2026/02/04 13:46 1/55 Command Line Interface

Derniere mise-a-jour : 2020/01/30 03:28

Command Line Interface

The Shell

A shell is a Command Line Interpreter (C.L.I). It is used to give instructions or commands to the operating system (0S).

The word shell is generic. There are many shells under Unix and Linux such as:

Shell|[Name Release Date|Inventer Command|/Comments

tsh |Thompson Shell |1971 Ken Thompson |sh The first shell

sh |Bourne Shell 1977 Stephen Bourne|sh The shell common to all Unix and Linux OSs: /bin/sh

csh |C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh

tcsh [Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh

ksh |Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh

bash |Bourne Again Shell|1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

When using SLES 12 /bin/sh is a soft link to /bin/bash :

trainee@SLES12SP1:~> 1s -1 /bin/sh
lrwxrwxrwx 1 root root 4 1 mai 2016 /bin/sh -> bash

/bin/bash

This unit covers the /bin/bash shell. The /bin/bash shell allows you to:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 2/55 Command Line Interface

e Recall previously typed commands
Auto-generate the end of a file name

Use Aliases

Use tables

Use C language numerical and math variables
Manage strings

Use Functions

A command always starts with a keyword. This keyword is interpreted by the shell, in the order shown, as one of the following:

¢ An Alias,

¢ A Function,

¢ A Built-in Command,

¢ An External Command.

Internal And External Commands

The /bin/bash shell comes with a set of built-in or internal commands. External commands are executable binaries or scripts generally found in one of
the following directories:

e /bin,

e /sbin,

e /usr/bin,
e /usr/sbin.

To check if a command is internal to the shell or external, use the type command:

trainee@SLES12SP1:~> type cd
cd is a shell builtin

External commands are either binaries or scripts that can be found in /bin, /sbin, /usr/bin or /usr/sbin :

trainee@SLES12SP1:~> type passwd

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 3/55 Command Line Interface

passwd is /usr/bin/passwd

Aliases

Aliases are strings that are aliased to a command, a command and some options or even several commands. Aliases are specific to the shell in which
they are created and unless specified in one of the start-up files, they disappear when the shell is closed:

trainee@SLES12SP1:~> type 1ls
1s is aliased to ~ 1s'

[stextbox id='black' image='null'] Important: Note that the Is alias is an alias to the Is command itself. [/stextbox]

An alias is defined using the alias command:

trainee@SLES12SP1:~> alias dir='ls -1'
trainee@SLES12SP1:~> dir

total 4

-rw-r--r-- 1 trainee users O 1 oct. 06:55 aac
-rw-r--r-- 1 trainee users O 1 oct. 06:55 abc
-rw-r--r-- 1 trainee users O 1 oct. 06:55 bca
drwxr-xr-x 1 trainee users 0 1 mai 2016 bin
drwxr-xr-x 1 trainee users 0 2 mai 2016 Desktop
drwxr-xr-x 1 trainee users 0 2 mai 2016 Documents
drwxr-xr-x 1 trainee users 0 2 mai 2016 Downloads
drwxr-xr-x 1 trainee users 0 2 mai 2016 Music
drwxr-xr-x 1 trainee users 0 2 mai 2016 Pictures
drwxr-xr-x 1 trainee users 0 2 mai 2016 Public
drwxr-xr-x 1 trainee users 20 1 mai 2016 public html
drwxr-xr-x 1 trainee users 0 2 mai 2016 Templates
drwxr-xr-x 1 trainee users 0 2 mai 2016 Videos
-rw-r--r-- 1 trainee users 391 30 sept. 10:27 vitext
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 xyz

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

4/55

Command Line Interface

[stextbox id='black' image="null'] Important: Note that dir exists as a command. By creating an alias of the same name, the alias will be executed in
place of the command. [/stextbox]

The list of currently defined aliases is obtained by using the alias command with no options:

trainee@SLES12SP1:~> alias

alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias

+='pushd .'
-="'popd"'

.='cd LY

Loe='aed L/
aumix="'padsp aumix'

beep='echo -en "\007"'
cd..="'cd ..

dir="'1ls -1'

egrep='egrep --color=auto'
fgrep='fgrep --color=auto'
grep='grep --color=auto'

1="1s -alF'
la='ls -1la'
1l="1s -1'

ls=' 1s'
ls-1='1s -1
md="'mkdir -p'
o="'less'
rd="rmdir"'
rehash="hash -r'

sox="'padsp sox'
timidity="'timidity -0Oe'

unmount="'echo "Error: Try the command: umount" 1>&2; false'
you='if test "$EUID" = 0 ; then /sbin/yast2 online update ; else su -

-c "/sbin/yast2 online update" ; fi'

[stextbox id="'black' image="'null'] Important: In the above list you can see, without distinction, the system wide aliases created by system start up
scripts and the user created alias dir. The latter is only available for trainee and will disappear when the current session is terminated. [/stextbox]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 5/55 Command Line Interface

To force the shell to use the command and not the alias, you can precede the command with the \ character:

trainee@SLES12SP1:~> \dir
aac bca Desktop Downloads Pictures public html Videos xyz
abc bin Documents Music Public Templates vitext

To delete an alias, simply use the unalias command:

trainee@SLES12SP1:~> unalias dir

trainee@SLES12SP1:~> dir

aac bca Desktop Downloads Pictures public html Videos xyz
abc bin Documents Music Public Templates vitext

Each user's shell is defined by root in the /etc/passwd file:

trainee@SLES12SP1:~> cat /etc/passwd

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash

daemon:x:2:2:Daemon:/sbin:/bin/bash

ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
ftpsecure:x:488:65534:Secure FTP User:/var/lib/empty:/bin/false
games:x:12:100:Games account:/var/games:/bin/bash
gdm:x:486:485:Gnome Display Manager daemon:/var/lib/gdm:/bin/false
lp:x:4:7:Printing daemon:/var/spool/1lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
messagebus:x:499:499:User for D-Bus:/var/run/dbus:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
nobody:x:65534:65533:nobody:/var/lib/nobody:/bin/bash
nscd:x:496:495:User for nscd:/run/nscd:/sbin/nologin
ntp:x:74:492:NTP daemon:/var/lib/ntp:/bin/false
openslp:x:494:2:o0penslp daemon:/var/lib/empty:/sbin/nologin
polkitd:x:497:496:User for polkitd:/var/lib/polkit:/sbin/nologin
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 6/55

Command Line Interface

pulse:x:490:489:PulseAudio daemon:/var/lib/pulseaudio:/sbin/nologin
root:x:0:0:root:/root:/bin/bash

rpc:x:495:65534:user for rpcbind:/var/lib/empty:/sbin/nologin
rtkit:x:491:490:RealtimeKit:/proc:/bin/false

scard:x:487:487:Smart Card Reader:/var/run/pcscd:/usr/sbin/nologin
sshd:x:498:498:SSH daemon:/var/lib/sshd:/bin/false
statd:x:489:65534:NFS statd daemon:/var/lib/nfs:/sbin/nologin
usbmux:x:493:65534:usbmuxd daemon:/var/lib/usbmuxd:/sbin/nologin
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
vnc:x:492:491:user for VNC:/var/lib/empty:/sbin/nologin
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
trainee:x:1000:100:trainee:/home/trainee:/bin/bas

