2026/02/04 14:11 1/53 S0105 - La Ligne de Commande

Derniere mise-a-jour : 2020/01/30 03:28

S0105 - La Ligne de Commande

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.1). Il est utilisé comme interface pour donner des
instructions ou commandes au systéme d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

ShellNom Date de Sortie|/lnventeur Commande|/Commentaires

tsh |Thompson Shell |1971 Ken Thompson |sh Le premier shell

sh |Bourne Shell 1977 Stephen Bourne|sh Le shell commun a tous les Unix. Sous Solaris : /usr/bin/sh

csh |C-Shell 1978 Bill Joy csh Le shell BSD. Sous Solaris : /usr/bin/csh

tcsh |[Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous Solaris : /usr/bin/tcsh

ksh |Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous Solaris : /usr/bin/ksh

bash |Bourne Again Shell|1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous Solaris : /usr/bin/bash
zsh |Z Shell 1990 Paul Falstad zsh Zsh est plutot orienté pour l'interactivité avec I'utilisateur.

Cette unité concerne l'utilisation du shell ksh sous Unix. Cependant, il peut aussi étre utile aux utilisateurs de bash sous UNIX car les commandes sont
pratiquement identiques.

Le shell /bin/ksh permet de:

e Rappeler des commandes

Générer la fin de noms de fichiers

Utiliser des alias

Utiliser les variables tableaux

Utiliser les variables numériques et I'arithmétique du langage C
Gérer des chaines de caracteres

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 2/53 S0105 - La Ligne de Commande

e Utiliser les fonctions
Une commande commence toujours par un mot clef. Ce mot clef est interpréter par le shell selon le type de commande et dans I'ordre qui suit :

Les alias

Les fonctions

Les commandes internes au shell
Les commandes externes au shell

Ll

Le shell par défaut de root sous Solaris est /bin/sh.

Le shell des utilisateurs est défini par root dans le fichier /etc/passwd :

cat /etc/passwd

root:x:0:0:Super-User:/:/sbin/sh

daemon:x:1:1::/:

bin:x:2:2::/usr/bin:

sys:x:3:3::/:

adm:x:4:4:Admin:/var/adm:

lp:x:71:8:Line Printer Admin:/usr/spool/lp:

uucp:x:5:5:uucp Admin:/usr/lib/uucp:

nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
smmsp:x:25:25:SendMail Message Submission Program:/:
listen:x:37:4:Network Admin:/usr/net/nls:

gdm:x:50:50:GDM Reserved UID:/:

webservd:x:80:80:WebServer Reserved UID:/:
postgres:x:90:90:PostgreSQL Reserved UID:/:/usr/bin/pfksh
svctag:x:95:12:Service Tag UID:/:

nobody: x:60001:60001:NFS Anonymous Access User:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:Sun0S 4.x NFS Anonymous Access User:/:
test:x:100:1:Test:/export/home/test:/bin/ksh

e

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 3/53 S0105 - La Ligne de Commande

I Ne modifiez jamais le shell de root dans le fichier /etc/passwd.

Devenez maintenant l'utilisateur test grace a la commande su - :

su - test
Sun Microsystems Inc. Sun0S 5.10 Generic January 2005
$

Vérifiez que le shell de l'utilisateur test soit bien ksh grace a la consultation de la valeur de la variable systeme SHELL :

$ echo $SHELL
/bin/ksh

Il convient maintenant de modifier le shell de test en bash :

$ which bash
/usr/bin/bash

passez en tant que root grace a la commande exit puis éditez le fichier /etc/passwd :
test:x:101:1:Test:/export/home/test:/usr/bin/bash

Ensuite connectez-vous de nouveau en tant que I'utilisateur test et utilisez la commande echo pour visualiser le contenu de la variable systeme SHELL

su - test

Sun Microsystems Inc. Sun0S 5.10 Generic January 2005
-bash-3.00% echo $SHELL

/usr/bin/bash

Définissez de nouveau le CLI de I'utilisateur test en /bin/ksh avant de poursuivre.

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 4/53 S0105 - La Ligne de Commande

Une commande tapée dans un CLI commence toujours par un mot clef. Ce mot clef est interprétée par le shell selon le type de commande et dans
I'ordre qui suit :

Les alias

Les fonctions

Les commandes internes au shell
Les commandes externes au shell

e

La suite de ce cours concerne l'utilisation du shell ksh sous Solaris. Le shell ksh permet de:

e Rappeler des commandes

Générer la fin de noms de fichiers

Utiliser des alias

Utiliser les variables tableaux

Utiliser les variables numériques et I'arithmétique du langage C
Gérer des chaines de caracteres

Utiliser les fonctions

Defenissez le shell courant de root en tant que /bin/ksh :

/bin/ksh
#

Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type en tant que root
type cd
cd est une commande prédéfinie du shell

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /usr/shin, /usr/bin, /usr/openwin/bin ou
Jusr/uchb :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 5/53 S0105 - La Ligne de Commande

type ifconfig
ifconfig est /usr/sbin/ifconfig

Les Aliases

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
gu'a I'environnement de I'utilisateur :

type stop
stop est un alias exporté pour kill -STOP

ou

su - test
Sun Microsystems Inc. Sun0S 5.10 Generic January 2005

$ type ls
ls est un alias suivi pour /usr/bin/ls

,f!' Notez que dans ce cas l'alias Is est en effet un alias qui utilise la commande Is elle-méme.

)

La liste des alias définis peut étre visualisée en utilisant la commande alias :

$ alias
autoload="typeset -fu'
command="'command
functions="'typeset -f'
history='fc -1'
integer="'typeset -i'
local=typeset

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

6/53

S0105 - La Ligne de Commande

ls=/usr/bin/1ls
nohup="nohup '

r="fc -e -'

stop="kill -STOP'
suspend="kill -STOP $$'

Un alias se définit en utilisant de nouveau la commande alias :

$ alias dir='1ls -1'

$ alias
autoload="typeset -fu'
command="'command
dir='1ls -1'
functions="'typeset -f'
history='fc -1'
integer="'typeset -i'
local=typeset
ls=/usr/bin/1ls
nohup="'nohup '

r="fc -e -'

stop="kill -STOP'
suspend="kill -STOP $$'

$ dir

total 6

-rw-r--r-- 1 test other
-rw-r--r-- 1 test other
-rw-r--r-- 1 test other

136 aolt 15 10:19 local.cshrc
157 aolt 15 10:19 local.login

174 ao(t 15 10:19 local.profile

| Notez que la liste des alias contient, sans distinction, les alias définis dans les fichiers de démarrage du systeme ainsi que I'alias dir créé
& . par test qui n'est que disponible a test dans le terminal courant.

