
2026/02/04 17:23 1/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Version : 2023.01

Updated : 2023/07/27 13:56

LCE405 - Command Line Interface

Contents

LCE405 - Command Line Interface
Contents
The Shell
/bin/bash

Internal And External Commands
Aliases
The Prompt
The history Command
The TAB key
Metacharacters
Protecting Metacharacters
Exit Status
Redirections
Pipes
Command Substitution
Conditional Command Execution

Environment Variables
Principal Variables
Internationalisation and Localisation
Special Variables
The env Command

Bash Shell Options
noclobber

2026/02/04 17:23 2/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

noglob
nounset

Basic Shell Scripting
Execution
The read command
The test Command
The [[expression]] Command
Shell Operators
The expr Command
The let Command
Control Structures
Loops
Start-up Scripts
LAB #1 - Start-up Scripts

The Shell

A shell is a Command Line Interpreter (C.L.I). It is used to give instructions or commands to the operating system (OS).

The word shell is generic. There are many shells under Unix and Linux such as:

Shell Name Release Date Inventer Command Comments
tsh Thompson Shell 1971 Ken Thompson sh The first shell
sh Bourne Shell 1977 Stephen Bourne sh The shell common to all Unix and Linux OSs: /bin/sh
csh C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh
ksh Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh is an extended Bourne shell with a large number of improvements, including
some features of bash, ksh, and tcsh: /usr/bin/zsh

In RHEL/CentOS 8 /bin/sh is a soft link to /bin/bash :

2026/02/04 17:23 3/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ ls -l /bin/sh
lrwxrwxrwx. 1 root root 4 Jul 21 2020 /bin/sh -> bash

/bin/bash

This unit covers the /bin/bash shell. The /bin/bash shell allows you to:

Recall previously typed commands
Auto-generate the end of a file name
Use Aliases
Use tables
Use C language numerical and math variables
Manage strings
Use Functions

A command always starts with a keyword. This keyword is interpreted by the shell, in the order shown, as one of the following:

An Alias,
A Function,
A Built-in Command,
An External Command.

Internal And External Commands

The /bin/bash shell comes with a set of built-in or internal commands. External commands are executable binaries or scripts generally found in one of
the following directories:

[trainee@centos7 ~]$ type cd
cd is a shell builtin

External commands are either binaries or scripts that can be found in /usr/bin or /usr/sbin:

2026/02/04 17:23 4/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ type cd
cd is a shell builtin

Aliases

Aliases are strings that are aliased to a command, a command and some options or even several commands. Aliases are specific to the shell in which
they are created and unless specified in one of the start-up files, they disappear when the shell is closed:

[trainee@centos8 ~]$ type ls
ls is aliased to `ls --color=auto'

Important: Note that the ls alias is an alias to the ls command itself.

An alias is defined using the alias command:

[trainee@centos8 ~]$ alias dir='ls -l'
[trainee@centos8 ~]$ dir
total 0
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 aac
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 abc
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 bca
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 xyz

Important: Note that dir exists as a command. By creating an alias of the same name,
the alias will be executed in place of the command.

The list of currently defined aliases is obtained by using the alias command with no options:

2026/02/04 17:23 5/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ alias
alias dir='ls -l'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'
alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-
dot'
alias xzegrep='xzegrep --color=auto'
alias xzfgrep='xzfgrep --color=auto'
alias xzgrep='xzgrep --color=auto'
alias zegrep='zegrep --color=auto'
alias zfgrep='zfgrep --color=auto'
alias zgrep='zgrep --color=auto'

Important: In the above list you can see, without distinction, the system wide aliases
created by system start up scripts and the user created alias dir. The latter is only
available for trainee and will disappear when the current session is terminated.