However, each user can change his shell using the chsh command. The shells available to users are listed in the /etc/shells file:

trainee@SLES12SP1:~> cat /etc/shells
/bin/ash
/bin/bash
/bin/csh
/bin/dash
/bin/false
/bin/ksh
/bin/ksh93
/bin/mksh
/bin/pdksh
/bin/sh
/bin/tcsh
/bin/true
/bin/zsh
/usr/bin/csh
/usr/bin/dash
/usr/bin/ksh
/usr/bin/ksh93
/usr/bin/mksh

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 7/55 Command Line Interface

/usr/bin/passwd
/usr/bin/pdksh
/usr/bin/bash
/usr/bin/tcsh
/usr/bin/zsh

Now use the echo command to view the contents of the system variable SHELL for your current session:

trainee@SLES12SP1:~> echo $SHELL
/bin/bash

Now change your shell to /bin/sh using the chsh command

trainee@SLES12SP1:~> chsh

Password: trainee

Changing the login shell for trainee

Enter the new value, or press ENTER for the default
Login Shell [/bin/bash]: /bin/sh

[stextbox id='black' image='null'] Important: Note that the password will not be printed to standard output. [/stextbox]

Now check your current shell:

trainee@SLES12SP1:~> echo $SHELL
/bin/bash

At first glance nothing has happened. However if you view your entry in the /etc/passwd file you will notice that your login shell has changed:

trainee@SLES12SP1:~> cat /etc/passwd | grep trainee
trainee:x:1000:100:trainee:/home/trainee:/bin/sh

[stextbox id="'black' image="'null'] Important : The /bin/sh shell will be your active shell the next time you login. [/stextbox]

Now change your shell back to /bin/bash using the chsh command:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

8/55

Command Line Interface

trainee@SLES12SP1:~> chsh

Password: trainee

Changing the login shell for trainee
Enter the new value, or press ENTER for the default
Login Shell [/bin/sh]: /bin/bash

[stextbox id='black' image='null'] Important: Note that the password will not be printed to standard output. [/stextbox]

The Prompt

As you have already noticed, the prompt under Linux is different for a normal user and root:

e > for a user,
e # for root.

The history Command

/bin/bash keeps track of commands that have been previously executed. To access the command history, use the following command:

trainee@SLES12SP1:~> history | more

1

=
P O OVWo0NO U B~ WN

=

su -

su -

clear

cd /

1s -1

ls -1 /var/run
cd /mnt

1s

cd

mount

mount --help

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

9/55

Command Line Interface

12
13
14
15
16
17
18
19
20
21
22
23

cat /etc/fstab
umount --help
dumpe2fs /dev/sdal | grep -i superbloc

1s
1s
1s
cd
ln
1s
n
1s
su

--More- -

[stextbox id='black' image="'null'] Important: The history is specific to each user. [/stextbox]

The history command uses emacs style control characters. As a result you can navigate through the list as follows:

-ld /dev/console /dev/initctl /dev/loop0O /etc /etc/passwd
-1d /dev/console /dev/initctl /etc /etc/passwd

-1ldi /dev/console /dev/initctl /etc /etc/passwd

/tmp; mkdir inode; cd inode; touch filel; 1ls -ali

filel file2

-ali

-s filel file3

-ali

Control Character Action

[CTRL]-[P] (= Up Arrow) |Navigates backwards through the list

[CTRL]-[N] (= Down Arrow)|Navigates forwards through the list

To move around in the history:

Control Character|Action

[CTRLI-[A] Move to the beginning of the line
[CTRL]-[E] Move to the end of the line

[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

Pour rechercher dans I'historique il convient d'utiliser les touches :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 10/55

Command Line Interface

Control Character|Action

[CTRL]-[R] string |Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string

[CTRL]-[S] string |Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string

[CTRL]-[G] Quit the search mode

It is also possible to recall the last command executed by using the !! characters:

trainee@SLES12SP1:~> 1s

aac bca Desktop Downloads Pictures public html Videos xyz
abc bin Documents Music Public Templates vitext
trainee@SLES12SP1:~> !!

ls

aac bca Desktop Downloads Pictures public html Videos xyz
abc bin Documents Music Public Templates vitext

Alternatively, to execute a command in the list, you can use the list number preceded by the ! character:

trainee@SLES12SP1:~> 1131

ls
aac bca Desktop Downloads Pictures public html Videos xyz
abc bin Documents Music Public Templates vitext

The environmental variables associated with the history are set system-wide in the /etc/profile file:

trainee@SLES12SP1:~> cat /etc/profile | grep HISTSIZE
HISTSIZE=1000
export HISTSIZE

As you can see, in the previous case the HISTSIZE value is set to 1000. This means that the last 1,000 commands are held in the history.

The history command stores data in the ~/.bash_history file for each user. The commands for the current bash session are stored in the file when the

session is closed:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

11/55

Command Line Interface

trainee@SLES12SP1:~> nl .bash history | more

23
--More- -

su -

su -

clear

cd /

1s -1

1s -1 /var/run
cd /mnt

1s

cd -

mount

mount --help

cat /etc/fstab

umount --help

dumpe2fs /dev/sdal | grep -i superbloc

1s
1s
1s
cd
ln
1s
1n
1s
su

-1d /dev/console /dev/initctl /dev/loop@® /etc /etc/passwd
-1d /dev/console /dev/initctl /etc /etc/passwd

-1di /dev/console /dev/initctl /etc /etc/passwd

/tmp; mkdir inode; cd inode; touch filel; ls -ali

filel file2

-ali

-s filel file3

-ali

[stextbox id='black' image='null'] Important : Note the use of the nl command to number the lines in the output of the contents of .bash_history

file. [/stextbox]

The TAB key

/bin/bash can auto-generate the end of a file name. Consider the following example:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 12/55 Command Line Interface

$ Ls .b [Tab][Tab][Tab]
By hitting the Tib| key three times, the system shows you the files that match:

trainee@SLES12SP1:~> 1s .bash
.bash history .bashrc

This same technique can also be used to auto-generate command names. Consider the following example:
$ mo [Tab][Tab]
By hitting the Tab| twice the system lists all known commands available to the user and starting with mo:

trainee@SLES12SP1:~> mo

modeprint modsign-verify mount mouse-test
modetest more mountpoint
Metacharacters

It is often necessary and desirable to be able to work with several files at one time as opposed to repeating the operation on each file individually. For
this reason, bash accepts the use of Metacharacters:

Metacharacter Description

* Matches one or more characters

? Matches a single character

[abc] Matches any one of the characters between square brackets

[!abc] Matches any character except those between square brackets

[m-t] Matches any character from m through to t

['m-t] Matches any character other than m through to t

?(expressionl|expression2| ...) |Matches 0 or 1 occurence of expressionl OR 0 or 1 occurence of expression2 OR ...
*(expressionl|expression2| ...) |Matches 0 to x occurences of expressionl OR 0 to x occurences of expression2 OR ...