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 7/53 S0105 - La Ligne de Commande

Pour supprimer un alias, il convient d'utiliser la commande unalias :

$ unalias dir

$ alias
autoload="typeset -fu'
cat=/usr/bin/cat
command="'command '
functions="'typeset -f'
history='fc -1'
integer="'typeset -i'
local=typeset
ls=/usr/bin/1s
nohup="'nohup '

r="fc -e -'

stop="kill -STOP'
suspend="kill -STOP $$'

Pour forcer I'exécution d'une commande et non I'alias il faut faire précéder la commande par le caractere \ :

$ alias ls='ls -1'

$ ls
total 6
-rw-r--r-- 1 test other 136 ao(t 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 aolt 15 10:19 local.login
-rw-r--r-- 1 test other 174 aol(t 15 10:19 local.profile
$ \1ls
local.cshrc local.login local.profile
/1. Dans I'exemple ci-dessus, la premiére commande étant un alias, la sortie est celle de la commande Is -I tandis que la deuxiéme est celle

de la commande Is simple

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 8/53 S0105 - La Ligne de Commande

Le Prompt

Le prompt d'un utilisateur dépend de son statut :

e $ pour un utilisateur normal
e # pour root

Rappeler des Commandes

Le shell ksh permet le rappel des dernieres commandes saisies. Afin de connaitre la liste des commandes mémorisées, utilisez la commande history
en tant que I'utilisateur test :

$ history

5 exit

6 type 1s

7 alias

8 alias dir='1ls -1'
9 alias

10 cat /etc/shells
11 dir

12 \dir

13 unalias dir

14 alias

15 alias ls='ls -1'
16 1s

17 \1ls

18 which chsh

19 1s -a

20 history

Rappelez-vous que la commande history est un alias :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 9/53 S0105 - La Ligne de Commande

$ alias

history='fc -1'

En réalité donc c'est la commande fc qui est appelée.

L'historique des commandes est en mode emacs par défaut. Afin de pouvoir rappeler les dernieres commandes saisies, il convient de passer en mode
emacs :

$ set -0 emacs

Le rappel de la derniere commande se fait en utilisant les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant les touches
[CTRL]-[N]:

Caractere de Controle|Définition
[CTRLI-[P] Rappelle la commande précédente
[CTRL]-[N] Rappelle la commande suivante

Le paramétrage de la fonction du rappel des commandes est fait en définissant des variables systeme.

Afin de faciliter la définition de ces variables, créez le fichier /etc/kshrc en tant que root :

#

This file is the common Environment setup for Korn Shell
#

HISTSIZE=256

HISTFILE=$HOME/.sh history

export HISTFILE HISTSIZE

set -0 emacs

Vous noterez que dans ce fichier, la valeur de HISTSIZE est de 256. Ceci implique que les dernieres 256 commandes sont mémorisées.

Devenez maintenant ['utilisateur standard test :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 10/53 S0105 - La Ligne de Commande

su - test
Sun Microsystems Inc. Sun0S 5.10 Generic January 2005
$

Les commandes mémorisées sont stockées dans le fichier $HOME/.sh_history ou $HOME indique le répertoire personnel de ['utilisateur concerné :

$ cat $HOME/.sh history
[J0echo $SHELL
whereis bash
which bash

exit

exit

type 1s

alias

alias dir='1ls -1'
alias

cat /etc/shells
dir

\dir

unalias dir
alias

alias ls='ls -1'
1s

\ls

ls -a

history

alias

set -0 emacs

exit

cat $HOME/.sh history

. La comparaison du contenu de ce fichier avec la sortie de la commande history démontre que les deux sont identiques, a part bien

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 11/53 S0105 - La Ligne de Commande

| évidemment, la derniere commande saisie, soit history.

-

Vous pouvez rappeler une commande spécifique de I'historique en utilisant la commande fc -e - suivi du numéro de la commande a rappeler :

$ history

52 1s

53 pwd

54 vmstat

55 df

56 history

$ fc -e - 52

1s

local.cshrc local.login local.profile

Afin de faire appel a au fichier /etc/kshrc, éditez maintenant le fichier /etc/profile :

$ exit
vi /etc/profile

en y ajoutant les lignes suivantes :

ENV=/etc/kshrc
export ENV

Vous obtiendrez une fenétre similaire a celle-ci :
#ident "@(#)profile 1.19 01/063/13 SMI" /* SVr4.0 1.3 */
The profile that all logins get before using their own .profile.

trap "" 2 3

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 12/53 S0105 - La Ligne de Commande

export LOGNAME PATH

ENV=/etc/kshrc

export ENV
if ["$TERM" = ""]
then
if /bin/i386
then
TERM=sun-color
else
TERM=sun
fi
export TERM
fi
Login and -su shells get /etc/profile services.
-rsh is given its environment in its .profile.

Connectez-vous de nouveau en tant que test :

su - test
Sun Microsystems Inc. Sun0S 5.10 Generic January 2005

Vérifiez que vous pouvez rappeler les dernieres commandes dans votre console.

Générer les fins de noms de fichiers

Le shell ksh permet la génération des fins de noms de fichiers. Celle-ci est accomplie grace a l'utilisation de la touche [echap]. Dans I'exemple qui
suit, la commande saisie est :

$ ls [echap] [echap]

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 13/53 S0105 - La Ligne de Commande

Vous obtiendrez :

$ ls local.