To force the shell to use the command and not the alias, you can precede the command with the \ character:

[trainee@centos8 ~]$ \dir
aac abc bca xyz

To delete an alias, simply use the unalias command:

[trainee@centos8 ~]$ unalias dir
[trainee@centos8 ~]$ dir

2026/02/04 17:23 6/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

aac abc bca xyz

Each user's shell is defined by root in the /etc/passwd file:

[trainee@centos8 ~]$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin
systemd-resolve:x:193:193:systemd Resolver:/:/sbin/nologin
tss:x:59:59:Account used by the trousers package to sandbox the tcsd daemon:/dev/null:/sbin/nologin
polkitd:x:998:996:User for polkitd:/:/sbin/nologin
unbound:x:997:994:Unbound DNS resolver:/etc/unbound:/sbin/nologin
libstoragemgmt:x:996:993:daemon account for libstoragemgmt:/var/run/lsm:/sbin/nologin
cockpit-ws:x:995:991:User for cockpit-ws:/nonexisting:/sbin/nologin
sssd:x:994:990:User for sssd:/:/sbin/nologin
setroubleshoot:x:993:989::/var/lib/setroubleshoot:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
chrony:x:992:988::/var/lib/chrony:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
trainee:x:1000:1000:trainee:/home/trainee:/bin/bash
cockpit-wsinstance:x:991:987:User for cockpit-ws instances:/nonexisting:/sbin/nologin
rngd:x:990:986:Random Number Generator Daemon:/var/lib/rngd:/sbin/nologin

2026/02/04 17:23 7/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

gluster:x:989:985:GlusterFS daemons:/run/gluster:/sbin/nologin
qemu:x:107:107:qemu user:/:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
saslauth:x:988:76:Saslauthd user:/run/saslauthd:/sbin/nologin
radvd:x:75:75:radvd user:/:/sbin/nologin
dnsmasq:x:983:983:Dnsmasq DHCP and DNS server:/var/lib/dnsmasq:/sbin/nologin

However, each user can change his shell using the chsh command. The shells available to users are listed in the /etc/shells file:

[trainee@centos8 ~]$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash

Now use the echo command to view the contents of the system variable SHELL for your current session:

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

Important : Note that when using RHEL/CentOS 7 the output shows that trainee's shell is
/bin/bash and not /usr/bin/bash. This is because /bin is a soft link to /usr/bin.

Now change your shell to /bin/sh using the chsh command:

[trainee@centos8 ~]$ chsh
Changing shell for trainee.
New shell [/bin/bash]
/bin/sh
Password: trainee

2026/02/04 17:23 8/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Shell changed.

Important: Note that the password will not be printed to standard output.

Now check your current shell:

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

At first glance nothing has happened. However if you view your entry in the /etc/passwd file you will notice that your login shell has changed:

[trainee@centos8 ~]$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee:/home/trainee:/bin/sh

Important : The /bin/sh shell will be your active shell the next time you login.

Now change your shell back to /bin/bash using the chsh command:

[trainee@centos8 ~]$ chsh
Changing shell for trainee.
New shell [/bin/sh]: /bin/bash
Password: trainee
Shell changed.

Important: Note that the password will not be printed to standard output.

2026/02/04 17:23 9/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

The Prompt

As you have already noticed, the prompt under Linux is different for a normal user and root:

$ for a user,
for root.

The history Command

/bin/bash keeps track of commands that have been previously executed. To access the command history, use the following command:

[trainee@centos8 ~]$ history | more
 1 su -
 2 exit
 3 su -
 4 nmcli c show
 5 stty -a
 6 date
 7 who
 8 df
 9 df -h
 10 free free -h
 11 free
 12 free -h
 13 whoami
 14 su -
 15 pwd
 16 cd /tmp
 17 pwd
 18 ls
 19 su -
 20 touch test

2026/02/04 17:23 10/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

 21 ls
 22 echo fenestros
 23 cp test ~
--More--

Important: The history is specific to each user.