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 13/55 Command Line Interface

Metacharacter Description

+(expressionl|expression2| ...) [Matches 1 to x occurences of expressionl OR 1 to x occurences of expression2 OR ...
@(expressionl|expression2| ...)|Matches 1 occurrence of expressionl OR 1 occurence of expression2 OR ...
!(expressionl|expression2| ...) |Matches 0 occurrences of expressionl OR 0 occurrences of expression2 OR ...

To illustrate the use of Metacharacters, you need to create a directory in your home directory and the create some files within it:

trainee@SLES12SP1:~> mkdir training
trainee@SLES12SP1:~> cd training
trainee@SLES12SP1:~/training> touch f1 f2 f3 f4 5

The * Metacharacter

Now use the Metacharacter *:

trainee@SLES12SP1:~/training> echo f*
fl f2 f3 f4 f5

[stextbox id="'black' image="'null'] Important: Note that the * is used as a wild card which replaces 0 or more characters. [/stextbox]

The ? Metacharacter

Create two more files:
trainee@SLES12SP1:~/training> touch f52 f62
Now use the Metacharacter ?:

trainee@SLES12SP1:~/training> echo f?2
52 f62

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 14/55 Command Line Interface

[stextbox id='black' image="null'] Important: Note that the ? is used as a wild card which replaces a single character. [/stextbox]

The [] Metacharacter

The [] Metacharacter can take several forms:

Metacharacter|Description

[xyz] Represents either x ory or z

[m-t]

['xyz] Represents any character other than x ory or z
['m-t] Represents any character outside of the range mto t

To demonstrate the use of the metacharacter [], create a file called a1l00:
trainee@SLES12SP1:~/training> touch al00

The use of this Metacharacter can be demonstrated with the following examples:
trainee@SLES12SP1:~/training> echo [a-f]*

aleo fl f2 f3 f4 f5 f52 62

trainee@SLES12SP1:~/training> echo [af]*

aleo f1 f2 f3 f4 f5 f52 62

[stextbox id='black' image="'null'] Important: Note that all the files starting with either a, b, ¢, d, e or f are displayed. [/stextbox]

trainee@SLES12SP1:~/training> echo [!al*
fl f2 f3 f4 f5 52 62

[stextbox id='black' image="'null'] Important: Note that all the files in the directory are displayed except the file starting with a . [/stextbox]

trainee@SLES12SP1:~/training> echo [a-b]*

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

15/55

Command Line Interface

aloo

[stextbox id='black' image="'null'] Important: Note that only the file starting with a is displayed since no file starting with b is present. [/stextbox]

trainee@SLES12SP1:~/training> echo [a-f]

[a-f]

[stextbox id="'black' image="'null'] Important: Note that in the above example, since no file called a, b, ¢, d, e or f exists in the directory, the echo

command simply returns the filter used. [/stextbox]

The extglob Option

In order to use ?(expression), *(expression), +(expression), @(expression) and !(expression), you need to activate the extglob option:

trainee@SLES12SP1l:~/training> shopt -s extglob

The shopt command is used to activate and deactivate the shopt option of the shell.

The list of all the options can be displayed by simply using the shopt command:

trainee@SLES12SP1:~/training> shopt

autocd
cdable vars
cdspell
checkhash
checkjobs
checkwinsize
cmdhist
compat3l
compat32
compat40
compat4l

off
off
off
off
off
on

on

off
off
off
off

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

16/55

Command Line Interface

direxpand of f
dirspell off
dotglob of f
execfail off
expand aliases on
extdebug of f
extglob on
extquote on
failglob of f
force fignore on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive comments
lastpipe of f
lithist off
login shell on
mailwarn off
no empty cmd completion off
nocaseglob of f
nocasematch off
nullglob of f
progcomp on
promptvars on
restricted shell
shift verbose off
sourcepath on
Xpg_echo off

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 17/55 Command Line Interface

?(expression)

Create the following files:
trainee@SLES12SP1:~/training> touch f f.txt f123.txt f123123.txt f123123123.txt
Execute the following command:

trainee@SLES12SP1l:~/training> ls f?(123).txt
f123.txt f.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 0 or 1 occurrences of the string 123. [/stextbox]

*(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f*(123).txt
£123123123.txt f123123.txt f123.txt f.txt

[stextbox id="'black' image="'null'] Important: Note that the command displays file names that match 0 to x occurrences of the string 123. [/stextbox]

+(expression)

Execute the following command:

trainee@SLES12SP1:~/training> 1ls f+(123).txt
£123123123.txt f123123.txt f123.txt

[stextbox id='black' image="'null'] Important: Note that the command displays file names that match 1 to x occurrences of the string 123.. [/stextbox]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 18/55 Command Line Interface

@(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f@(123).txt
f123.txt

[stextbox id='black' image="'null'] Important: Note that the command displays file names that match 1 occurrence of the string 123. [/stextbox]

!(expression)

Execute the following command:

trainee@SLES12SP1l:~/training> ls f!(123).txt
£123123123.txt f123123.txt f.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 0 or x occurrences of the string 123, where x>1.
[/stextbox]

Protecting Metacharacters

To cancel the wild card effect of a special character, the character needs to be escaped or “protected”:

Character|Description

\ Escapes the character which immediately follows

H Protects any character between the two '

“r Protects any character between the two “ except the following: $,\ and '

For example:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 19/55 Command Line Interface

trainee@SLES12SP1l:~/training> echo * est un caractere spécial
aloo f f1 f123123123.txt f123123.txt f1l23.txt f2 f3 f4 f5 f52 f62 f.txt est un caractere spécial

trainee@SLES12SP1:~/training> echo * est un caractere spécial
* est un caractere spécial

trainee@SLES12SP1:~/training> echo "* est un caractére spécial"
* est un caractere spécial

trainee@SLES12SP1:~/training> echo '* est un caractere spécial'
* est un caractere spécial

Exit Status

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

trainee@SLES12SP1l:~/training> cd ..
trainee@SLES12SP1:~> mkdir codes
trainee@SLES12SP1:~> echo $7?

0

trainee@SLES12SP1:~> touch codes/exit.txt
trainee@SLES12SP1l:~> rmdir codes

rmdir: failed to remove ‘codes’: Directory not empty
trainee@SLES12SP1:~> echo $7?

1

As you can see when the exit status is 0, the command has executed correctly. If the exit status is anything else, the command has executed with
errors.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 20/55 Command Line Interface

Redirections

Your dialogue with the system uses three file descriptors:

e Standard Input - the keyboard,
e Standard output - the screen,
e Standard error - contains any eventual errors.