Vous noterez que le shell propose local.. En effet, sans plus d'information, le shell ne sait pas quel fichier parmi les trois présents doit étre ouvert :
$ Lls | grep local.

local.cshrc

local.login

local.profile

Par contre si vous ajoutez la lettre ¢ :

$ 1s local.c [echap] [echap]

vous noterez que le nom du fichier est complété automatiquement. Ceci est du au fait qu'il n'existe qu'un seul élément dans le répertoire commencant
par la chaine local.c :

$ ls local.cshrc
Le shell interactif

Lors de I'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractéeres spéciaux.

Caractere Spéciaux Description

* Représente un ou une suite de caracteres

? Représente un caracteres

[abc] Représente un caractere parmi ceux entre crochets

[!abc] Représente un caractere ne trouvant pas parmi ceux entre crochets
?(expressionl|expression2] ...) |Représente 0 ou 1 fois I'expressionl ou 0 ou 1 fois I'expression2 ...
*(expressionl|expression2| ...) |Représente 0 a x fois I'expressionl ou 0 a x fois I'expression?2 ...

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

14/53

S0105 - La Ligne de Commande

Caractere Spéciaux

Description

+(expressionl|expression2| ...) [Représente 1 a x fois I'expressionl ou 1 a x fois I'expression?2 ...

@(expressionl|expression2| ...)|Représente 1 fois I'expressionl ou 1 fois I'expression2 ...

!(expressionl|expression2| ...) |Représente 0 fois I'expressionl ou 0 fois I'expression?2 ...

Caractere *

Dans votre répertoire individuel, créez un répertoire formation. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

$ pwd
/export/home/test

$ mkdir formation

$ cd formation

$ touch f1 f2 f3 f4 f5

$ 1s -1

total O

-rw-r--r-- 1 test
-rw-r--r-- 1 test
-rw-r--r-- 1 test
-rw-r--r-- 1 test
-rw-r--r-- 1 test

other 0 ao(t 15 16:00 f1
other 0 ao(t 15 16:00 f2
other 0 aolt 15 16:00 f3
other 0 aolt 15 16:00 f4
other 0 ao(t 15 16:00 f5

Afin de démontrer I'utilisation du caractére spécial *, saisissez la commande suivante :

$ echo f*
fl f2 f3 f4 5

! Notez que le caractére * remplace un caractere ou une suite de caracteres.

[

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 15/53

S0105 - La Ligne de Commande

Caractere ?

Créez maintenant les fichiers f52 et f62 :
$ touch f52 f62
Saisissez ensuite la commande suivante :

$ echo 7?2
f52 62

-

Caracteres []

L'utilisation peut prendre plusieurs formes différentes :

Joker|Description

[xyz] |Représente le caractére x ou y ou z

[m-t] |Représente le caractere moun ... t

[!xyz] Représente un caractére autre que X ou y ou z
[!m-t] Représente un caractére autre que moun t

Afin de démontrer I'utilisation des caractéres [et 1, créez le fichier al00 :

$ touch aloo

Ensuite saisissez les commandes suivantes et notez le résultat :

/¥ Notez que le caractere ? remplace un seul caractére.
-

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 16/53 S0105 - La Ligne de Commande

$ echo [a-f]*

aleo f1 f2 f3 f4 f5 f52 f62
$ echo [af]*

aleo f1 f2 f3 f4 f5 f52 f62

! Notez ici que tous les fichiers commencant par les lettres a, b, ¢, d, e ou f sont affichés a I'écran.

$ echo ['a]*
fl f2 f3 f4 f5 f52 f62

Notez ici que tous les fichiers sont affichés a I'écran, a I'exception d'un fichier commencant par la lettre a .

$ echo [a-b]*

aloo
! Notez ici que seul le fichier commencant par la lettre a est affiché a I'écran car il n'existe pas de fichiers commencant par la lettre b.
$ echo [a-f]
[a-f]
| Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, ¢, d, e ou f. Pour cette raison, n'ayons trouvé aucune correspondance
L5 entre le filtre utilisé et les objets dans le répertoire courant, le commande echo retourne le filtre passé en argument, c'est-a-dire [a-f].

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 17/53 S0105 - La Ligne de Commande

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

$ touch f f.txt f123.txt f123123.txt f123123123.txt
Saisissez la commande suivante :

$ 1s f?(123).txt

f.txt f123.txt

Ll Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1 occurence de la chaine 123.

' |]
-

*(expression)

Saisissez la commande suivante :
$ ls f*(123).txt
f.txt f123.txt f123123.txt £123123123.txt

Ll Notez ici que la commande affiche les fichiers ayant un nom contenant de 0 jusqu'a x occurences de la chaine 123.

- o

+(expression)

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 18/53 S0105 - La Ligne de Commande

Saisissez la commande suivante :

$ ls f+(123).txt
f123.txt 123123. txt f123123123. txt

! . Notez ici que la commande affiche les fichiers ayant un nom contenant entre 1 et x occurences de la chaine 123.

-

@(expression)

Saisissez la commande suivante :

$ ls f@(123).txt
f123.txt

! . Notez ici que la commande affiche les fichiers ayant un nom contenant 1 seule occurence de la chaine 123.

-

!(expression)

Saisissez la commande suivante :

$ 1s f!(123).txt
f.txt f123123. txt f123123123. txt

£\ Notezici que la commande n'affiche que les fichiers ayant un nom qui ne contient pas la chaine 123.

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 19/53 S0105 - La Ligne de Commande

Caractéres d'Echappement

Afin d'utiliser un caractere spécial dans un contexte littéral, il faut utiliser un caractere d'échappement. Il existe trois caracteres d'échappement :

Caractere Description

\ Protege le caractere qui le suit

v Protege tout caractere, a I'exception du caractere ' lui-méme, se trouvant entre les deux '

Protege tout caractere, a I'exception des caracteres “ lui-méme, $, \ et ', se trouvant entre les deux “

un

Afin d'illustrer I'utilisation des caracteres d'échappement, considérons la commande suivante :
$ echo * est un caractere spécial [Entrée]
Lors de la saisie de cette commande dans votre répertoire formation, vous obtiendrez une fenétre similaire a celle-ci :

$ echo * est un caractere spécial
alee fl1 f2 f3 f4 f5 f52 f62 est un caractere spécial

Vous noterez que le caractere spécial * a bien été interprété par le shell.

