
2025/08/11 16:59 1/55 Command Line Interface

Printed on 2025/08/11 16:59

Dernière mise-à-jour : 2020/01/30 03:28

Command Line Interface

The Shell

A shell is a Command Line Interpreter (C.L.I). It is used to give instructions or commands to the operating system (OS).

The word shell is generic. There are many shells under Unix and Linux such as:

Shell Name Release Date Inventer Command Comments
tsh Thompson Shell 1971 Ken Thompson sh The first shell
sh Bourne Shell 1977 Stephen Bourne sh The shell common to all Unix and Linux OSs: /bin/sh
csh C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh
ksh Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh is an extended Bourne shell with a large number of improvements, including
some features of bash, ksh, and tcsh: /usr/bin/zsh

When using SLES 12 /bin/sh is a soft link to /bin/bash :

trainee@SLES12SP1:~> ls -l /bin/sh
lrwxrwxrwx 1 root root 4 1 mai 2016 /bin/sh -> bash

/bin/bash

This unit covers the /bin/bash shell. The /bin/bash shell allows you to:

2025/08/11 16:59 2/55 Command Line Interface

Printed on 2025/08/11 16:59

Recall previously typed commands
Auto-generate the end of a file name
Use Aliases
Use tables
Use C language numerical and math variables
Manage strings
Use Functions

A command always starts with a keyword. This keyword is interpreted by the shell, in the order shown, as one of the following:

An Alias,
A Function,
A Built-in Command,
An External Command.

Internal And External Commands

The /bin/bash shell comes with a set of built-in or internal commands. External commands are executable binaries or scripts generally found in one of
the following directories:

/bin,
/sbin,
/usr/bin,
/usr/sbin.

To check if a command is internal to the shell or external, use the type command:

trainee@SLES12SP1:~> type cd
cd is a shell builtin

External commands are either binaries or scripts that can be found in /bin, /sbin, /usr/bin or /usr/sbin :

trainee@SLES12SP1:~> type passwd

2025/08/11 16:59 3/55 Command Line Interface

Printed on 2025/08/11 16:59

passwd is /usr/bin/passwd

Aliases

Aliases are strings that are aliased to a command, a command and some options or even several commands. Aliases are specific to the shell in which
they are created and unless specified in one of the start-up files, they disappear when the shell is closed:

trainee@SLES12SP1:~> type ls
ls is aliased to `_ls'

[stextbox id='black' image='null'] Important: Note that the ls alias is an alias to the ls command itself. [/stextbox]

An alias is defined using the alias command:

trainee@SLES12SP1:~> alias dir='ls -l'
trainee@SLES12SP1:~> dir
total 4
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 aac
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 abc
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 bca
drwxr-xr-x 1 trainee users 0 1 mai 2016 bin
drwxr-xr-x 1 trainee users 0 2 mai 2016 Desktop
drwxr-xr-x 1 trainee users 0 2 mai 2016 Documents
drwxr-xr-x 1 trainee users 0 2 mai 2016 Downloads
drwxr-xr-x 1 trainee users 0 2 mai 2016 Music
drwxr-xr-x 1 trainee users 0 2 mai 2016 Pictures
drwxr-xr-x 1 trainee users 0 2 mai 2016 Public
drwxr-xr-x 1 trainee users 20 1 mai 2016 public_html
drwxr-xr-x 1 trainee users 0 2 mai 2016 Templates
drwxr-xr-x 1 trainee users 0 2 mai 2016 Videos
-rw-r--r-- 1 trainee users 391 30 sept. 10:27 vitext
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 xyz

2025/08/11 16:59 4/55 Command Line Interface

Printed on 2025/08/11 16:59

[stextbox id='black' image='null'] Important: Note that dir exists as a command. By creating an alias of the same name, the alias will be executed in
place of the command. [/stextbox]

The list of currently defined aliases is obtained by using the alias command with no options:

trainee@SLES12SP1:~> alias
alias +='pushd .'
alias -='popd'
alias ..='cd ..'
alias ...='cd ../..'
alias aumix='padsp aumix'
alias beep='echo -en "\007"'
alias cd..='cd ..'
alias dir='ls -l'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -alF'
alias la='ls -la'
alias ll='ls -l'
alias ls='_ls'
alias ls-l='ls -l'
alias md='mkdir -p'
alias o='less'
alias rd='rmdir'
alias rehash='hash -r'
alias sox='padsp sox'
alias timidity='timidity -Oe'
alias unmount='echo "Error: Try the command: umount" 1>&2; false'
alias you='if test "$EUID" = 0 ; then /sbin/yast2 online_update ; else su - -c "/sbin/yast2 online_update" ; fi'

[stextbox id='black' image='null'] Important: In the above list you can see, without distinction, the system wide aliases created by system start up
scripts and the user created alias dir. The latter is only available for trainee and will disappear when the current session is terminated. [/stextbox]

2025/08/11 16:59 5/55 Command Line Interface

Printed on 2025/08/11 16:59

To force the shell to use the command and not the alias, you can precede the command with the \ character:

trainee@SLES12SP1:~> \dir
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

To delete an alias, simply use the unalias command:

trainee@SLES12SP1:~> unalias dir
trainee@SLES12SP1:~> dir
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Each user's shell is defined by root in the /etc/passwd file:

trainee@SLES12SP1:~> cat /etc/passwd
at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
ftpsecure:x:488:65534:Secure FTP User:/var/lib/empty:/bin/false
games:x:12:100:Games account:/var/games:/bin/bash
gdm:x:486:485:Gnome Display Manager daemon:/var/lib/gdm:/bin/false
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
messagebus:x:499:499:User for D-Bus:/var/run/dbus:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
nobody:x:65534:65533:nobody:/var/lib/nobody:/bin/bash
nscd:x:496:495:User for nscd:/run/nscd:/sbin/nologin
ntp:x:74:492:NTP daemon:/var/lib/ntp:/bin/false
openslp:x:494:2:openslp daemon:/var/lib/empty:/sbin/nologin
polkitd:x:497:496:User for polkitd:/var/lib/polkit:/sbin/nologin
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false

2025/08/11 16:59 6/55 Command Line Interface

Printed on 2025/08/11 16:59

pulse:x:490:489:PulseAudio daemon:/var/lib/pulseaudio:/sbin/nologin
root:x:0:0:root:/root:/bin/bash
rpc:x:495:65534:user for rpcbind:/var/lib/empty:/sbin/nologin
rtkit:x:491:490:RealtimeKit:/proc:/bin/false
scard:x:487:487:Smart Card Reader:/var/run/pcscd:/usr/sbin/nologin
sshd:x:498:498:SSH daemon:/var/lib/sshd:/bin/false
statd:x:489:65534:NFS statd daemon:/var/lib/nfs:/sbin/nologin
usbmux:x:493:65534:usbmuxd daemon:/var/lib/usbmuxd:/sbin/nologin
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
vnc:x:492:491:user for VNC:/var/lib/empty:/sbin/nologin
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
trainee:x:1000:100:trainee:/home/trainee:/bin/bas