The standard output can be redirected using the > character:

trainee@SLES12SP1:~> pwd

/home/trainee

trainee@SLES12SP1:~> cd training
trainee@SLES12SP1l:~/training> free > file
trainee@SLES12SP1:~/training> cat file

total used free shared buffers cached
Mem: 394524 386024 8500 5716 452 300420
-/+ buffers/cache: 85152 309372
Swap: 2103292 4 2103288

[stextbox id="'black' image="'null'] Important: If the file does not exist, it is automatically created. [/stextbox]

Repeating a single redirection will replace the file:

trainee@SLES12SP1l:~/training> date > file
trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016

To add additional data to the file, you need to use a double redirection:
trainee@SLES12SP1:~/training> free >> file

trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 21/55 Command Line Interface

total used free shared buffers cached
Mem: 394524 386876 7648 5716 452 300936
-/+ buffers/cache: 85488 309036
Swap: 2103292 4 2103288

[stextbox id="'black' image="'null'] Important : Note that standard output can only be redirected to a single destination. [/stextbox]
File descriptors are numbered for ease of use :

e 0 = Standard Input
e 1 = Standard Output
e 2 = Standard Error

For example:

trainee@SLES12SP1l:~/training> cd ..

trainee@SLES12SP1:~> rmdir training/ 2>errorlog

trainee@SLES12SP1:~> cat errorlog

rmdir: failed to remove ‘training/’: Directory not empty

[stextbox id='black' image='null'] Important: As you can see the error generated is redirected to the errorlog file. [/stextbox]
You can join file descriptors using the & character:

trainee@SLES12SPl:~> free > file 2>&1
Any errors are sent to the same destination as the standard output, in the case, file.

It is also possible to have a reverse redirection:

trainee@SLES12SP1:~> wc -w < errorlog
8

In this case wc -w counts the number of words in the file.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 22/55 Command Line Interface

Other redirections exist :

Redirection|Definition

&> Join file descriptors 1 and 2.

<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

Pipes

A pipe is used to present the standard output on the first command to the standard input of the second command:

trainee@SLES12SP1l:~> 1s | wc -w
18

[stextbox id="'black' image="'null'] Important - Several pipes can be used within the same command. [/stextbox]

Standard output can generally only be redirected to a single destination. To redirect to two destinations at once, you need to use the tee command:

trainee@SLES12SP1:~> date | tee filel
Mon 28 Nov 16:14:43 CET 2016
trainee@SLES12SP1:~> cat filel

Mon 28 Nov 16:14:43 CET 2016

Alternatively, tee can be used to redirect to two files at the same time:

trainee@SLES12SP1:~> date | tee filel > file2
trainee@SLES12SP1:~> cat filel

Mon 28 Nov 16:16:15 CET 2016
trainee@SLES12SP1:~> cat file2

Mon 28 Nov 16:16:15 CET 2016

[stextbox id='black' image='null'] Important : The default action of the tee command is to overwrite the destination file. In order to append output to
the same file, you need to use the -a switch. [/stextbox]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 23/55

Command Line Interface

Command Substitution

Command substitution permits in-line execution of a command:

trainee@SLES12SP1:~> echo date
date

trainee@SLES12SP1:~> echo $(date)
Mon 28 Nov 16:19:53 CET 2016
trainee@SLES12SP1:~> echo “date’
Mon 28 Nov 16:19:53 CET 2016

Conditional Command Execution

Commands can be grouped using brackets:

$ (s -1; ps; who) > list

Conditional command execution can be obtained by using the exit status value and either && or ||.

For example,

e Commandl && Command2,
o Command2 will execute if the exit status of Command1 is 0,
e Commandl || Command2,
o Command2 will execute if the exit status of Command1l anything other than 0.

Environment Variables

The contents of a shell variable can be displayed on standard output using the echo command:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

24/55

Command Line Interface

$ echo $VARIABLE [Enter]

Principal Variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.

EUID

EUID of the current user.

uiD UID of the current user.

PPID PID of the parent of the current process.

PWD The current directory.

OLDPWD The previous current directory (like the ed -command).
RANDOM A random number between 0 and 32767.

SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.

COLUMNS The number of columns in a screen .

HISTFILE The history file.

HISTFILESIZE The history file size.

HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth

HOME The user's home directory.

HOSTTYPE Machine type.

OSTYPE The OS type.

MAIL The file containing the user's mail.

MAILCHECK Frequency in seconds that a user's mail is checked.
PATH The paths to executables.

PROMPT_COMMAND

Command executed before each prompt is displayed.

PS1

User's default prompt.

PS2

User's 2nd level default prompt.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

25/55

Command Line Interface

Variable Description

PS3 User's 3rd level prompt.

PS4 User's 4th level prompt.

SHELL User's current shell.

SHLVL The number of shell instances.

TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalisation and Localisation

Internationalisation, also called i18n since there are 18 letters between the | and n, consists of modifying software so that it conforms to regional

parameters:

e Text processing differences,

e Writing direction,

e Different systems of numerals,

e Telephone numbers, addresses and international postal codes,

Paper sizes,

etc ...

Weights and measures,
Date/time format,

Keyboard layout,

Localisation, also called L10n since there are 10 letters between the L and n, consists of modifying the Internationalisation so that it conforms to a

specific locale:

e en_GB = Great Britain,

e en _US = USA,

e en_AU = Australia,

e en_NZ = New Zealand,
e en_ZA = South Africa,
e en_CA = Canada.

The most important variables are:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 26/55

Command Line Interface

l
\Y

trainee@SLES12SP1:
en GB.UTF-8
trainee@SLES12SP1:

echo $LC ALL

1
\Y

echo $LC CTYPE

trainee@SLES12SP1:
en GB.UTF-8

l
\Y

echo $LANG

locale

1
\Y

trainee@SLES12SP1:
LANG=en GB.UTF-8
LC CTYPE="en GB.UTF-8"

LC NUMERIC="en GB.UTF-8"

LC TIME="en GB.UTF-8"

LC COLLATE="en GB.UTF-8"
LC_MONETARY="en GB.UTF-8"

LC MESSAGES="en GB.UTF-8"

LC_ PAPER="en GB.UTF-8"
LC_NAME="en GB.UTF-8"

LC ADDRESS="en GB.UTF-8"

LC TELEPHONE="en GB.UTF-8"

LC MEASUREMENT="en GB.UTF-8"

LC IDENTIFICATION="en GB.UTF-8"
LC ALL=en GB.UTF-8

Special Variables

Variable Description

$LINENO |Contains the current line number of the script or function being executed

$$ Contains the PID of the current process
$PPID Contains the PID of the parent of the current process
$0 Contains the name of the current script

$1, $2 ... |Contains respectively the 1st, 2nd etc arguments passed to the script