Afin de protéger le caractere *, nous devons utiliser un caractere d'échappement. Commencons par |'utilisation du caractere \ :

$ echo * est un caractere spécial
* est un caractere spécial

Vous noterez que le caractere spécial * n'a pas été interprété par le shell.

Le méme résultat peut étre obtenu en utilisant ainsi :

echo "* est un caracteére spécial”
est un caractere spécial
echo '* est un caractere spécial'
est un caractere spécial

* A X A

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 20/53 S0105 - La Ligne de Commande

Codes Retour

Chaque commande retourne un code a la fin de son exécution. La variable spéciale $? sert a stocker le code retour de la derniere commande
exécutée.

Par exemple :

$ cd

$ mkdir codes

$ echo $7?

0

$ touch codes/retour

$ rmdir codes

rmdir: échec de suppression de « codes »: Le dossier n'est pas vide
$ echo $7?

2

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.
La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un deux.
Si le code retour est zéro la derniere commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la derniere commande s'est déroulée avec une erreur.

Redirections

Votre dialogue avec le systeme Solaris utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et |'écran, le canal
de sortie standard :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

21/53

S0105 - La Ligne de Commande

Clavier

stdin

Canal Standard Sortie

Application H Ecran

Canal Standard Entrée

H#

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande a I'écran.

stdout

#;

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette facon, le résultat d’'une commande telle free peut étre
stocké dans un fichier pour une consultation ultérieure :

Clavier

stdin

Application

Ecran

Canal Standard Entrée

JH#;

Cet effet est obtenu en utilisant une redirection :

Fichier

$ vmstat > fichier [Entrée]

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande vmstat. Par contre si le fichier existe déja, il sera écrasé.

Pour ajouter des données supplémentaires au méme fichier cible, il faut utiliser une double redirection :

$ date >> fichier [Entrée]

De cette facon, la date du jour sera rajoutée a la fin de votre fichier apres les informations de la commande free.

www.ittraining.team - https://ittraining.team/

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Asolaris%3A10%3Auser%3Al105&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Asolaris%3A10%3Auser%3Al105&media=free:redirection.png

2026/02/04 14:11 22/53

S0105 - La Ligne de Commande

Pour visualiser le contenu du fichier fichier nous utilisons la commande cat :

$ vmstat > fichier
$ date >> fichier
$ cat fichier
kthr memory page disk faults cpu
row swap free re mf pi po fr de sr cd sO -- -- in sy Cs us sy id
0 0 0 907680 469372 139 1580 8 6 0 0 14 3 -1 O 0O 454 2712 367 2 4 94
mercredi 15 aolit 2012 17 h 33 CEST

A Notez que la sortie standard ne peut étre redirigée que dans une seule direction.

-

Les canaux d’entrées et de sorties sont numérotés :

e 0 = Le Canal d’entrée Standard
e 1 = Le Canal de Sortie Standard
e 2 = Le Canal d’erreur

La commande suivante créera un fichier nommé erreurlog qui contient les messages d’erreur de I'exécution de la commande rmdir :

$ rmdir formation/ 2> erreurlog
$ cat erreurlog
rmdir : répertoire "formation/" : Répertoire non vide

En effet I'erreur est générée parce que le répertoire formation n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche a

droite.

Dans I'exemple suivant, nous réunissons le canal de sortie et le canal d'erreurs :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 23/53 S0105 - La Ligne de Commande

$ vmstat > nom du fichier 2>&1

La syntaxe 2>&1 envoie la sortie du canal 2 au méme endroit que le canal 1, a savoir le fichier dénommé fichier.

Il est possible de modifier le canal d'entrée standard afin de lire des informations a partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractere < :

$ wc -w < erreurlog
8

Tubes

[l est aussi possible de relier des commandes avec un tube | .

Dans ce cas, le canal de sortie de la commande a gauche du tube est envoyé au canal d’entrée de la commande a droite du tube :

$ ls | we -w
6

! " Veuillez noter qu'il est possible de relier plusieurs tubes dans la méme commande.

.

Rappelez-vous que la sortie standard ne peut étre redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
le visualiser a I'écran, nous devons utiliser la commande tee avec un pipe :

$ date | tee fichierl

mercredi 15 aolt 2012 17 h 31 CEST
$ cat fichierl

mercredi 15 ao(t 2012 17 h 31 CEST

Cette méme technique nous permet de créer deux fichiers :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 24/53 S0105 - La Ligne de Commande

$ date | tee fichierl > fichier2

$ cat fichierl

mercredi 15 aolt 2012 17 h 31 CEST
$ cat fichier2

mercredi 15 ao(t 2012 17 h 31 CEST

Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par la valeur de sa sortie. Afin d'illustrer ce point, considérons la
commande suivante :

$echo $(date) [Entrée]

$ echo date

date

$ echo $(date)

mercredi 15 aolt 2012 17 h 22 CEST
$ echo "date’

mercredi 15 aolt 2012 17 h 22 CEST

| Notez le format de chaque substitution $(commande) ou “commande’. Sur un clavier francais, I'anti-cote est accessible en utilisant les

_ "\ touches Alt Gr et 77].

Chainage de Commandes

Il est possible de regrouper des commandes a I'aide d’un sous-shell :

$ (s -1; ps; who) > liste

www.ittraining.team - https://ittraining.team/

Le syntaxe de cette commande est :

2026/02/04 14:11 25/53 S0105 - La Ligne de Commande
gopmanded +&& Commande2
total 10
Rérexematex 2 test other 512 aolt 15 16:10 codes
drwxr-xr-x 2 test other 512 ao(t 15 16:03 formation
$rivsr&&rpwd 1 test other 0 aolt 15 17:25 liste
codes--r-- 1 teste other local.lagénaolt 15 10:19 local.cshrc
fowmation- 1 tesal.cshother local.ptbFidedt 15 10:19 local.login
fexportfheme/testst other 174 aolt 15 10:19 local.profile

PID TTY TIME CMD
et :4356 pts/3 0:00 ksh

4358 pts/3 0:00 ps

$28m89rpterdation &&:PRdksh

FRdir : répeenseke "formae@dnl2:1RéA8rtoirB)non vide

root pts/3 ao(t 15 15:37 (:0.0)

Dans ce cas, Commande 2 est exécutée uniquement dans le cas ou Commandel s’est exécuté sans erreur

Cet exemple envoie le résultat des trois commandes vers le fichier liste en les traitant en sous-taches (en taches de fond).