The history command uses emacs style control characters. As a result you can navigate through the list as follows:

Control Character Action
[CTRL]-[P] (= Up Arrow) Navigates backwards through the list
[CTRL]-[N] (= Down Arrow) Navigates forwards through the list

To move around in the history:

Control Character Action
[CTRL]-[A] Move to the beginning of the line
[CTRL]-[E] Move to the end of the line
[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

Pour rechercher dans l'historique il convient d'utiliser les touches :

Control Character Action
[CTRL]-[R] string Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string
[CTRL]-[S] string Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string
[CTRL]-[G] Quit the search mode

It is also possible to recall the last command executed by using the !! characters:

2026/02/04 17:23 11/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ ls
aac abc bca xyz
[trainee@centos8 ~]$!!
ls
aac abc bca xyz

Alternatively, to execute a command in the list, you can use the list number preceded by the ! character:

[trainee@centos8 ~]$ history
 1 su -
...
 80 history | more
 81 ls
 82 history
[trainee@centos8 ~]$!81
ls
aac abc bca xyz

The environmental variables associated with the history are set system-wide in the /etc/profile file:

[trainee@centos8 ~]$ cat /etc/profile | grep HISTSIZE
HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

As you can see, in the previous case the HISTSIZE value is set to 1000. This means that the last 1,000 commands are held in the history.

The history command stores data in the ~/.bash_history file for each user. The commands for the current bash session are stored in the file when the
session is closed:

[trainee@centos8 ~]$ nl .bash_history | tail
 54 ls
 55 ls | sort
 56 ls | sort -r
 57 more /etc/services

2026/02/04 17:23 12/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

 58 less /etc/services
 59 find acc
 60 find aac
 61 su -
 62 sleep 10
 63 su -

Important : Note the use of the nl command to number the lines in the output of the
contents of .bash_history file.

The TAB key

/bin/bash can auto-generate the end of a file name. Consider the following example:

$ ls .b [Tab][Tab][Tab]

By hitting the Tab key three times, the system shows you the files that match:

[trainee@centos8 ~]$ ls .bash
.bash_history .bash_logout .bash_profile .bashrc

Important : Notez qu'en appuyant sur la touche Tab trois fois le shell propose 4
possibilités de complétion de nom de fichier. En effet, sans plus d'information, le shell ne
sait pas quel fichier est concerné.

This same technique can also be used to auto-generate command names. Consider the following example:

2026/02/04 17:23 13/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

$ mo [Tab][Tab]

By hitting the Tab twice the system lists all known commands available to the user and starting with mo:

[trainee@centos8 ~]$ mo
modinfo more mount.nfs4
modprobe mount mountpoint
modulemd-validator mount.fuse mountstats
modulemd-validator-v1 mount.nfs

Metacharacters

It is often necessary and desirable to be able to work with several files at one time as opposed to repeating the operation on each file individually. For
this reason, bash accepts the use of Metacharacters:

Metacharacter Description
* Matches one or more characters
? Matches a single character
[abc] Matches any one of the characters between square brackets
[!abc] Matches any character except those between square brackets
[m-t] Matches any character from m through to t
[!m-t] Matches any character other than m through to t
?(expression1|expression2| …) Matches 0 or 1 occurence of expression1 OR 0 or 1 occurence of expression2 OR …
*(expression1|expression2| …) Matches 0 to x occurences of expression1 OR 0 to x occurences of expression2 OR …
+(expression1|expression2| …) Matches 1 to x occurences of expression1 OR 1 to x occurences of expression2 OR …
@(expression1|expression2| …) Matches 1 occurrence of expression1 OR 1 occurence of expression2 OR …
!(expression1|expression2| …) Matches 0 occurrences of expression1 OR 0 occurrences of expression2 OR …

To illustrate the use of Metacharacters, you need to create a directory in your home directory and the create some files within it:

[trainee@centos8 ~]$ mkdir training

2026/02/04 17:23 14/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ cd training
[trainee@centos8 training]$ touch f1 f2 f3 f4 f5
[trainee@centos8 training]$ ls
f1 f2 f3 f4 f5

The * Metacharacter

Now use the Metacharacter *:

[trainee@centos8 training]$ echo f*
f1 f2 f3 f4 f5

Important: Note that the * is used as a wild card which replaces 0 or more characters.