$# Contains the total number of arguments passed to the script

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

27/55

Command Line Interface

Variable

Description

$*

Contains all of the arguments passed to the script

5@

Contains all of the arguments passed to the script

The env Commande

The env command can be used to run a program in a modified environment or just list the values of all environmental variables associated with the
user calling the program env:

trainee@SLES12SP1:~> env
LESSKEY=/etc/lesskey.bin
NNTPSERVER=news
MANPATH=/usr/local/man: /usr/share/man
XDG_SESSION ID=1

HOSTNAME=SLES12SP1
XKEYSYMDB=/usr/X11R6/1ib/X11/XKeysymDB
HOST=SLES12SP1

TERM=xterm-256color

SHELL=/bin/bash

PROFILEREAD=true

HISTSIZE=1000

SSH CLIENT=10.0.2.2 46258 22

MORE=-s1

SSH_TTY=/dev/pts/0

LC ALL=en GB.UTF-8

USER=trainee

LS COLORS=no=00:fi=00:di=01;34:1n=00;36:pi=40;33:50=01;35:d0=01;35:bd=40;33;01:cd=40;33;01:0r=41;33;01:ex=00;32:*
.cmd=00;32:*.exe=01;32:*.com=01;32:*.bat=01;32:*.btm=01;32:*.d1l1=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00;31:*.rpm=
00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.1zh=00;31:*.1zma=00;31:*.zip=00;31:*.200=00;31:*.2z=00;31:*.Z=00;31:*.
gz=00;31:*.bz2=00;31:*.tb2=00;31:*.1tz2=00;31:*.tbz2=00;31:*.xz=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01
;35:*%.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=01;35:*.pbm=01;35:*.pgm=01;35:*.png=01;35:
* . ppm=01;35:*.tga=01;35:*.tif=01;35:*.xbm=01;35:*.xpm=01;35:*.d1=01;35:*.9g1=01;35:*.wmv=01;35:*.aiff=00;32:*.au=0

0;32:*.mid=00;32:*.mp3=00;32:*.099g=00;32:*.voc=00;32:*.wav=00;32:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 28/55 Command Line Interface

XNLSPATH=/usr/share/X11/nls
QEMU_AUDIO DRV=pa

HOSTTYPE=x86 64

FROM HEADER=

PAGER=1ess

CSHEDIT=emacs

XDG CONFIG DIRS=/etc/xdg

LIBGL DEBUG=quiet

MINICOM=-c on

MAIL=/var/mail/trainee
PATH=/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games
CPU=x86 64

SSH SENDS LOCALE=yes
INPUTRC=/home/trainee/.inputrc
PWD=/home/trainee

LANG=fr FR.UTF-8
PYTHONSTARTUP=/etc/pythonstart
GPG_TTY=/dev/pts/0
AUDIODRIVER=pulseaudio

QT_SYSTEM DIR=/usr/share/desktop-data
SHLVL=1

HOME=/home/trainee

ALSA CONFIG _PATH=/etc/alsa-pulse.conf
SDL AUDIODRIVER=pulse

LESS ADVANCED PREPROCESSOR=no
OSTYPE=1linux

LS OPTIONS=-N --color=tty -T 0O
XCURSOR THEME=DMZ

WINDOWMANAGER=env GNOME SHELL SESSION MODE=sle-classic gnome-session --session sle-classic
G _FILENAME ENCODING=@locale,UTF-8,IS0-8859-15,CP1252
LESS=-M -I -R

MACHTYPE=x86 64-suse-linux
LOGNAME=trainee

XDG_DATA DIRS=/usr/share

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 29/55 Command Line Interface

SSH CONNECTION=10.0.2.2 46258 10.0.2.15 22
LESSOPEN=1lessopen.sh %s

XDG_RUNTIME DIR=/run/user/1000

NO AT BRIDGE=1

LESSCLOSE=1essclose.sh %s %s

G BROKEN FILENAMES=1

COLORTERM=1

_=/usr/bin/env
OLDPWD=/home/trainee/training

To run a program, such as xterm in a modified environment the command is:

$ env EDITOR=vim xterm

Bash Shell Options

To view all the options of the bash shell, use the command set:

trainee@SLES12SP1:~> set -0

allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof of f
interactive-comments on
keyword off
monitor on

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

30/55

Command Line Interface

noclobber of f
noexec of f
noglob of f
nolog of f
notify off
nounset of f
onecmd of f
physical of f
pipefail off
posix off
privileged off
verbose of f
vi of f
xtrace of f

To turn on an option you need to specify which option as an argument to the previous command:

trainee@SLES12SP1:~> set -0 allexport
trainee@SLES12SP1l:~> set -o

allexport on

braceexpand on

To turn off an option, use set with the +o0 option:
trainee@SLES12SP1:~> set +0 allexport
trainee@SLES12SP1l:~> set -o

allexport off
braceexpand on

These are the most interesting options:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

31/55

Command Line Interface

Option |Default value|Description

allexport |off The shell automatically exports all variables

emacs [on emacs editing mode

noclobber|off Simple re-directions do not squash the target file if it exists
noglob |off Turns off special characters

nounset |off The shell will return an error if the variable is not set
verbose |off Echos back the typed command

Vi off vi editing mode

noclobber

trainee@SLES12SP1:~> set -0 noclobber
trainee@SLES12SP1:~> pwd > file
trainee@SLES12SP1:~> pwd > file

-bash: file: cannot overwrite existing file
trainee@SLES12SP1:~> pwd >| file
trainee@SLES12SP1:~> set +0 noclobber

[stextbox id="'black' image="'null'] Important : Note that the noclobber option can be overidden by using a pipe. [/stextbox]

noglob

trainee@SLES12SP1:
trainee@SLES12SP1:

*

trainee@SLES12SP1:
trainee@SLES12SP1:

~> set -0 noglob
~> echo *

~> set +0 noglob
~> echo *

aac abc bca bin codes Desktop Documents Downloads errorlog file filel Music Pictures Public public_html Templates
training Videos vitext xyz

[stextbox id='black' image='null'] Important : Note that metacharacters are turned off when the noglob option is set. [/stextbox]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 32/55 Command Line Interface

nounset

trainee@SLES12SP1l:~> set -0 nounset
trainee@SLES12SP1:~> echo $FENESTROS
-bash: FENESTROS: unbound variable

trainee@SLES12SP1:~> set +0 nounset
trainee@SLES12SP1:~> echo $FENESTROS

trainee@SLES12SP1:

1
\Y

[stextbox id="'black' image="'null'] Important : Note that the inexistant variable $FENESTROS is identified as such when the nounset option is set.
[/stextbox]

Basic Shell Scripting

Execution

A script is a text file that is read by the system and it's contents executed. There are five ways to execute a script:

By stipulating the shell that will execute the script:

/bin/bash myscript

by a reverse redirection:

/bin/bash < myscript

By calling the script by it's name, provided that the script is executable and that it resides in a directory specified by your path :
myscript

By placing yourself in the directory where the script resides and using one of the two following possibilities :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 33/55 Command Line Interface