Ou:

Rappelez-vous que chaque commande transmet la facon dont elle a été exécutée (Code Retour). Dans le cas d’un traitement sans erreurs, la valeur du

@stamraiaenest 0. conpmatie 2st autre que 0.
BgncsegaeJggpeb%gnﬁgf%lﬁseggéraﬁg@scgﬂrﬂgrl&elrfsac'%rﬁ\gaﬂgrdéearpeegyleemtrétre chainées en fonction du Code Retour de la commande précédente.

ng S%H]f Eé,aﬁn de s’assurer que la deuxieme commande s’exécute dans le cas ou la valeur du Code Retour de la premiere commande est 0,
autrement dit qu’il n'y a pas eu d’erreurs.

$ s || pwd

codes liste local.login

formation local.cshrc local.profile

et:

$ rmdir formation || pwd

rmdir : répertoire "formation" : Répertoire non vide
/export/home/test

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

26/53

S0105 - La Ligne de Commande

Affichage des variables du shell

Une variable du shell peut étre affichée grace a la commande :

$echo $nom de la variable [Entrée]

Les variables principales

Variable Description

PWD Le répertoire courant.

OLDPWD Le répertoire avant la derniere commande cd. Méme chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767

SECONDS Le nombre de secondes écoules depuis le lancement du shell
HISTFILE Le fichier historique

HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HOME Le répertoire de connexion.

MAIL Le fichier contenant le courrier.

MAILCHECK |La fréquence de vérification du courrier en secondes.

PATH Le chemin de recherche des commandes.

PS1 Le prompt par défaut.

PS2 Le deuxieme prompt par défaut

PS3 Le troisieme prompt par défaut

PS4 Le quatrieme prompt par défaut

SHELL Le shell de préférence.

TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.
LANG La valeur générique pour l'internationalisation

LC_MONETARY|Le symbole monétaire

LC TIME Le format de I'heure et de la date

LC_COLLATE |Le jeu de caracteres utilisé dans les tris.

LC_NUMERIC |Le code pour le symbole décimal et le séparateur de milliers.

www.ittraining.team

- https://ittraining.team/

2026/02/04 14:11 27/53 S0105 - La Ligne de Commande

Variable Description

LC CTYPE Le code pour la classification des caracteres.

ERRNO Code de retour du dernier appel systeme

ENV Variable contenant le nom du script a exécuter a chaque démarrage d'un shell intéractif
FCEDIT Editeur de texte utilisé par la commande fc

Les Variables de Régionalisation et d'Internationalisation

L'Internationalisation, aussi appelé i18n caril y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste a adapter un
logiciel aux parametres variant d'une région a I'autre :

¢ longueur des mots,

e accents,

e écriture de gauche a droite ou de droite a gauche,
e unité monétaire,

« styles typographiques et modéles rédactionnels,

e unités de mesures,

 affichage des dates et des heures,

e formats d'impression,

e format du clavier,

e etc ...

Le Régionalisation, aussi appelé i10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste a modifier I'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractéres. Par exemple, pour la langue francaise les valeurs de langue-PAYS
sont :

e fr-BE = la Belgique francophone,
* fr-CA = le Québec,

e fr-FR = la France,

e fr-LU = le Luxembourg,

e fr-MC = Monaco,

e fr-CH = la Suisse francophone.

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 28/53 S0105 - La Ligne de Commande

Les variables systeme les plus importants contenant les informations concernant le régionalisation sont :

Variable Description

LC ALL |Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE|Détermine les parametres régionaux pour l'interprétation de séquence d'octets de données texte en caracteres.

Par exemple :

$ echo $LC ALL
$ echo $LC CTYPE
fr FR.IS08859-1

$ echo $LANG
fr FR.IS08859-1

Les variables spéciales

Variable Description

$LINENO |Contient le numéro de la ligne courante du script ou de la fonction

$$ Contient le PID du shell en cours

$PPID Contient le PID du processus parent du shell en cours

$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 ... |Contient respectivement le premier argument, deuxieme argument etc passés au script
$# Contient le nombre d'arguments passés au script

$* Contient I'ensemble des arguments passés au script

$@ Contient I'ensemble des arguments passés au script

Options du Shell ksh

Pour visualiser les options du shell ksh, il convient d'utiliser la commande set :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 29/53 S0105 - La Ligne de Commande

$ set -0

Paramétrage courant des options
allexport of f
bgnice on
emacs on
errexit off
gmacs off
ignoreeof off
interactive on
keyword off
markdirs off
monitor on
noexec of f
noclobber off
noglob off
nolog off
notify off
nounset off
privileged off
restricted off
trackall off
verbose off
vi off
viraw off
xtrace off

Pour activer une option il convient de nouveau a utiliser la commande set :

$ set -0 allexport

$ set -0

Paramétrage courant des options
allexport on

bgnice on

emacs on

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

30/53

S0105 - La Ligne de Commande

errexit
gmacs
ignoreeof
interactive
keyword
markdirs
monitor
noexec
noclobber
noglob
nolog
notify
nounset
privileged
restricted
trackall
verbose

vi

viraw
xtrace

Notez que I'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec |'option +o :

off
off
off
on

off
off
on

off
off
off
off
off
off
off
off
off
off
off
off
off

$ set +o0 allexport

$ set -o

Paramétrage courant des options

allexport
bgnice
emacs
errexit
gmacs
ignoreeof

off
on
on
off
off
off

www.ittraining.team - https://ittraining.team/

2026/02/04 14

11

31/53

S0105 - La Ligne de Commande

interactive

keyword

markdirs

monitor
noexec

noclobber

noglob
nolog
notify
nounset

privileged
restricted

trackall

verbose
vi
viraw
Xxtrace

on
off
off
on

off
off
off
off
off
off
off
off
off
off
off
off
off

Parmi les options, voici la description des plus intéressantes :