However, each user can change his shell using the chsh command. The shells available to users are listed in the /etc/shells file:

trainee@SLES12SP1:~> cat /etc/shells
/bin/ash
/bin/bash
/bin/csh
/bin/dash
/bin/false
/bin/ksh
/bin/ksh93
/bin/mksh
/bin/pdksh
/bin/sh
/bin/tcsh
/bin/true
/bin/zsh
/usr/bin/csh
/usr/bin/dash
/usr/bin/ksh
/usr/bin/ksh93
/usr/bin/mksh

2025/08/11 16:59 7/55 Command Line Interface

Printed on 2025/08/11 16:59

/usr/bin/passwd
/usr/bin/pdksh
/usr/bin/bash
/usr/bin/tcsh
/usr/bin/zsh

Now use the echo command to view the contents of the system variable SHELL for your current session:

trainee@SLES12SP1:~> echo $SHELL
/bin/bash

Now change your shell to /bin/sh using the chsh command:

trainee@SLES12SP1:~> chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/sh

[stextbox id='black' image='null'] Important: Note that the password will not be printed to standard output. [/stextbox]

Now check your current shell:

trainee@SLES12SP1:~> echo $SHELL
/bin/bash

At first glance nothing has happened. However if you view your entry in the /etc/passwd file you will notice that your login shell has changed:

trainee@SLES12SP1:~> cat /etc/passwd | grep trainee
trainee:x:1000:100:trainee:/home/trainee:/bin/sh

[stextbox id='black' image='null'] Important : The /bin/sh shell will be your active shell the next time you login. [/stextbox]

Now change your shell back to /bin/bash using the chsh command:

2025/08/11 16:59 8/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~> chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/sh]: /bin/bash

[stextbox id='black' image='null'] Important: Note that the password will not be printed to standard output. [/stextbox]

The Prompt

As you have already noticed, the prompt under Linux is different for a normal user and root:

> for a user,
for root.

The history Command

/bin/bash keeps track of commands that have been previously executed. To access the command history, use the following command:

trainee@SLES12SP1:~> history | more
 1 su -
 2 su -
 3 clear
 4 cd /
 5 ls -l
 6 ls -l /var/run
 7 cd /mnt
 8 ls
 9 cd
 10 mount
 11 mount --help

2025/08/11 16:59 9/55 Command Line Interface

Printed on 2025/08/11 16:59

 12 cat /etc/fstab
 13 umount --help
 14 dumpe2fs /dev/sda1 | grep -i superbloc
 15 ls -ld /dev/console /dev/initctl /dev/loop0 /etc /etc/passwd
 16 ls -ld /dev/console /dev/initctl /etc /etc/passwd
 17 ls -ldi /dev/console /dev/initctl /etc /etc/passwd
 18 cd /tmp; mkdir inode; cd inode; touch file1; ls -ali
 19 ln file1 file2
 20 ls -ali
 21 ln -s file1 file3
 22 ls -ali
 23 su -
--More--

[stextbox id='black' image='null'] Important: The history is specific to each user. [/stextbox]

The history command uses emacs style control characters. As a result you can navigate through the list as follows:

Control Character Action
[CTRL]-[P] (= Up Arrow) Navigates backwards through the list
[CTRL]-[N] (= Down Arrow) Navigates forwards through the list

To move around in the history:

Control Character Action
[CTRL]-[A] Move to the beginning of the line
[CTRL]-[E] Move to the end of the line
[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

Pour rechercher dans l'historique il convient d'utiliser les touches :

2025/08/11 16:59 10/55 Command Line Interface

Printed on 2025/08/11 16:59

Control Character Action
[CTRL]-[R] string Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string
[CTRL]-[S] string Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string
[CTRL]-[G] Quit the search mode

It is also possible to recall the last command executed by using the !! characters:

trainee@SLES12SP1:~> ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext
trainee@SLES12SP1:~> !!
ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Alternatively, to execute a command in the list, you can use the list number preceded by the ! character:

trainee@SLES12SP1:~> !131
ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

The environmental variables associated with the history are set system-wide in the /etc/profile file:

trainee@SLES12SP1:~> cat /etc/profile | grep HISTSIZE
 HISTSIZE=1000
 export HISTSIZE

As you can see, in the previous case the HISTSIZE value is set to 1000. This means that the last 1,000 commands are held in the history.

The history command stores data in the ~/.bash_history file for each user. The commands for the current bash session are stored in the file when the
session is closed:

2025/08/11 16:59 11/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~> nl .bash_history | more
 1 su -
 2 su -
 3 clear
 4 cd /
 5 ls -l
 6 ls -l /var/run
 7 cd /mnt
 8 ls
 9 cd -
 10 mount
 11 mount --help
 12 cat /etc/fstab
 13 umount --help
 14 dumpe2fs /dev/sda1 | grep -i superbloc
 15 ls -ld /dev/console /dev/initctl /dev/loop0 /etc /etc/passwd
 16 ls -ld /dev/console /dev/initctl /etc /etc/passwd
 17 ls -ldi /dev/console /dev/initctl /etc /etc/passwd
 18 cd /tmp; mkdir inode; cd inode; touch file1; ls -ali
 19 ln file1 file2
 20 ls -ali
 21 ln -s file1 file3
 22 ls -ali
 23 su -
--More--

[stextbox id='black' image='null'] Important : Note the use of the nl command to number the lines in the output of the contents of .bash_history
file. [/stextbox]

The TAB key

/bin/bash can auto-generate the end of a file name. Consider the following example:

2025/08/11 16:59 12/55 Command Line Interface

Printed on 2025/08/11 16:59

$ ls .b [Tab][Tab][Tab]

By hitting the Tab key three times, the system shows you the files that match:

trainee@SLES12SP1:~> ls .bash
.bash_history .bashrc

This same technique can also be used to auto-generate command names. Consider the following example:

$ mo [Tab][Tab]

By hitting the Tab twice the system lists all known commands available to the user and starting with mo:

trainee@SLES12SP1:~> mo
modeprint modsign-verify mount mouse-test
modetest more mountpoint

Metacharacters

It is often necessary and desirable to be able to work with several files at one time as opposed to repeating the operation on each file individually. For
this reason, bash accepts the use of Metacharacters:

Metacharacter Description
* Matches one or more characters
? Matches a single character
[abc] Matches any one of the characters between square brackets
[!abc] Matches any character except those between square brackets
[m-t] Matches any character from m through to t
[!m-t] Matches any character other than m through to t
?(expression1|expression2| …) Matches 0 or 1 occurence of expression1 OR 0 or 1 occurence of expression2 OR …
*(expression1|expression2| …) Matches 0 to x occurences of expression1 OR 0 to x occurences of expression2 OR …

2025/08/11 16:59 13/55 Command Line Interface

Printed on 2025/08/11 16:59

Metacharacter Description
+(expression1|expression2| …) Matches 1 to x occurences of expression1 OR 1 to x occurences of expression2 OR …
@(expression1|expression2| …) Matches 1 occurrence of expression1 OR 1 occurence of expression2 OR …
!(expression1|expression2| …) Matches 0 occurrences of expression1 OR 0 occurrences of expression2 OR …

To illustrate the use of Metacharacters, you need to create a directory in your home directory and the create some files within it:

trainee@SLES12SP1:~> mkdir training
trainee@SLES12SP1:~> cd training
trainee@SLES12SP1:~/training> touch f1 f2 f3 f4 f5

The * Metacharacter

Now use the Metacharacter *:

trainee@SLES12SP1:~/training> echo f*
f1 f2 f3 f4 f5

[stextbox id='black' image='null'] Important: Note that the * is used as a wild card which replaces 0 or more characters. [/stextbox]

The ? Metacharacter

Create two more files:

trainee@SLES12SP1:~/training> touch f52 f62

Now use the Metacharacter ?:

trainee@SLES12SP1:~/training> echo f?2
f52 f62

2025/08/11 16:59 14/55 Command Line Interface

Printed on 2025/08/11 16:59

[stextbox id='black' image='null'] Important: Note that the ? is used as a wild card which replaces a single character. [/stextbox]

The [] Metacharacter

The [] Metacharacter can take several forms:

Metacharacter Description
[xyz] Represents either x or y or z
[m-t]
[!xyz] Represents any character other than x or y or z
[!m-t] Represents any character outside of the range m to t

To demonstrate the use of the metacharacter [], create a file called a100:

trainee@SLES12SP1:~/training> touch a100

The use of this Metacharacter can be demonstrated with the following examples:

trainee@SLES12SP1:~/training> echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
trainee@SLES12SP1:~/training> echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

[stextbox id='black' image='null'] Important: Note that all the files starting with either a, b, c, d, e or f are displayed. [/stextbox]

trainee@SLES12SP1:~/training> echo [!a]*
f1 f2 f3 f4 f5 f52 f62

[stextbox id='black' image='null'] Important: Note that all the files in the directory are displayed except the file starting with a . [/stextbox]

trainee@SLES12SP1:~/training> echo [a-b]*

2025/08/11 16:59 15/55 Command Line Interface

Printed on 2025/08/11 16:59

a100

[stextbox id='black' image='null'] Important: Note that only the file starting with a is displayed since no file starting with b is present. [/stextbox]

trainee@SLES12SP1:~/training> echo [a-f]
[a-f]

[stextbox id='black' image='null'] Important: Note that in the above example, since no file called a, b, c, d, e or f exists in the directory, the echo
command simply returns the filter used. [/stextbox]

The extglob Option

In order to use ?(expression), *(expression), +(expression), @(expression) and !(expression), you need to activate the extglob option:

trainee@SLES12SP1:~/training> shopt -s extglob

The shopt command is used to activate and deactivate the shopt option of the shell.

The list of all the options can be displayed by simply using the shopt command:

trainee@SLES12SP1:~/training> shopt
autocd off
cdable_vars off
cdspell off
checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off

2025/08/11 16:59 16/55 Command Line Interface

Printed on 2025/08/11 16:59

direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off
progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo off

2025/08/11 16:59 17/55 Command Line Interface

Printed on 2025/08/11 16:59

?(expression)

Create the following files:

trainee@SLES12SP1:~/training> touch f f.txt f123.txt f123123.txt f123123123.txt

Execute the following command:

trainee@SLES12SP1:~/training> ls f?(123).txt
f123.txt f.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 0 or 1 occurrences of the string 123. [/stextbox]

*(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 0 to x occurrences of the string 123. [/stextbox]

+(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f+(123).txt
f123123123.txt f123123.txt f123.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 1 to x occurrences of the string 123.. [/stextbox]

2025/08/11 16:59 18/55 Command Line Interface

Printed on 2025/08/11 16:59

@(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f@(123).txt
f123.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 1 occurrence of the string 123. [/stextbox]

!(expression)

Execute the following command:

trainee@SLES12SP1:~/training> ls f!(123).txt
f123123123.txt f123123.txt f.txt

[stextbox id='black' image='null'] Important: Note that the command displays file names that match 0 or x occurrences of the string 123, where x>1.
[/stextbox]

Protecting Metacharacters

To cancel the wild card effect of a special character, the character needs to be escaped or “protected”:

Character Description
\ Escapes the character which immediately follows
' ' Protects any character between the two '
“ ” Protects any character between the two “ except the following: $, \ and '

For example:

2025/08/11 16:59 19/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~/training> echo * est un caractère spécial
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

trainee@SLES12SP1:~/training> echo * est un caractère spécial
* est un caractère spécial

trainee@SLES12SP1:~/training> echo "* est un caractère spécial"
* est un caractère spécial

trainee@SLES12SP1:~/training> echo '* est un caractère spécial'
* est un caractère spécial

Exit Status

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

trainee@SLES12SP1:~/training> cd ..
trainee@SLES12SP1:~> mkdir codes
trainee@SLES12SP1:~> echo $?
0
trainee@SLES12SP1:~> touch codes/exit.txt
trainee@SLES12SP1:~> rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
trainee@SLES12SP1:~> echo $?
1

As you can see when the exit status is 0, the command has executed correctly. If the exit status is anything else, the command has executed with
errors.

2025/08/11 16:59 20/55 Command Line Interface

Printed on 2025/08/11 16:59

Redirections

Your dialogue with the system uses three file descriptors:

Standard Input - the keyboard,
Standard output - the screen,
Standard error - contains any eventual errors.