. myscript et ./myscript

[stextbox id="black' image='null'] Important: In the first case the script is executed in the parent shell. In the second case the script is executed in a
child shell. [/stextbox]

Comments in a script are lines starting with #. However, each script starts with a pseudo-comment that informs the system which shell should be used
to execute the script:

#!/bin/sh

Since a script in it's simplest form is a list of commands that are sequentially executed, it is often useful to test those command prior to writing the
script> Linux has a command that can help you debug a future script. The script command can be used to generate a log file, called typescript, that
contains a record of everything occurred on standard output. To exit the recording mode, use exit:

trainee@SLES12SP1:~> script
Script started, file is typescript
trainee@SLES12SP1:~> pwd

/home/trainee

trainee@SLES12SP1:~> 1s

aac bin Documents filel filel Public training vitext
abc codes Downloads file2 Music public html typescript xyz
bca Desktop errorlog file Pictures Templates Videos
trainee@SLES12SP1:~> exit

exit

Script done, file is typescript
trainee@SLES12SP1:~> cat typescript

Script started on Tue 29 Nov 2016 03:59:24 CET
trainee@SLES12SP1:~> pwd

/home/trainee

trainee@SLES12SP1:~> 1s

aac bin Documents filel filel Public training vitext
abc codes Downloads file2 Music public html typescript xyz
bca Desktop errorlog file Pictures Templates Videos

trainee@SLES12SP1:~> exit

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 34/55

Command Line Interface

exit

Script done on Tue 29 Nov 2016 03:59:31 CET
Lets start by creating a simple script called myscript:

$ vi myscript [Enter]

Edit the file as follows:

pwd
1s

[stextbox id='black' image="'null'] Important: Note that in the above example, the script does not start with a pseudo-comment. As a result, the script

will be executed by the shell of the user that invokes it unless a different shell is specified. [/stextbox]
Save the file and use the five ways to execute it.

As an argument de /bin/bash:

trainee@SLES12SP1:~> vi myscript
trainee@SLES12SP1:~> /bin/bash myscript

/home/trainee

aac bin Documents filel filel Pictures Templates Videos
abc codes Downloads file2 myscript Public training vitext
bca Desktop errorlog file Music public html typescript xyz

Using a redirection:

trainee@SLES12SP1:~> /bin/bash < myscript

/home/trainee
aac bin Documents filel filel Pictures Templates Videos
abc codes Downloads file2 myscript Public training vitext

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 35/55 Command Line Interface

bca Desktop errorlog file Music public html typescript xyz

In order to be able to call the script by it's name from another directory, sutraich as /tmp, you need to move the script into the /home/trainee/bin

directory and make it executable. Note that in this case, the the value of the environmental variable $PATH should contain a reference to
/home/nee/bin:

trainee@SLES12SP1:~> echo $PATH
/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games

Now you need to move the script to $HOME/bin and make it executable:

trainee@SLES12SP1:~> mv myscript ~/bin
trainee@SLES12SP1:~> chmod u+x ~/bin/myscript

Move to /tmp and can call the script by just using it's name:

trainee@SLES12SP1:/tmp> myscript
/tmp

hsperfdata root

inode
manageral4l11267841657715235client
managera3336001029897679475server
managera4847938942232964844client
managera5050357016347721452server
systemd-private-04f820fa26c745be8ddba814c6292f21-rtkit-daemon.service-041KP5
systemicontmp5578677472245134133dat
systemicontmp7082392205020802884dat

Now move back to ~/bin and use the following two commands to execute myscript:

e ./myscript
e . myscript

trainee@SLES12SP1:/tmp> cd ~/bin

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

36/55

Command Line Interface

trainee@SLES12SP1:~/bin>
/home/trainee/bin
myscript
trainee@SLES12SP1l:~/bin>
/home/trainee/bin
myscript

./myscript

. myscript

[stextbox id='black' image='null'] To do: Note the difference in the output of these two commands and explain that difference. [/stextbox]

The read command

The read command reads the standard input and stores the information in the variables that are specified as arguments. The separator between fields
is a space, a tabultaion or a carriage return:

trainee@SLES12SP1:~/bin>
fenestros edu is great!
trainee@SLES12SP1:~/bin>
fenestros
trainee@SLES12SP1:~/bin>
edu
trainee@SLES12SP1:~/bin>
is
trainee@SLES12SP1:~/bin>
great!

read varl var2 var3 var4
echo $varl
echo $var2
echo $var3

echo $var4d

[stextbox id="'black' image="'null'] Important: Note that each field has been placed in a seperate variable. Note also that by convention, user declared

variables are in lower case in order to distinguish them from system variables. [/stextbox]

trainee@SLES12SP1:~/bin>
fenestros edu is great!
trainee@SLES12SP1:~/bin>
fenestros

read varl var2

echo $varl

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 37/55 Command Line Interface

trainee@SLES12SP1:~/bin> echo $var?2
edu is great!

[stextbox id='black' image='null'] Important: Note that in this case, $var2 contains three fields. [/stextbox]
Code de retour

The contents of a variable can also be empty:

trainee@SLES12SP1:~/bin> read var

<—' Ente[|

trainee@SLES12SP1:~/bin> echo $7?
grainee@SLE5125P1:~/bin> echo $var
trainee@SLES12SP1:~/bin>

But not null:

trainee@SLES12SP1l:~/bin> read var
Ctrll+D|

trainee@SLES12SP1:~/bin> echo $7?
irainee@SLE5125P1:~/bin> echo $var

trainee@SLES12SP1:~/bin>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 38/55 Command Line Interface

The IFS Variable

The IFS variable contains the default separator characters: SpaceBar, Tab S| and « Enter;

trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 \t \n \n
0000004

[stextbox id='black' image="null'] Important: The od command (Octal Dump) returns the contents of a file in octal format. The -c switch prints to
standard output any ASCII characters or backslashes contained within the file. [/stextbox]

It is possible to change the contents of this variable:

trainee@SLES12SP1:~/bin> OLDIFS="$IFS"
trainee@SLES12SP1:~/bin> IFS=":"
trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 :\n

0000002

Now test the new configuration:
trainee@SLES12SP1:~/bin> read varl var2 var3

fenestros:edu is:great!
trainee@SLES12SP1l:~/bin> echo $varl

fenestros

trainee@SLES12SP1:~/bin> echo $var2
edu is

trainee@SLES12SP1:~/bin> echo $var3
great!