The ? Metacharacter

Create two more files:

[trainee@centos8 training]$ touch f52 f62

Now use the Metacharacter ?:

[trainee@centos8 training]$ echo f?2
f52 f62

Important: Note that the ? is used as a wild card which replaces a single character.

2026/02/04 17:23 15/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

The [] Metacharacter

The [] Metacharacter can take several forms:

Metacharacter Description
[xyz] Represents either x or y or z
[m-t]
[!xyz] Represents any character other than x or y or z
[!m-t] Represents any character outside of the range m to t

To demonstrate the use of the metacharacter [], create a file called a100:

[trainee@centos8 training]$ touch a100

The use of this Metacharacter can be demonstrated with the following examples:

[trainee@centos8 training]$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
[trainee@centos8 training]$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Important: Note that all the files starting with either a, b, c, d, e or f are displayed.

[trainee@centos8 training]$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Important: Note that all the files in the directory are displayed except the file starting
with a .

2026/02/04 17:23 16/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ echo [a-b]*
a100

Important: Note that only the file starting with a is displayed since no file starting with b
is present.

[trainee@centos8 training]$ echo [a-f]
[a-f]

Important: Note that in the above example, since no file called a, b, c, d, e or f exists in
the directory, the echo command simply returns the filter used.

The extglob Option

In order to use ?(expression), *(expression), +(expression), @(expression) and !(expression), you need to activate the extglob option:

[trainee@centos8 training]$ shopt -s extglob

The shopt command is used to activate and deactivate the shopt option of the shell.

The list of all the options can be displayed by simply using the shopt command:

[trainee@centos8 training]$ shopt
autocd off
cdable_vars off
cdspell off

2026/02/04 17:23 17/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off
direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off

2026/02/04 17:23 18/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo of

?(expression)

Create the following files:

[trainee@centos8 training]$ touch f f.txt f123.txt f123123.txt f123123123.txt

Execute the following command:

[trainee@centos8 training]$ ls f?(123).txt
f123.txt f.txt

Important: Note that the command displays file names that match 0 or 1 occurrences of
the string 123.

*(expression)

Execute the following command:

[trainee@centos8 training]$ ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

2026/02/04 17:23 19/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Important: Note that the command displays file names that match 0 to x occurrences of
the string 123.

+(expression)

Execute the following command:

[trainee@centos8 training]$ ls f+(123).txt
f123123123.txt f123123.txt f123.txt

Important: Note that the command displays file names that match 1 to x occurrences of
the string 123..

@(expression)

Execute the following command:

[trainee@centos8 training]$ ls f@(123).txt
f123.txt

Important: Note that the command displays file names that match 1 occurrence of the
string 123.

2026/02/04 17:23 20/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

!(expression)

Execute the following command:

[trainee@centos8 training]$ ls f!(123).txt
f123123123.txt f123123.txt f.txt

Important: Note that the command displays file names that match 0 or x occurrences of
the string 123, where x>1.

Protecting Metacharacters

To cancel the wild card effect of a special character, the character needs to be escaped or “protected”:

Character Description
\ Escapes the character which immediately follows
' ' Protects any character between the two '
“ ” Protects any character between the two “ except the following: $, \ and '

For example:

[trainee@centos8 training]$ echo * is a metacharacter
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

[trainee@centos8 training]$ echo * is a metacharacter
* is a metacharacter

[trainee@centos8 training]$ echo "* is a metacharacter"
* is a metacharacter

2026/02/04 17:23 21/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ echo '* is a metacharacter'
* is a metacharacter

Exit Status

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

[trainee@centos8 training]$ cd ..
[trainee@centos8 ~]$ mkdir codes
[trainee@centos8 ~]$ echo $?
0
[trainee@centos8 ~]$ touch codes/exit.txt
[trainee@centos8 ~]$ rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
[trainee@centos8 ~]$ echo $?
1

As you can see when the exit status is 0, the command has executed correctly. If the exit status is anything else, the command has executed with
errors.