The standard output can be redirected using the > character:

trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> cd training
trainee@SLES12SP1:~/training> free > file
trainee@SLES12SP1:~/training> cat file
 total used free shared buffers cached
Mem: 394524 386024 8500 5716 452 300420
-/+ buffers/cache: 85152 309372
Swap: 2103292 4 2103288

[stextbox id='black' image='null'] Important: If the file does not exist, it is automatically created. [/stextbox]

Repeating a single redirection will replace the file:

trainee@SLES12SP1:~/training> date > file
trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016

To add additional data to the file, you need to use a double redirection:

trainee@SLES12SP1:~/training> free >> file
trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016

2025/08/11 16:59 21/55 Command Line Interface

Printed on 2025/08/11 16:59

 total used free shared buffers cached
Mem: 394524 386876 7648 5716 452 300936
-/+ buffers/cache: 85488 309036
Swap: 2103292 4 2103288

[stextbox id='black' image='null'] Important : Note that standard output can only be redirected to a single destination. [/stextbox]

File descriptors are numbered for ease of use :

0 = Standard Input
1 = Standard Output
2 = Standard Error

For example:

trainee@SLES12SP1:~/training> cd ..
trainee@SLES12SP1:~> rmdir training/ 2>errorlog
trainee@SLES12SP1:~> cat errorlog
rmdir: failed to remove ‘training/’: Directory not empty

[stextbox id='black' image='null'] Important: As you can see the error generated is redirected to the errorlog file. [/stextbox]

You can join file descriptors using the & character:

trainee@SLES12SP1:~> free > file 2>&1

Any errors are sent to the same destination as the standard output, in the case, file.

It is also possible to have a reverse redirection:

trainee@SLES12SP1:~> wc -w < errorlog
8

In this case wc -w counts the number of words in the file.

2025/08/11 16:59 22/55 Command Line Interface

Printed on 2025/08/11 16:59

Other redirections exist :

Redirection Definition
&> Join file descriptors 1 and 2.
<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

Pipes

A pipe is used to present the standard output on the first command to the standard input of the second command:

trainee@SLES12SP1:~> ls | wc -w
18

[stextbox id='black' image='null'] Important - Several pipes can be used within the same command. [/stextbox]

Standard output can generally only be redirected to a single destination. To redirect to two destinations at once, you need to use the tee command:

trainee@SLES12SP1:~> date | tee file1
Mon 28 Nov 16:14:43 CET 2016
trainee@SLES12SP1:~> cat file1
Mon 28 Nov 16:14:43 CET 2016

Alternatively, tee can be used to redirect to two files at the same time:

trainee@SLES12SP1:~> date | tee file1 > file2
trainee@SLES12SP1:~> cat file1
Mon 28 Nov 16:16:15 CET 2016
trainee@SLES12SP1:~> cat file2
Mon 28 Nov 16:16:15 CET 2016

[stextbox id='black' image='null'] Important : The default action of the tee command is to overwrite the destination file. In order to append output to
the same file, you need to use the -a switch. [/stextbox]

2025/08/11 16:59 23/55 Command Line Interface

Printed on 2025/08/11 16:59

Command Substitution

Command substitution permits in-line execution of a command:

trainee@SLES12SP1:~> echo date
date
trainee@SLES12SP1:~> echo $(date)
Mon 28 Nov 16:19:53 CET 2016
trainee@SLES12SP1:~> echo `date`
Mon 28 Nov 16:19:53 CET 2016

Conditional Command Execution

Commands can be grouped using brackets:

$ (ls -l; ps; who) > list

Conditional command execution can be obtained by using the exit status value and either && or ||.

For example,

Command1 && Command2,
Command2 will execute if the exit status of Command1 is 0,

Command1 || Command2,
Command2 will execute if the exit status of Command1 anything other than 0.

Environment Variables

The contents of a shell variable can be displayed on standard output using the echo command:

2025/08/11 16:59 24/55 Command Line Interface

Printed on 2025/08/11 16:59

$ echo $VARIABLE [Enter]

Principal Variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.
EUID EUID of the current user.
UID UID of the current user.
PPID PID of the parent of the current process.
PWD The current directory.
OLDPWD The previous current directory (like the cd -command).
RANDOM A random number between 0 and 32767.
SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.
COLUMNS The number of columns in a screen .
HISTFILE The history file.
HISTFILESIZE The history file size.
HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth
HOME The user's home directory.
HOSTTYPE Machine type.
OSTYPE The OS type.
MAIL The file containing the user's mail.
MAILCHECK Frequency in seconds that a user's mail is checked.
PATH The paths to executables.
PROMPT_COMMAND Command executed before each prompt is displayed.
PS1 User's default prompt.
PS2 User's 2nd level default prompt.

2025/08/11 16:59 25/55 Command Line Interface

Printed on 2025/08/11 16:59

Variable Description
PS3 User's 3rd level prompt.
PS4 User's 4th level prompt.
SHELL User's current shell.
SHLVL The number of shell instances.
TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalisation and Localisation

Internationalisation, also called i18n since there are 18 letters between the I and n, consists of modifying software so that it conforms to regional
parameters:

Text processing differences,
Writing direction,
Different systems of numerals,
Telephone numbers, addresses and international postal codes,
Weights and measures,
Date/time format,
Paper sizes,
Keyboard layout,
etc …

Localisation, also called L10n since there are 10 letters between the L and n, consists of modifying the Internationalisation so that it conforms to a
specific locale:

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,
en_ZA = South Africa,
en_CA = Canada.

The most important variables are:

2025/08/11 16:59 26/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~> echo $LC_ALL
en_GB.UTF-8
trainee@SLES12SP1:~> echo $LC_CTYPE

trainee@SLES12SP1:~> echo $LANG
en_GB.UTF-8

trainee@SLES12SP1:~> locale
LANG=en_GB.UTF-8
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=en_GB.UTF-8

Special Variables

Variable Description
$LINENO Contains the current line number of the script or function being executed
$$ Contains the PID of the current process
$PPID Contains the PID of the parent of the current process
$0 Contains the name of the current script
$1, $2 … Contains respectively the 1st, 2nd etc arguments passed to the script
$# Contains the total number of arguments passed to the script

2025/08/11 16:59 27/55 Command Line Interface

Printed on 2025/08/11 16:59

Variable Description
$* Contains all of the arguments passed to the script
$@ Contains all of the arguments passed to the script

The env Commande

The env command can be used to run a program in a modified environment or just list the values of all environmental variables associated with the
user calling the program env:

trainee@SLES12SP1:~> env
LESSKEY=/etc/lesskey.bin
NNTPSERVER=news
MANPATH=/usr/local/man:/usr/share/man
XDG_SESSION_ID=1
HOSTNAME=SLES12SP1
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
HOST=SLES12SP1
TERM=xterm-256color
SHELL=/bin/bash
PROFILEREAD=true
HISTSIZE=1000
SSH_CLIENT=10.0.2.2 46258 22
MORE=-sl
SSH_TTY=/dev/pts/0
LC_ALL=en_GB.UTF-8
USER=trainee
LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=41;33;01:ex=00;32:*
.cmd=00;32:*.exe=01;32:*.com=01;32:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00;31:*.rpm=
00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.lzma=00;31:*.zip=00;31:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.
gz=00;31:*.bz2=00;31:*.tb2=00;31:*.tz2=00;31:*.tbz2=00;31:*.xz=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01
;35:*.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=01;35:*.pbm=01;35:*.pgm=01;35:*.png=01;35:
.ppm=01;35:.tga=01;35:*.tif=01;35:*.xbm=01;35:*.xpm=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=00;32:*.au=0
0;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav=00;32:

2025/08/11 16:59 28/55 Command Line Interface

Printed on 2025/08/11 16:59

XNLSPATH=/usr/share/X11/nls
QEMU_AUDIO_DRV=pa
HOSTTYPE=x86_64
FROM_HEADER=
PAGER=less
CSHEDIT=emacs
XDG_CONFIG_DIRS=/etc/xdg
LIBGL_DEBUG=quiet
MINICOM=-c on
MAIL=/var/mail/trainee
PATH=/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games
CPU=x86_64
SSH_SENDS_LOCALE=yes
INPUTRC=/home/trainee/.inputrc
PWD=/home/trainee
LANG=fr_FR.UTF-8
PYTHONSTARTUP=/etc/pythonstart
GPG_TTY=/dev/pts/0
AUDIODRIVER=pulseaudio
QT_SYSTEM_DIR=/usr/share/desktop-data
SHLVL=1
HOME=/home/trainee
ALSA_CONFIG_PATH=/etc/alsa-pulse.conf
SDL_AUDIODRIVER=pulse
LESS_ADVANCED_PREPROCESSOR=no
OSTYPE=linux
LS_OPTIONS=-N --color=tty -T 0
XCURSOR_THEME=DMZ
WINDOWMANAGER=env GNOME_SHELL_SESSION_MODE=sle-classic gnome-session --session sle-classic
G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252
LESS=-M -I -R
MACHTYPE=x86_64-suse-linux
LOGNAME=trainee
XDG_DATA_DIRS=/usr/share

2025/08/11 16:59 29/55 Command Line Interface

Printed on 2025/08/11 16:59

SSH_CONNECTION=10.0.2.2 46258 10.0.2.15 22
LESSOPEN=lessopen.sh %s
XDG_RUNTIME_DIR=/run/user/1000
NO_AT_BRIDGE=1
LESSCLOSE=lessclose.sh %s %s
G_BROKEN_FILENAMES=1
COLORTERM=1
_=/usr/bin/env
OLDPWD=/home/trainee/training

To run a program, such as xterm in a modified environment the command is:

$ env EDITOR=vim xterm

Bash Shell Options

To view all the options of the bash shell, use the command set:

trainee@SLES12SP1:~> set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on

2025/08/11 16:59 30/55 Command Line Interface

Printed on 2025/08/11 16:59

noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

To turn on an option you need to specify which option as an argument to the previous command:

trainee@SLES12SP1:~> set -o allexport
trainee@SLES12SP1:~> set -o
allexport on
braceexpand on
...

To turn off an option, use set with the +o option:

trainee@SLES12SP1:~> set +o allexport
trainee@SLES12SP1:~> set -o
allexport off
braceexpand on
...

These are the most interesting options:

2025/08/11 16:59 31/55 Command Line Interface

Printed on 2025/08/11 16:59

Option Default value Description
allexport off The shell automatically exports all variables
emacs on emacs editing mode
noclobber off Simple re-directions do not squash the target file if it exists
noglob off Turns off special characters
nounset off The shell will return an error if the variable is not set
verbose off Echos back the typed command
vi off vi editing mode

noclobber

trainee@SLES12SP1:~> set -o noclobber
trainee@SLES12SP1:~> pwd > file
trainee@SLES12SP1:~> pwd > file
-bash: file: cannot overwrite existing file
trainee@SLES12SP1:~> pwd >| file
trainee@SLES12SP1:~> set +o noclobber

[stextbox id='black' image='null'] Important : Note that the noclobber option can be overidden by using a pipe. [/stextbox]

noglob

trainee@SLES12SP1:~> set -o noglob
trainee@SLES12SP1:~> echo *
*
trainee@SLES12SP1:~> set +o noglob
trainee@SLES12SP1:~> echo *
aac abc bca bin codes Desktop Documents Downloads errorlog file file1 Music Pictures Public public_html Templates
training Videos vitext xyz

[stextbox id='black' image='null'] Important : Note that metacharacters are turned off when the noglob option is set. [/stextbox]

2025/08/11 16:59 32/55 Command Line Interface

Printed on 2025/08/11 16:59

nounset

trainee@SLES12SP1:~> set -o nounset
trainee@SLES12SP1:~> echo $FENESTROS
-bash: FENESTROS: unbound variable
trainee@SLES12SP1:~> set +o nounset
trainee@SLES12SP1:~> echo $FENESTROS

trainee@SLES12SP1:~>

[stextbox id='black' image='null'] Important : Note that the inexistant variable $FENESTROS is identified as such when the nounset option is set.
[/stextbox]

Basic Shell Scripting

Execution

A script is a text file that is read by the system and it's contents executed. There are five ways to execute a script:

By stipulating the shell that will execute the script:

/bin/bash myscript

by a reverse redirection:

/bin/bash < myscript

By calling the script by it's name, provided that the script is executable and that it resides in a directory specified by your path :

myscript

By placing yourself in the directory where the script resides and using one of the two following possibilities :

2025/08/11 16:59 33/55 Command Line Interface

Printed on 2025/08/11 16:59

. myscript et ./myscript

[stextbox id='black' image='null'] Important: In the first case the script is executed in the parent shell. In the second case the script is executed in a
child shell. [/stextbox]

Comments in a script are lines starting with #. However, each script starts with a pseudo-comment that informs the system which shell should be used
to execute the script:

#!/bin/sh

Since a script in it's simplest form is a list of commands that are sequentially executed, it is often useful to test those command prior to writing the
script> Linux has a command that can help you debug a future script. The script command can be used to generate a log file, called typescript, that
contains a record of everything occurred on standard output. To exit the recording mode, use exit:

trainee@SLES12SP1:~> script
Script started, file is typescript
trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> ls
aac bin Documents file1 file1 Public training vitext
abc codes Downloads file2 Music public_html typescript xyz
bca Desktop errorlog file Pictures Templates Videos
trainee@SLES12SP1:~> exit
exit
Script done, file is typescript
trainee@SLES12SP1:~> cat typescript
Script started on Tue 29 Nov 2016 03:59:24 CET
trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> ls
aac bin Documents file1 file1 Public training vitext
abc codes Downloads file2 Music public_html typescript xyz
bca Desktop errorlog file Pictures Templates Videos
trainee@SLES12SP1:~> exit

2025/08/11 16:59 34/55 Command Line Interface

Printed on 2025/08/11 16:59

exit

Script done on Tue 29 Nov 2016 03:59:31 CET

Lets start by creating a simple script called myscript:

$ vi myscript [Enter]

Edit the file as follows:

pwd
ls

[stextbox id='black' image='null'] Important: Note that in the above example, the script does not start with a pseudo-comment. As a result, the script
will be executed by the shell of the user that invokes it unless a different shell is specified. [/stextbox]

Save the file and use the five ways to execute it.