Option |Valeur par Défaut|Description

allexport |off Le shell export automatiquement toute variable

emacs |off L'édition de la ligne de commande est au style emacs

noclobber|off Les simples redirections n'ecrasent pas le fichier de destination

noglob |off Désactive I'expansion des caracteres génériques

nounset |off Le shell retourne une erreur lors de I'expansion d'une variable inconnue
verbose |off Affiche les lignes de commandes saisies

Vi on L'édition de la ligne de commande est au style vi

Exemples

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 32/53 S0105 - La Ligne de Commande

noclobber

$ set -0 noclobber

$ pwd > file

$ pwd > file

ksh: file: ce fichier existe déja
$ pwd >| file

$ set +0 noclobber

noglob

$ set -0 noglob

$ echo *

*

$ set +0 noglob

$ echo *

core Desktop Documents erreurlog fichierl fichier2 file formation kshrc kshrcl liste local.cshrc local.login
local.profile nom du fichier

nounset

$ set -0 nounset

$ echo $FENESTROS

ksh: FENESTROS: parametre non défini
$ set +0 nounset

$ echo $FENESTROS

$

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 33/53 S0105 - La Ligne de Commande

verbose

$ set -0 verbose
$ echo fenestros
echo fenestros
fenestros

$ set +0 verbose
set +0 verbose

$ echo fenestros
fenestros

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point ou vous étes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de controle des services.

Ecrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut étre adressée que lors

d'une formation dédiée a I'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une maniere séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse étre lu au quel cas le script est exécuté par un shell fils soit en I'appelant en argument a I'appel du
shell :

/usr/bin/ksh monscript
soit en redirigeant son entrée standard :

/usr/bin/ksh < monscript

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 34/53 S0105 - La Ligne de Commande

Dans le cas ou le droit d'exécution est positionné sur le fichier script et a condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
I'utilisateur qui le lance, le script peut étre lancé en I'appelant simplement par son nom :

monscript

Dans le cas ou le script doit étre exécuté par le shell courant, dans les mémes conditions que I'exemple précédent, mais qu'il se trouve dans un
répertoire autre qu'un des répertoires spécifiés dans le PATH de I'utilisateur qui le lance, il convient de naviguer au répertoire concerné et de lancer la
commande suivante :

./monscript

Dans le cas ou le script doit étre exécuté par le shell courant, dans les mémes conditions que I'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. monscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent a d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractere #.

[l existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit étre utilisé pour
I'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de I'utilisateur qui le lance. Le pseudo commentaire commence avec les
caracteres #!. Chaque script commence donc par une ligne similaire a celle-ci :

#!/bin/sh

Pour illustrer I'écriture et I'exécution d'un script, créez le fichier monscript avec vi :

$ vi monscript [Entrée]

Editez votre fichier ainsi :

#debut du fichier monscript

pwd
ls

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 35/53 S0105 - La Ligne de Commande

#fin du fichier monscript
Sauvegardez votre fichier et sortez du programme vi. Lancez ensuite votre script en passant le nom du fichier en argument a /bin/ksh :

$ /usr/bin/ksh monscript

/export/home/test

codes fichierl liste local.profile
erreurlog fichier2 local.cshrc monscript
fichier formation local.login

Lancez ensuite le script en redirigeant son entrée standard :

$ /usr/bin/ksh < monscript

/export/home/test

codes fichierl liste local.profile
erreurlog fichier2 local.cshrc monscript
fichier formation local.login

Pour lancer le script en I'appelant simplement par son nom, son chemin doit étre inclus dans votre PATH.

Saisissez les commandes suivantes :

$ pwd

/export/home/test

$ mkdir bin

$ PATH=$PATH:$HOME/bin

$ export PATH

$ echo $PATH
/usr/bin::/export/home/test/bin

Vous constaterez que le répertoire /export/home/test/bin a été rajouté a votre PATH grace a la lignhe PATH=$PATH:$HOME/bin. Déplacez votre
script dans ce répertoire, vérifiez les permissions de votre script, rendez-le exécutable pour votre utilisateur et vérifiez qu'il est bien exécutable:

$ mv monscript ~/bin

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 36/53 S0105 - La Ligne de Commande

$ cd ~/bin

$ chmod u+x monscript

$ s -1

total 2

-rWXr--r-- 1 test other 61 aolt 15 17:45 monscript

Positionnez-vous dans le répertoire /tmp et exécutez maintenant votre script en I'appelant par son nom :

$ cd /tmp

$ monscript

/tmp

breg business logic 20120812104901282.log
breg business logic 20120812104901282.1log.1lck
hsperfdata noaccess

hsperfdata root

ogl select270

rootswup.trc

sh6826.1

Dans les trois cas précédents, le script a été exécuté dans un shell fils. Pour I'exécuter dans le shell en cours, rappelez-vous que la commande est :

$. monscript

/tmp

breg business logic 20120812104901282.log
breg business logic 20120812104901282.1log.lck
hsperfdata noaccess

hsperfdata root

ogl select270

rootswup.trc

sh6826.1

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 37/53 S0105 - La Ligne de Commande

La commande read

: ! . Vous étes actuellement connecté en tant que I'utilisateur test. Devenez maintenant root grace a la commande exit.

-

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument :

read varl var2
fenestros edu

echo $varl
fenestros

echo $var2

edu

La séparation entre le contenu des variables est I'espace. Par conséquent il est intéressant de noter les exmples suivants :

read varl var2 var3 var4
fenestros edu est super!

echo $varl

fenestros

echo $var2

edu

echo $var3

est

echo $var4

super!

read varl var2
fenestros edu est super!
echo $varl

fenestros

echo $var2

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 38/53 S0105 - La Ligne de Commande

edu est super!
Code de retour

La commande read renvoie un code de retour de 0 dans le cas ou elle ne recoit pas l'information fin de fichier matérialisée par les touches CtrI|+g :

read var
fenestros

echo $7?