Restore the old value of IFS before proceeding further: IFS=“$OLDIFS”

trainee@SLES12SP1:~/bin> IFS="$OLDIFS"

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

39/55

Command Line Interface

trainee@SLES12SP1l:~/bin> echo "$IFS"

0000000
0000004

\t \n \n

The test Command

The test command uses two forms:

test expression

or

[SpaceBadexpression SpaceBar|]

Testing Files

| od -c

Test Description

-f file Returns true if file is an ordinary file
-d file Returns true if file is a directory

-r file Returns true if user can read file

-w file Returns true if user can write file

-x file Returns true if user can execute file
-e file Returns true if file exists

-s file Returns true if file is not empty

filel -nt file2|Returns true if filel is newer than file2
filel -ot file2|Returns true if filel is older than file2
filel -ef file2|Returns true if filel is identical to file2
LAB #1

Test whether the al00 file is an ordinary file:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

40/55

Command Line Interface

trainee@SLES12SP1:~/bin> cd ../training/
trainee@SLES12SP1:~/training> test -f al00
trainee@SLES12SP1:~/training> echo $7?

0

trainee@SLES12SP1:~/training> [-f al00]
trainee@SLES12SP1l:~/training> echo $?

0

[stextbox id='black' image='null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Test whether the al01 file is an ordinary file:

trainee@SLES12SP1:~/training> [-f al@l]
trainee@SLES12SP1:~/training> echo $7?

1

[stextbox id="'black' image="'null'] Important: The value contained in $? is 1. This indicates false. This is obvious since al01 does not exist. [/stextbox]

Test whether /home/trainee/training is a directory:

trainee@SLES12SP1l:~/training> [-d /home/trainee/training]

trainee@SLES12SP1:~/training> echo $?

0

[stextbox id='black' image='null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Testing Strings

Test Description
-n string Returns true if string is not zero in length
-z string Returns true if string is zero in length

stringl = string2

Returns true if stringl is equal to string2

stringl !'= string2

Returns true if stringl is different to string2

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 41/55 Command Line Interface

Test Description
stringl Returns true if stringl is not empty
LAB #2

Test whether two strings are indentical:

trainee@SLES12SP1:~/training> stringl="root"
trainee@SLES12SP1:~/training> string2="fenestros"
trainee@SLES12SP1:~/training> [$stringl = $string2]
trainee@SLES12SP1l:~/training> echo $?

1

[stextbox id='black' image="'null'] Important: The value contained in $? is 1. This indicates false. [/stextbox]

Test if stringl is not zero in length:

trainee@SLES12SP1:~/training> [-n $stringl]
trainee@SLES12SP1:~/training> echo $?
0

[stextbox id="'black' image="'null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Test if stringl is is zero in length:
trainee@SLES12SP1:~/training> [-z $stringl]

trainee@SLES12SP1:~/training> echo $?
1

[stextbox id='black' image="'null'] Important: The value contained in $? is 1. This indicates false. [/stextbox]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 42/55 Command Line Interface

Testing Numbers

Test Description

valuel -eq value2|Returns true if valuel is equal to value2

valuel -ne value2|Returns true if valuel is not equal to value2

valuel -It value2 [Returns true if valuel is less than value2

valuel -le value2 [Returns true if valuel is less than or equal to value2
valuel -gt value2 |Returns true if valuel is greater than value2

valuel -ge value2|Returns true if valuel is greater than or equal to value2

LAB #3

Compare the two numbers valuel and value2 :

trainee@SLES12SP1:~/training> read valuel

35

trainee@SLES12SP1:~/training> read value2

23

trainee@SLES12SP1:~/training> [$valuel -1t $value2]
trainee@SLES12SP1:~/training> echo $?

1

trainee@SLES12SP1:~/training> [$value2 -1t $valuel]
trainee@SLES12SP1:~/training> echo $?

0

trainee@SLES12SP1:~/training> [$value2 -eq $valuel]
trainee@SLES12SP1:~/training> echo $7?

1

Expressions

Test Description
lexpression Returns true if expression is false

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

43/55

Command Line Interface

Test

Description

expressionl -a expression2

Represents a logical OR between expressionl and expression2

expressionl -0 expression2

Represents a logical AND between expressionl and expression2

\(expression\)

Parenthesis let you group together expressions

LAB #4

Test if $file is not a directory:

trainee@SLES12SP1:~/training> file=al00
trainee@SLES12SP1:~/training> [! -d $file]
trainee@SLES12SP1:~/training> echo $?

0

Test if $directory is a directory and if trainee can cd into it:

trainee@SLES12SP1:~/training> directory=/usr
trainee@SLES12SP1l:~/training> [-d $directory -a -x $directory]
trainee@SLES12SP1l:~/training> echo $?

0

Test if trainee has the write permission for the al00 file and test if /usr is a directory or test if /tmp is a directory:

trainee@SLES12SP1l:~/training> [-w al0@0 -a \(-d /usr -o -d /tmp \)]
trainee@SLES12SP1:~/training> echo $7?

0

Testing the User Environment

Test Description

-0 option|Returns true if the shell option “option” is on

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 44/55 Command Line Interface

LAB #5

trainee@SLES12SP1:~/training> [-0 allexport]
trainee@SLES12SP1:~/training> echo $7?
1

The [[expression]] Command

The [[SpaceBal_'|expressionSpaceBar_‘|]] command is an improved test command with some minor changes to syntax:

Test Description

expressionl && expression2|Represents a logical OR between expressionl and expression2
expressionl || expression2 |Represents a logical AND between expressionl and expression2
(expression) Parenthesis let you group together expressions

and some additional operators :

Test Description

string = model |Returns true if string corresponds to model

string '= model |Returns true if string does not correspond to model
stringl < string2|Returns true if stringl is lexicographically before string2
stringl > string2|Returns true if stringl is lexicographically after string2

LAB #6

Test if trainee has the write permission for the al00 file and test if /usr is a directory or test if /tmp is a directory:

trainee@SLES12SP1l:~/training> [[-w ale0® && (-d /usr || -d /tmp) 1]
trainee@SLES12SP1:~/training> echo $7?
0

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 45/55 Command Line Interface

Shell Operators

Operator Description
Commandl && Command2|Command?2 is executed if the exit code of Command1l is zero
Commandl || Command2 [Command?2 is executed is the exit code of Command1l is not zero

LAB #7

trainee@SLES12SP1:~/training> [[-d /root]] && echo "The root directory exists"
The root directory exists

trainee@SLES12SP1:~/training> [[-d /root]] || echo "The root directory exists"
trainee@SLES12SP1:~/training>

The expr Command

Theexpr command's syntax is as follows :

expr SpaceBad numberl SpaceBad operator SpaceBad number2 SpaceBad

ou

expr Tab S| numberl Tab| operator Tab $| number2 < Enter]

ou

expr SpaceBad string SpaceBad : SpaceBad regular_expression SpaceBar|
or

expr Tab] string Tab s|: Tab s| regular_expression « Enter|

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

46/55

Command Line Interface

Maths
Operator|Description
+ Addition

- Subtraction
* Multiplication
/ Division

% Modulo

\(\) Parentheses

Comparisons

Operator|Description

\< Less than

\<= Less than or equal to
\> Greater then

\>= Greater then or equal to
= Equal to

= Not equal to

Logic

Operator Description

\| Logical OR

\& Logical AND

LAB #8

Add two to the value of $x:

trainee@SLES12SP1:~/training> x=2
trainee@SLES12SP1:~/training> expr $x + 2

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 47/55 Command Line Interface