As an argument de /bin/bash:

trainee@SLES12SP1:~> vi myscript
trainee@SLES12SP1:~> /bin/bash myscript
/home/trainee
aac bin Documents file1 file1 Pictures Templates Videos
abc codes Downloads file2 myscript Public training vitext
bca Desktop errorlog file Music public_html typescript xyz

Using a redirection:

trainee@SLES12SP1:~> /bin/bash < myscript
/home/trainee
aac bin Documents file1 file1 Pictures Templates Videos
abc codes Downloads file2 myscript Public training vitext

2025/08/11 16:59 35/55 Command Line Interface

Printed on 2025/08/11 16:59

bca Desktop errorlog file Music public_html typescript xyz

In order to be able to call the script by it's name from another directory, sutraich as /tmp, you need to move the script into the /home/trainee/bin
directory and make it executable. Note that in this case, the the value of the environmental variable $PATH should contain a reference to
/home/nee/bin:

trainee@SLES12SP1:~> echo $PATH
/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games

Now you need to move the script to $HOME/bin and make it executable:

trainee@SLES12SP1:~> mv myscript ~/bin
trainee@SLES12SP1:~> chmod u+x ~/bin/myscript

Move to /tmp and can call the script by just using it's name:

trainee@SLES12SP1:/tmp> myscript
/tmp
hsperfdata_root
inode
managera1411267841657715235client
managera3336001029897679475server
managera4847938942232964844client
managera5050357016347721452server
systemd-private-04f820fa26c745be8ddba814c6292f21-rtkit-daemon.service-o4lKP5
systemicontmp5578677472245134133dat
systemicontmp7082392205020802884dat

Now move back to ~/bin and use the following two commands to execute myscript:

./myscript

. myscript

trainee@SLES12SP1:/tmp> cd ~/bin

2025/08/11 16:59 36/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~/bin> ./myscript
/home/trainee/bin
myscript
trainee@SLES12SP1:~/bin> . myscript
/home/trainee/bin
myscript

[stextbox id='black' image='null'] To do: Note the difference in the output of these two commands and explain that difference. [/stextbox]

The read command

The read command reads the standard input and stores the information in the variables that are specified as arguments. The separator between fields
is a space, a tabultaion or a carriage return:

trainee@SLES12SP1:~/bin> read var1 var2 var3 var4
fenestros edu is great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros
trainee@SLES12SP1:~/bin> echo $var2
edu
trainee@SLES12SP1:~/bin> echo $var3
is
trainee@SLES12SP1:~/bin> echo $var4
great!

[stextbox id='black' image='null'] Important: Note that each field has been placed in a seperate variable. Note also that by convention, user declared
variables are in lower case in order to distinguish them from system variables. [/stextbox]

trainee@SLES12SP1:~/bin> read var1 var2
fenestros edu is great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros

2025/08/11 16:59 37/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~/bin> echo $var2
edu is great!

[stextbox id='black' image='null'] Important: Note that in this case, $var2 contains three fields. [/stextbox]

Code de retour

The contents of a variable can also be empty:

trainee@SLES12SP1:~/bin> read var

↵ Enter

trainee@SLES12SP1:~/bin> echo $?
0
trainee@SLES12SP1:~/bin> echo $var

trainee@SLES12SP1:~/bin>

But not null:

trainee@SLES12SP1:~/bin> read var

Ctrl+D

trainee@SLES12SP1:~/bin> echo $?
1
trainee@SLES12SP1:~/bin> echo $var

trainee@SLES12SP1:~/bin>

2025/08/11 16:59 38/55 Command Line Interface

Printed on 2025/08/11 16:59

The IFS Variable

The IFS variable contains the default separator characters: SpaceBar , Tab ⇆ and ↵ Enter :

trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 \t \n \n
0000004

[stextbox id='black' image='null'] Important: The od command (Octal Dump) returns the contents of a file in octal format. The -c switch prints to
standard output any ASCII characters or backslashes contained within the file. [/stextbox]

It is possible to change the contents of this variable:

trainee@SLES12SP1:~/bin> OLDIFS="$IFS"
trainee@SLES12SP1:~/bin> IFS=":"
trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 : \n
0000002

Now test the new configuration:

trainee@SLES12SP1:~/bin> read var1 var2 var3
fenestros:edu is:great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros
trainee@SLES12SP1:~/bin> echo $var2
edu is
trainee@SLES12SP1:~/bin> echo $var3
great!

Restore the old value of IFS before proceeding further: IFS=“$OLDIFS”

trainee@SLES12SP1:~/bin> IFS="$OLDIFS"

2025/08/11 16:59 39/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 \t \n \n
0000004

The test Command

The test command uses two forms:

test expression

or

[SpaceBarexpressionSpaceBar]

Testing Files

Test Description
-f file Returns true if file is an ordinary file
-d file Returns true if file is a directory
-r file Returns true if user can read file
-w file Returns true if user can write file
-x file Returns true if user can execute file
-e file Returns true if file exists
-s file Returns true if file is not empty
file1 -nt file2 Returns true if file1 is newer than file2
file1 -ot file2 Returns true if file1 is older than file2
file1 -ef file2 Returns true if file1 is identical to file2

LAB #1

Test whether the a100 file is an ordinary file:

2025/08/11 16:59 40/55 Command Line Interface

Printed on 2025/08/11 16:59

trainee@SLES12SP1:~/bin> cd ../training/
trainee@SLES12SP1:~/training> test -f a100
trainee@SLES12SP1:~/training> echo $?
0
trainee@SLES12SP1:~/training> [-f a100]
trainee@SLES12SP1:~/training> echo $?
0

[stextbox id='black' image='null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Test whether the a101 file is an ordinary file:

trainee@SLES12SP1:~/training> [-f a101]
trainee@SLES12SP1:~/training> echo $?
1

[stextbox id='black' image='null'] Important: The value contained in $? is 1. This indicates false. This is obvious since a101 does not exist. [/stextbox]

