:11 42/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

["chaine1" = "chaine2"]
echo $?
1

Testez si la chaîne1 n'a pas de longueur 0 :

[-n "chaine1"]
echo $?
0

Testez si la chaîne1 a une longueur de 0 :

[-z "chaine1"]
echo $?
1

Tests sur des nombres

Test Description
valeur1 -eq valeur2 Retourne vrai si valeur1 est égale à valeur2
valeur1 -ne valeur2 Retourne vrai si valeur1 n'est pas égale à valeur2
valeur1 -lt valeur2 Retourne vrai si valeur1 est inférieure à valeur2
valeur1 -le valeur2 Retourne vrai si valeur1 est inférieur ou égale à valeur2
valeur1 -gt valeur2 Retourne vrai si valeur1 est supérieure à valeur2
valeur1 -ge valeur2 Retourne vrai si valeur1 est supérieure ou égale à valeur2

Exemple

Comparez les deux nombres nombre1 et nombre2 :

read nombre1
35

2026/02/04 14:11 43/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

read nombre2
21
[$nombre1 -lt $nombre2]
echo $?
1
[$nombre2 -lt $nombre1]
echo $?
0
[$nombre2 -eq $nombre1]
echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

Exemples

Testez si $fichier n'est pas un répertoire :

fichier=a100
[! -d $fichier]
echo $?
0

Testez si $repertoire est un répertoire et si l'utilisateur à le droit de le traverser :

repertoire=/usr

2026/02/04 14:11 44/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[-d $repertoire -a -x $repertoire]
echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[-w a100 -a \(-d /usr -o -d /tmp \)]
echo $?
1
cd formation
[-w a100 -a \(-d /usr -o -d /tmp \)]
echo $?
0

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

Exemples

[-o allexport]
echo $?
1
[-o interactive-comments]
echo $?
0

La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec

2026/02/04 14:11 45/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
chaine = modele Retourne vrai si chaîne correspond au modèle
chaine != modele Retourne vrai si chaîne ne correspond pas au modèle
chaine1 < chaine2 Retourne vrai si chaîne1 est lexicographiquement avant chaîne2
chaine1 > chaine2 Retourne vrai si chaîne1 est lexicographiquement après chaîne2

Exemples

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[[-w a100 && (-d /usr || -d /tmp)]]
echo $?
0

Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

Exemples :

2026/02/04 14:11 46/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[[-d /tmp]] && echo "Répertoire tmp existe"
Répertoire tmp existe
[[-d /tmp]] || echo "Répertoire tmp existe"

#

L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace nombre1 Espace opérateur Espace nombre2 Entrée

ou

expr Tab nombre1 Tab opérateur Tab nombre2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication

2026/02/04 14:11 47/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
/ Division
% Modulo
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

Exemples

Ajoutez 2 à la valeur de $x :

$ x=2
$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

$ expr $x+2

2026/02/04 14:11 48/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

2+2

Les opérateurs doivent être protégés :

$ expr $x * 2
expr: syntax error
$ expr $x * 2
4

Mettez le résultat d'un calcul dans un variable :

$ resultat=`expr $x + 10`
$ echo $resultat
12

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication

2026/02/04 14:11 49/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
/ Division
% Modulo
* Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

2026/02/04 14:11 50/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemples

$ x=2
$ ((x=$x+10))
$ echo $x
12
$ ((x=x+20))
$ echo $x
32

Structures de contrôle

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

2026/02/04 14:11 51/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

ou encore :

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

fi

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

2026/02/04 14:11 52/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Scripts de Démarrage

Lors de chaque connexion au système, un script de démarrage est exécuté automatiquement. Ce script se trouve dans le répertoire personnel de
l'utilisateur et porte un nom différent selon le shell utilisé:

.profile pour le ksh

.bash_profile pour le bash

Par exemple :

2026/02/04 14:11 53/53 SO105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ ls -a
total 16
drwxr-xr-x 2 test other 512 août 15 11:50 .
drwxr-xr-x 4 root root 512 août 15 10:19 ..
-rw------- 1 test other 17 août 15 11:50 .bash_history
-rw-r--r-- 1 test other 144 août 15 10:19 .profile
-rw------- 1 test other 200 août 15 12:16 .sh_history
-rw-r--r-- 1 test other 136 août 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 août 15 10:19 local.login
-rw-r--r-- 1 test other 174 août 15 10:19 local.profile

L'étude du fichier .profile pour votre utilisateur démontrera un fichier similaire à celui-ci :

$ cat .profile
This is the default standard profile provided to a user.
They are expected to edit it to meet their own needs.

MAIL=/usr/mail/${LOGNAME:?}

Dans ce fichier nous pouvons noter la définition de la variable MAIL.

<html> <center> Copyright © 2011-2018 I2TCH LIMITED.

 </center> </html>

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:solaris:10:user:l105

Last update: 2020/01/30 03:28

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:solaris:10:user:l105

	SO105 - La Ligne de Commande
	Le Shell
	Les Commandes Internes et Externes au shell
	Les Aliases
	Le Prompt
	Rappeler des Commandes
	Générer les fins de noms de fichiers
	Le shell interactif
	Caractère *
	Caractère ?
	Caractères []
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	Codes Retour
	Redirections
	Tubes
	Substitutions de Commandes
	Chainage de Commandes
	Affichage des variables du shell
	Les variables principales
	Les Variables de Régionalisation et d'Internationalisation
	Les variables spéciales

	Options du Shell ksh
	Exemples
	noclobber
	noglob
	nounset
	verbose

	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	Exemples

	Tests de chaînes de caractère
	Exemples

	Tests sur des nombres
	Exemple

	Les opérateurs
	Exemples

	Tests d'environnement utilisateur
	Exemples

	La commande [[expression]]
	Exemples

	Opérateurs du shell
	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	Exemples

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	Exemples

	Structures de contrôle
	If
	case

	Boucles
	for
	while

	Scripts de Démarrage