0

echo $var
fenestros

Le contenu de la variable var peut étre vide et la valeur du code de retour 0 grace a l'utilisation de la touche Entrée| ;
read var

echo $7?
0
echo $var

#
Le contenu de la variable var peut étre vide et la valeur du code de retour autre que 0 grace a I'utilisation des touches @Hg ;

read var
~D

echo $7?

1

echo $var

#

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 39/53 S0105 - La Ligne de Commande

La variable IFS

La variable IFS contient par défaut les caractéres Espacel, Tab| et Entrée] :

echo "$IFS" | od -c
0000000 \t \n \n
0000004

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut étre modifiée :

OLDIFS="$IFS"

echo "$OLDIFS" | od -c
0000000 A\t \n \n
0000004

IFS=":"

echo "$IFS" | od -c
0000000 :\n

0000002

De cette facon I'espace redevient un caractere normal :

read varl var2 var3
fenestros:edu est:super!
echo $varl

fenestros

echo $var2

edu est

echo $var3

super!

& » Restaurez I'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

40/53

S0105 - La Ligne de Commande

La commande test

La commande test peut étre utilisée avec deux syntaxes :

test expression

ou

[Espace|expression Espace|]

Tests de Fichiers

Test Description

-f fichier Retourne vrai si fichier est d'un type standard

-d fichier Retourne vrai si fichier est d'un type répertoire

-r fichier Retourne vrai si l'utilisateur peut lire fichier

-w fichier Retourne vrai si I'utilisateur peut modifier fichier

-x fichier Retourne vrai si l'utilisateur peut exécuter fichier

-e fichier Retourne vrai si fichier existe

-s fichier Retourne vrai si fichier n'est pas vide

fichierl -nt fichier2|Retourne vrai si fichierl est plus récent que fichier2
fichierl -ot fichier2|Retourne vrai si fichierl est plus ancien que fichier2
fichierl -ef fichier2 |[Retourne vrai si fichierl est identique a fichier2

Exemples

Testez si le fichier a100 est un fichier ordinaire :

cd formation
test -f aloo
echo $?

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 41/53

S0105 - La Ligne de Commande

0

[-f aloo]
echo $7?

0

Testez si le fichier al01 existe :
[-f alol]

echo $?
1

Testez si /export/home/test/formation est un répertoire :

[-d /export/home/test/formation]
echo $?
0

Tests de chaines de caractere

Test Description
-n chaine Retourne vrai si chaine n'est pas de longueur 0
-z chaine Retourne vrai si chaine est de longueur 0

chainel = chaine2 |Retourne vrai si chainel est égale a chaine2

chainel !'= chalne2|Retourne vrai si chainel est différente de chaine2

chainel Retourne vrai si chainel n'est pas vide

Exemples

Testez si les deux chaines sont égales :

chainel="root"
chaine2="fenestros"

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

42/53

S0105 - La Ligne de Commande

["chainel" = "chaine2"]

echo $?
1

Testez si la chainel

n'a pas de longueur 0 :

[-n "chainel"]

echo $7?
0

Testez si la chainel a une longueur de 0 :

[-z "chainel"]

echo $?
1

Tests sur des nombres

Test

Description

valeurl -eq valeur2

Retourne vrai si valeurl est égale a valeur2

valeurl -ne valeur2

Retourne vrai si valeurl n'est pas égale a valeur2

valeurl -It valeur?2

Retourne vrai si valeurl est inférieure a valeur2

valeurl -le valeur2

Retourne vrai si valeurl est inférieur ou égale a valeur2

valeurl -gt valeur2

Retourne vrai si valeurl est supérieure a valeur2

valeurl -ge valeur2

Retourne vrai si valeurl est supérieure ou égale a valeur2

Exemple

Comparez les deux nombres nombrel et nombre2 :

read nombrel
35

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 43/53 S0105 - La Ligne de Commande

read nombre2

21

[$nombrel -1t $nombre2]
echo $7?

1

[$nombre2 -1t $nombrel]
echo $7?

0

[$nombre2 -eq $nombrel]
echo $7?

1

Les opérateurs

Test Description

lexpression Retourne vrai si expression est fausse

expressionl -a expression2|Représente un et logique entre expressionl et expression2
expressionl -0 expression2 Représente un ou logique entre expressionl et expression2
\(expression\) Les parentheses permettent de regrouper des expressions

Exemples

Testez si $fichier n'est pas un répertoire :
fichier=al00

[! -d $fichier]

echo $7?

0

Testez si $repertoire est un répertoire et si I'utilisateur a le droit de le traverser :

repertoire=/usr

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 44/53

S0105 - La Ligne de Commande

#
#
0

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

#
#
1
#
#
#
0

[-d $repertoire -a -x $repertoire]
echo $7?

[-w al00 -a \(-d /usr -0 -d /tmp \) 1
echo $7?

cd formation
[-w aleo -a \(-d /usr -o -d /tmp \)]
echo $7?

Tests d'environnement utilisateur

Test Description

-0 option|Retourne vrai si I'option du shell “option” est activée

Exemples

© # H ~ H#* H

[-0 allexport]
echo $7?

[-0 interactive-comments]
echo $7?

La commande [[expression]]

La commande [[Espace|expression Espace|]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 45/53 S0105 - La Ligne de Commande

la commande [[expression]] sauf -a et -0 qui sont remplacés par && et || respectivement :

Test Description

lexpression Retourne vrai si expression est fausse

expressionl && expression2 Représente un et logique entre expressionl et expression2
expressionl || expression2 |Représente un ou logique entre expressionl et expression2
(expression) Les parentheses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description

chaine = modele |Retourne vrai si chaine correspond au modele

chaine !'= modele |Retourne vrai si chaine ne correspond pas au modele

chainel < chaine2|Retourne vrai si chainel est lexicographiquement avant chaine2
chainel > chaine2|Retourne vrai si chainel est lexicographiquement apres chaine2

Exemples

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[[-w aleo && (-d /usr || -d /tmp) 1]
echo $7?
0