Test whether /home/trainee/training is a directory:

trainee@SLES12SP1:~/training> [-d /home/trainee/training]
trainee@SLES12SP1:~/training> echo $?
0

[stextbox id='black' image='null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Testing Strings

Test Description
-n string Returns true if string is not zero in length
-z string Returns true if string is zero in length
string1 = string2 Returns true if string1 is equal to string2
string1 != string2 Returns true if string1 is different to string2

2025/08/11 16:59 41/55 Command Line Interface

Printed on 2025/08/11 16:59

Test Description
string1 Returns true if string1 is not empty

LAB #2

Test whether two strings are indentical:

trainee@SLES12SP1:~/training> string1="root"
trainee@SLES12SP1:~/training> string2="fenestros"
trainee@SLES12SP1:~/training> [$string1 = $string2]
trainee@SLES12SP1:~/training> echo $?
1

[stextbox id='black' image='null'] Important: The value contained in $? is 1. This indicates false. [/stextbox]

Test if string1 is not zero in length:

trainee@SLES12SP1:~/training> [-n $string1]
trainee@SLES12SP1:~/training> echo $?
0

[stextbox id='black' image='null'] Important: The value contained in $? is 0. This indicates true. [/stextbox]

Test if string1 is is zero in length:

trainee@SLES12SP1:~/training> [-z $string1]
trainee@SLES12SP1:~/training> echo $?
1

[stextbox id='black' image='null'] Important: The value contained in $? is 1. This indicates false. [/stextbox]

2025/08/11 16:59 42/55 Command Line Interface

Printed on 2025/08/11 16:59

Testing Numbers

Test Description
value1 -eq value2 Returns true if value1 is equal to value2
value1 -ne value2 Returns true if value1 is not equal to value2
value1 -lt value2 Returns true if value1 is less than value2
value1 -le value2 Returns true if value1 is less than or equal to value2
value1 -gt value2 Returns true if value1 is greater than value2
value1 -ge value2 Returns true if value1 is greater than or equal to value2

LAB #3

Compare the two numbers value1 and value2 :

trainee@SLES12SP1:~/training> read value1
35
trainee@SLES12SP1:~/training> read value2
23
trainee@SLES12SP1:~/training> [$value1 -lt $value2]
trainee@SLES12SP1:~/training> echo $?
1
trainee@SLES12SP1:~/training> [$value2 -lt $value1]
trainee@SLES12SP1:~/training> echo $?
0
trainee@SLES12SP1:~/training> [$value2 -eq $value1]
trainee@SLES12SP1:~/training> echo $?
1

Expressions

Test Description
!expression Returns true if expression is false

2025/08/11 16:59 43/55 Command Line Interface

Printed on 2025/08/11 16:59

Test Description
expression1 -a expression2 Represents a logical OR between expression1 and expression2
expression1 -o expression2 Represents a logical AND between expression1 and expression2
\(expression\) Parenthesis let you group together expressions

LAB #4

Test if $file is not a directory:

trainee@SLES12SP1:~/training> file=a1OO
trainee@SLES12SP1:~/training> [! -d $file]
trainee@SLES12SP1:~/training> echo $?
0

Test if $directory is a directory and if trainee can cd into it:

trainee@SLES12SP1:~/training> directory=/usr
trainee@SLES12SP1:~/training> [-d $directory -a -x $directory]
trainee@SLES12SP1:~/training> echo $?
0

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

trainee@SLES12SP1:~/training> [-w a100 -a \(-d /usr -o -d /tmp \)]
trainee@SLES12SP1:~/training> echo $?
0

Testing the User Environment

Test Description
-o option Returns true if the shell option “option” is on

2025/08/11 16:59 44/55 Command Line Interface

Printed on 2025/08/11 16:59

LAB #5

trainee@SLES12SP1:~/training> [-o allexport]
trainee@SLES12SP1:~/training> echo $?
1

The [[expression]] Command

The [[SpaceBarexpressionSpaceBar]] command is an improved test command with some minor changes to syntax:

Test Description
expression1 && expression2 Represents a logical OR between expression1 and expression2
expression1 || expression2 Represents a logical AND between expression1 and expression2
(expression) Parenthesis let you group together expressions

and some additional operators :

Test Description
string = model Returns true if string corresponds to model
string != model Returns true if string does not correspond to model
string1 < string2 Returns true if string1 is lexicographically before string2
string1 > string2 Returns true if string1 is lexicographically after string2

LAB #6

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

trainee@SLES12SP1:~/training> [[-w a100 && (-d /usr || -d /tmp)]]
trainee@SLES12SP1:~/training> echo $?
0

2025/08/11 16:59 45/55 Command Line Interface

Printed on 2025/08/11 16:59

Shell Operators

Operator Description
Command1 && Command2 Command2 is executed if the exit code of Command1 is zero
Command1 || Command2 Command2 is executed is the exit code of Command1 is not zero

LAB #7

trainee@SLES12SP1:~/training> [[-d /root]] && echo "The root directory exists"
The root directory exists
trainee@SLES12SP1:~/training> [[-d /root]] || echo "The root directory exists"
trainee@SLES12SP1:~/training>

The expr Command

Theexpr command's syntax is as follows :

expr SpaceBar number1 SpaceBar operator SpaceBar number2 SpaceBar

ou

expr Tab ⇆ number1 Tab operator Tab ⇆ number2 ↵ Enter

ou

expr SpaceBar string SpaceBar : SpaceBar regular_expression SpaceBar

or

expr Tab ⇆ string Tab ⇆ : Tab ⇆ regular_expression ↵ Enter

2025/08/11 16:59 46/55 Command Line Interface

Printed on 2025/08/11 16:59

Maths

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
\(\) Parentheses

Comparisons

Operator Description
\< Less than
\<= Less than or equal to
\> Greater then
\>= Greater then or equal to
= Equal to
!= Not equal to

Logic

Operator Description
\| Logical OR
\& Logical AND

LAB #8

Add two to the value of $x:

trainee@SLES12SP1:~/training> x=2
trainee@SLES12SP1:~/training> expr $x + 2

2025/08/11 16:59 47/55 Command Line Interface

Printed on 2025/08/11 16:59

4

If the surrounding spaces are removed, the result is completely different:

trainee@SLES12SP1:~/training> expr $x+2
2+2

Certain operators need to be protected:

trainee@SLES12SP1:~/training> expr $x * 2
expr: syntax error
trainee@SLES12SP1:~/training> expr $x * 2
4

Now put the result of a calculation in a variable:

trainee@SLES12SP1:~/training> resultat=`expr $x + 10`
trainee@SLES12SP1:~/training> echo $resultat
12

The let Command

The let command is equivalent to ((expression)). The ((expression)) command provides the following additional features when compared with the expr
command :

greater number of operators,
no need for spaces or tabulations between arguments,
no need to prefix variables with the $ character,
the shell's special characters do not need to be escaped,
variables are defined directly in the command,
faster execution time.