4
If the surrounding spaces are removed, the result is completely different:

trainee@SLES12SP1:~/training> expr $x+2
242

Certain operators need to be protected:

trainee@SLES12SP1:~/training> expr $x * 2
expr: syntax error
trainee@SLES12SP1:~/training> expr $x * 2
4

Now put the result of a calculation in a variable:

trainee@SLES12SP1:~/training> resultat="expr $x + 10"
trainee@SLES12SP1:~/training> echo $resultat
12

The let Command

The let command is equivalent to ((expression)). The ((expression)) command provides the following additional features when compared with the expr
command :

e greater number of operators,

no need for spaces or tabulations between arguments,
no need to prefix variables with the $ character,

the shell's special characters do not need to be escaped,
variables are defined directly in the command,

faster execution time.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46

48/55

Command Line Interface

Maths
Operator|Description
+ Addition

- Subtraction

* Multiplication
/ Division

% Modulo

~ Power

Comparisons

Operator|Description

< Less than

<= Less than or equal to

> Greater then

>= Greater then or equal to
== Equal

= Not Equal

Logic

Operator Description

&& Logical AND

[l Logical OR

! Logical negation

Binary

Opérateur|Description

~ Binary negation

>> décalage binaire a droite
<< décalage binaire a gauche

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 49/55

Command Line Interface

Opérateur|Description

& Binary AND

| Binary OR

~ Exclusive binary OR
LAB #9

trainee@SLES12SP1l:~/training> x=2
trainee@SLES12SP1:~/training> ((x=$x+10))
trainee@SLES12SP1:~/training> echo $x

12

trainee@SLES12SP1:~/training> ((x=$x+20))
trainee@SLES12SP1:~/training> echo $x

32

Control Structures

If

The syntax is as follows:

if condition

then

command(s)

else

command(s)

fi

or:

if condition

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 50/55 Command Line Interface

then
command(s)
command(s)
fi

or finally:

if condition
then

command(s)
elif condition
then

command(s)
elif condition
then

command(s)
else

command(s)

fi

case

The syntax is as follows:

case $variable in
modell) function

..
r

model2) function

..
r

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 51/55 Command Line Interface

model3 | model4 | model5) function

..
r

esac

Loops

for

The syntax is as follows:

for variable in variable list
do

command(s)
done

while

The syntax is as follows:

while condition
do

command(s)
done

Example

U=1
while [$U -1t $MAX ACCOUNTS]

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 52/55

Command Line Interface

do

useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null

useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"

let U=U+1

done

Start-up Scripts

When Bash is called as a login shell it executes the start-up scripts in the following order:

¢ /etc/profile,
* ~/.bash_profile or ~/.bash_login or ~/.profile dependant upon the distribution,

In the case of SLES, Bash executes ~/.profile.

When a login shell is terminated, Bash executes the ~/.bash_logout file if it exists.

Whan Bash is called as an interactive shell as opposed to a login shell, it executes only the ~/.bashrc file.

LAB #10

[stextbox id="'black' image='null'] To do : Using the knowledge you have acquired in this unit, explain each of the following scripts. [/stextbox]

~/.profile

trainee@SLES12SP1:~/training> cat ~/.profile

Sample .profile for SuSE Linux

rewritten by Christian Steinruecken <cstein@suse.de>
#

This file is read each time a login shell is started.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 53/55

Command Line Interface

ALl other interactive shells will only read .bashrc; this is particularly
important for language settings, see below.

test -z "$PROFILEREAD" && . /etc/profile || true

Most applications support several languages for their output.

To make use of this feature, simply uncomment one of the lines below or
add your own one (see /usr/share/locale/locale.alias for more codes)

This overwrites the system default set in /etc/sysconfig/language

in the variable RC LANG.

#

#export LANG=de DE.UTF-8 # uncomment this line for German output
#export LANG=fr FR.UTF-8 # uncomment this line for French output
#export LANG=es ES.UTF-8 # uncomment this line for Spanish output

Some people don't like fortune. If you uncomment the following lines,
you will have a fortune each time you log in ;-)

#if [-x /usr/bin/fortune] ; then

echo

/usr/bin/fortune
echo

#T1i

~/.bashrc

trainee@SLES12SP1:~/training> cat ~/.bashrc
Sample .bashrc for SuSE Linux
Copyright (c) SuSE GmbH Nuernberg

There are 3 different types of shells in bash: the login shell, normal shell
and interactive shell. Login shells read ~/.profile and interactive shells

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 54/55

Command Line Interface

read ~/.bashrc; in our setup, /etc/profile sources ~/.bashrc - thus all
settings made here will also take effect in a login shell.

NOTE: It is recommended to make language settings in ~/.profile rather than
here, since multilingual X sessions would not work properly if LANG is over-
ridden in every subshell.

H OH R H R

Some applications read the EDITOR variable to determine your favourite text
editor. So uncomment the line below and enter the editor of your choice :-)
#export EDITOR=/usr/bin/vim

#export EDITOR=/usr/bin/mcedit

For some news readers it makes sense to specify the NEWSSERVER variable here
#export NEWSSERVER=your.news.server

If you want to use a Palm device with Linux, uncomment the two lines below.
For some (older) Palm Pilots, you might need to set a lower baud rate

e.g. 57600 or 38400; lowest is 9600 (very slow!)

#

#export PILOTPORT=/dev/pilot

#export PILOTRATE=115200

test -s ~/.alias && . ~/.alias || true

<html>

Copyright © 2004-2018 Hugh Norris.

</html>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:46 55/55 Command Line Interface

From:
https://ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:sles:11:utilisateur:1105

Last update: 2020/01/30 03:28

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:sles:11:utilisateur:l105

	Command Line Interface
	The Shell
	/bin/bash
	Internal And External Commands
	Aliases
	The Prompt
	The history Command
	The TAB key
	Metacharacters
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter
	The extglob Option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	Exit Status
	Redirections
	Pipes
	Command Substitution
	Conditional Command Execution

	Environment Variables
	Principal Variables
	Internationalisation and Localisation
	Special Variables
	The env Commande

	Bash Shell Options
	noclobber
	noglob
	nounset

	Basic Shell Scripting
	Execution
	The read command
	Code de retour
	The IFS Variable

	The test Command
	Testing Files
	LAB #1

	Testing Strings
	LAB #2

	Testing Numbers
	LAB #3

	Expressions
	LAB #4

	Testing the User Environment
	LAB #5

	The [[expression]] Command
	LAB #6

	Shell Operators
	LAB #7

	The expr Command
	Maths
	Comparisons
	Logic
	LAB #8

	The let Command
	Maths
	Comparisons
	Logic
	Binary
	LAB #9

	Control Structures
	If
	case

	Loops
	for
	while
	Example

	Start-up Scripts
	LAB #10
	~/.profile
	~/.bashrc