Opérateurs du shell

Opérateur Description
Commandel && Commande2 Commande 2 est exécutée si la premiere commande renvoie un code vrai
Commandel || Commande2 |Commande 2 est exécutée si la premiere commande renvoie un code faux

Exemples :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 46/53

S0105 - La Ligne de Commande

[[-d /tmp]] && echo "Répertoire tmp existe"
Répertoire tmp existe
[[-d /tmp 11 || echo "Répertoire tmp existe"

#
L'arithmétique
La commande expr

La commande expr prend la forme :

expr Espace| nombrel Espace| opérateur Espace| nombre2 Entrée|

ou
expr Tab| nombrel Tab| opérateur Tab| nombre2 Entrée|
ou

expr Espace| chaine Espace| : Espace| expression_réguliére Entrée|

ou

expr Ta b| chaine Ta b| : Ta b| expression_réguliere Entrée|

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction

* Multiplication

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 47/53

S0105 - La Ligne de Commande

Opérateur|Description
/ Division
% Modulo
\(\) Parentheses

Opérateurs de Comparaison

Opérateur|Description

\< Inférieur

\<= Inférieur ou égal
\> Supérieur

\>= Supérieur ou égal
= égal

= inégal

Opérateurs Logiques

Opérateur|Description

\| ou logique
\& et logique
Exemples

Ajoutez 2 a la valeur de $x :
$ x=2

$ expr $x + 2

4

Si les espaces sont retirés, le résultat est tout autre :

$ expr $x+2

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 48/53

S0105 - La Ligne de Commande

2+2

Les opérateurs doivent étre protégés :

$ expr $x * 2
expr: syntax error
$ expr $x * 2

4

Mettez le résultat d'un calcul dans un variable :

$ resultat="expr $x + 10"
$ echo $resultat

12

La commande let

La commande let est I'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $

les caracteres spéciaux du shell n'ont pas besoin d'étre protégés

les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction

* Multiplication

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11

49/53

S0105 - La Ligne de Commande

Opérateur|Description
/ Division

% Modulo

* Puissance

Opérateurs de comparaison

Opérateur|Description

< Inférieur

<= Inférieur ou égal
> Supérieur

>= Supérieur ou égal
== égal

= inégal

Opérateurs Logiques

Opérateur|Description
&& et logique

[l ou logique

! négation logique

Opérateurs travaillant sur les bits

Opérateur|Description

~ négation binaire

>> décalage binaire a droite
<< décalage binaire a gauche
& et binaire

| ou binaire

PN

ou exclusif binaire

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 50/53 S0105 - La Ligne de Commande

Exemples

$ x=2

$ ((x=%$x+10))
$ echo $x

12

$ ((x=x+20))
$ echo $x

32

Structures de controle

If

La syntaxe de la commande If est la suivante :

if condition
then
commande(s)
else
commande(s)
fi

ou:

if condition
then
commande(s)
commande(s)
fi

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 51/53 S0105 - La Ligne de Commande

Oou encore .

if condition
then

commande(s)
elif condition
then

commande(s)
elif condition
then

commande(s)
else

commande(s)

fi

case

La syntaxe de la commande case est la suivante :

case $variable in
modelel) commande

..
r

modele2) commande

..
r

modele3 | modeled4 | modele5) commande

..
r

esac

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 52/53

S0105 - La Ligne de Commande

Boucles
for

La syntaxe de la commande for est la suivante :

for variable in liste variables
do

commande(s)
done

while

La syntaxe de la commande while est |a suivante :

while condition
do

commande(s)
done

Scripts de Démarrage

Lors de chaque connexion au systéme, un script de démarrage est exécuté automatiquement. Ce script se trouve dans le répertoire personnel de

I'utilisateur et porte un nom différent selon le shell utilisé:

e .profile pour le ksh
 .bash_profile pour le bash

Par exemple :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:11 53/53 S0105 - La Ligne de Commande
$ ls -a

total 16

drwxr-xr-x 2 test other 512 aolt 15 11:50 .

drwxr-xr-x 4 root root 512 aolt 15 10:19 ..

-rw------- 1 test other 17 aolt 15 11:50 .bash history
-rw-r--r-- 1 test other 144 ao(t 15 10:19 .profile
-rW------- 1 test other 200 aolt 15 12:16 .sh history
-rw-r--r-- 1 test other 136 ao(t 15 10:19 local.cshrc
-rw-r--r-- 1 test other 157 aolt 15 10:19 local.login
-rw-r--r-- 1 test other 174 aolt 15 10:19 local.profile

L'étude du fichier .profile pour votre utilisateur démontrera un fichier similaire a celui-ci :

$ cat .profile

This is the default standard profile provided to a user.
They are expected to edit it to meet their own needs.

MAIL=/usr/mail/${LOGNAME:?}

Dans ce fichier nous pouvons noter la définition de la variable MAIL.

<html> <center> Copyright © 2011-2018 I2TCH LIMITED.

 </center> </html>

From:

https://ittraining.team/ - wwwi.ittraining.team

Permanent link:

https://ittraining.team/doku.php?id=elearning:workbooks:solaris:10:user:1105

Last update: 2020/01/30 03:28

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:solaris:10:user:l105

	SO105 - La Ligne de Commande
	Le Shell
	Les Commandes Internes et Externes au shell
	Les Aliases
	Le Prompt
	Rappeler des Commandes
	Générer les fins de noms de fichiers
	Le shell interactif
	Caractère *
	Caractère ?
	Caractères []
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	Codes Retour
	Redirections
	Tubes
	Substitutions de Commandes
	Chainage de Commandes
	Affichage des variables du shell
	Les variables principales
	Les Variables de Régionalisation et d'Internationalisation
	Les variables spéciales

	Options du Shell ksh
	Exemples
	noclobber
	noglob
	nounset
	verbose

	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	Exemples

	Tests de chaînes de caractère
	Exemples

	Tests sur des nombres
	Exemple

	Les opérateurs
	Exemples

	Tests d'environnement utilisateur
	Exemples

	La commande [[expression]]
	Exemples

	Opérateurs du shell
	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	Exemples

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	Exemples

	Structures de contrôle
	If
	case

	Boucles
	for
	while

	Scripts de Démarrage