2025/08/11 16:59 48/55 Command Line Interface

Printed on 2025/08/11 16:59

Maths

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo
^ Power

Comparisons

Operator Description
< Less than
<= Less than or equal to
> Greater then
>= Greater then or equal to
== Equal
!= Not Equal

Logic

Operator Description
&& Logical AND
|| Logical OR
! Logical negation

Binary

Opérateur Description
~ Binary negation
>> décalage binaire à droite
<< décalage binaire à gauche

2025/08/11 16:59 49/55 Command Line Interface

Printed on 2025/08/11 16:59

Opérateur Description
& Binary AND
| Binary OR
^ Exclusive binary OR

LAB #9

trainee@SLES12SP1:~/training> x=2
trainee@SLES12SP1:~/training> ((x=$x+10))
trainee@SLES12SP1:~/training> echo $x
12
trainee@SLES12SP1:~/training> ((x=$x+20))
trainee@SLES12SP1:~/training> echo $x
32

Control Structures

If

The syntax is as follows:

if condition
then
 command(s)
else
 command(s)
fi

or:

if condition

2025/08/11 16:59 50/55 Command Line Interface

Printed on 2025/08/11 16:59

then
 command(s)
 command(s)
fi

or finally:

if condition
then
 command(s)
elif condition
then
 command(s)
elif condition
then
 command(s)
else
 command(s)

fi

case

The syntax is as follows:

case $variable in
model1) function
 ...
 ;;
model2) function
 ...
 ;;

2025/08/11 16:59 51/55 Command Line Interface

Printed on 2025/08/11 16:59

model3 | model4 | model5) function
 ...
 ;;
esac

Loops

for

The syntax is as follows:

for variable in variable_list
do
 command(s)
done

while

The syntax is as follows:

while condition
do
 command(s)
done

Example

U=1
while [$U -lt $MAX_ACCOUNTS]

2025/08/11 16:59 52/55 Command Line Interface

Printed on 2025/08/11 16:59

do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

Start-up Scripts

When Bash is called as a login shell it executes the start-up scripts in the following order:

/etc/profile,
~/.bash_profile or ~/.bash_login or ~/.profile dependant upon the distribution,

In the case of SLES, Bash executes ~/.profile.

When a login shell is terminated, Bash executes the ~/.bash_logout file if it exists.

Whan Bash is called as an interactive shell as opposed to a login shell, it executes only the ~/.bashrc file.

LAB #10

[stextbox id='black' image='null'] To do : Using the knowledge you have acquired in this unit, explain each of the following scripts. [/stextbox]

~/.profile

trainee@SLES12SP1:~/training> cat ~/.profile
Sample .profile for SuSE Linux
rewritten by Christian Steinruecken <cstein@suse.de>
#
This file is read each time a login shell is started.

2025/08/11 16:59 53/55 Command Line Interface

Printed on 2025/08/11 16:59

All other interactive shells will only read .bashrc; this is particularly
important for language settings, see below.

test -z "$PROFILEREAD" && . /etc/profile || true

Most applications support several languages for their output.
To make use of this feature, simply uncomment one of the lines below or
add your own one (see /usr/share/locale/locale.alias for more codes)
This overwrites the system default set in /etc/sysconfig/language
in the variable RC_LANG.
#
#export LANG=de_DE.UTF-8 # uncomment this line for German output
#export LANG=fr_FR.UTF-8 # uncomment this line for French output
#export LANG=es_ES.UTF-8 # uncomment this line for Spanish output

Some people don't like fortune. If you uncomment the following lines,
you will have a fortune each time you log in ;-)

#if [-x /usr/bin/fortune] ; then
echo
/usr/bin/fortune
echo
#fi

~/.bashrc

trainee@SLES12SP1:~/training> cat ~/.bashrc
Sample .bashrc for SuSE Linux
Copyright (c) SuSE GmbH Nuernberg

There are 3 different types of shells in bash: the login shell, normal shell
and interactive shell. Login shells read ~/.profile and interactive shells

2025/08/11 16:59 54/55 Command Line Interface

Printed on 2025/08/11 16:59

read ~/.bashrc; in our setup, /etc/profile sources ~/.bashrc - thus all
settings made here will also take effect in a login shell.
#
NOTE: It is recommended to make language settings in ~/.profile rather than
here, since multilingual X sessions would not work properly if LANG is over-
ridden in every subshell.

Some applications read the EDITOR variable to determine your favourite text
editor. So uncomment the line below and enter the editor of your choice :-)
#export EDITOR=/usr/bin/vim
#export EDITOR=/usr/bin/mcedit

For some news readers it makes sense to specify the NEWSSERVER variable here
#export NEWSSERVER=your.news.server

If you want to use a Palm device with Linux, uncomment the two lines below.
For some (older) Palm Pilots, you might need to set a lower baud rate
e.g. 57600 or 38400; lowest is 9600 (very slow!)
#
#export PILOTPORT=/dev/pilot
#export PILOTRATE=115200

test -s ~/.alias && . ~/.alias || true

<html>

Copyright © 2004-2018 Hugh Norris.

</html>

2025/08/11 16:59 55/55 Command Line Interface

Printed on 2025/08/11 16:59

	Command Line Interface
	The Shell
	/bin/bash
	Internal And External Commands
	Aliases
	The Prompt
	The history Command
	The TAB key
	Metacharacters
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter
	The extglob Option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	Exit Status
	Redirections
	Pipes
	Command Substitution
	Conditional Command Execution

	Environment Variables
	Principal Variables
	Internationalisation and Localisation
	Special Variables
	The env Commande

	Bash Shell Options
	noclobber
	noglob
	nounset

	Basic Shell Scripting
	Execution
	The read command
	Code de retour
	The IFS Variable

	The test Command
	Testing Files
	LAB #1

	Testing Strings
	LAB #2

	Testing Numbers
	LAB #3

	Expressions
	LAB #4

	Testing the User Environment
	LAB #5

	The [[expression]] Command
	LAB #6

	Shell Operators
	LAB #7

	The expr Command
	Maths
	Comparisons
	Logic
	LAB #8

	The let Command
	Maths
	Comparisons
	Logic
	Binary
	LAB #9

	Control Structures
	If
	case

	Loops
	for
	while
	Example

	Start-up Scripts
	LAB #10
	~/.profile
	~/.bashrc