Redirections

Your dialogue with the system uses three file descriptors:

Standard Input - the keyboard,
Standard output - the screen,
Standard error - contains any eventual errors.

The standard output can be redirected using the > character:

2026/02/04 17:23 22/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ cd training
[trainee@centos8 training]$ free > file
[trainee@centos8 training]$ cat file
 total used free shared buff/cache available
Mem: 500780 192692 38916 4824 269172 260472
Swap: 2096124 0 2096124

Important: If the file does not exist, it is automatically created.

Repeating a single redirection will replace the file:

[trainee@centos8 training]$ date > file
[trainee@centos8 training]$ cat file
Mon 28 Nov 15:48:09 CET 2016

To add additional data to the file, you need to use a double redirection:

[trainee@centos8 training]$ free >> file
[trainee@centos8 training]$ cat file
Mon 28 Nov 15:48:09 CET 2016
 total used free shared buff/cache available
Mem: 500780 192792 38516 4824 269472 260376
Swap: 2096124 0 2096124

Important : Note that standard output can only be redirected to a single destination.

2026/02/04 17:23 23/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

File descriptors are numbered for ease of use :

0 = Standard Input
1 = Standard Output
2 = Standard Error

For example:

[trainee@centos8 training]$ cd ..
[trainee@centos8 ~]$ rmdir training/ 2>errorlog
[trainee@centos8 ~]$ cat errorlog
rmdir: failed to remove ‘training/’: Directory not empty

Important: As you can see the error generated is redirected to the errorlog file.

You can join file descriptors using the & character:

[trainee@centos8 ~]$ free > file 2>&1

Any errors are sent to the same destination as the standard output, in the case, file.

It is also possible to have a reverse redirection:

[trainee@centos8 ~]$ wc -w < errorlog
8

In this case wc -w counts the number of words in the file.

Other redirections exist :

2026/02/04 17:23 24/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Redirection Definition
&> Join file descriptors 1 and 2.
<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

Pipes

A pipe is used to present the standard output on the first command to the standard input of the second command

[trainee@centos8 ~]$ ls | wc -w
7

Important - Several pipes can be used within the same command.

Standard output can generaly only be redirected to a single destination. To redirect to two destinations at once, you need to use the tee command:

[trainee@centos8 ~]$ date | tee file1
Tue 20 Apr 10:39:47 EDT 2021
[trainee@centos8 ~]$ cat file1
Tue 20 Apr 10:39:47 EDT 2021

Alternatively, tee can be used to redirect to two files at the same time:

[trainee@centos8 ~]$ date | tee file1 > file2
[trainee@centos8 ~]$ cat file1
Tue 20 Apr 10:40:36 EDT 2021
[trainee@centos8 ~]$ cat file2
Tue 20 Apr 10:40:36 EDT 2021

2026/02/04 17:23 25/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Important : The default action of the tee command is to overwrite the destination file. In
order to append output to the same file, you need to use the -a switch.

Command Substitution

Command substitution permits in-line execution of a command:

[trainee@centos8 ~]$ echo date
date
[trainee@centos8 ~]$ echo $(date)
Tue 20 Apr 10:41:33 EDT 2021
[trainee@centos8 ~]$ echo `date`
Tue 20 Apr 10:41:45 EDT 2021

Conditional Command Execution

Commands can be grouped using brackets:

$ (ls -l; ps; who) > list [Entrée]

Conditional command execution can be obtained by using the exit status value and either && or ||.

For example,

Command1 && Command2,
Command2 will execute if the exit status of Command1 is 0,

Command1 || Command2,
Command2 will execute if the exit status of Command1 anything other than 0.

2026/02/04 17:23 26/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Environment Variables

The contents of a shell variable can be displayed on standard output using the echo command:

$ echo $VARIABLE [Enter]

Principal Variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.
EUID EUID of the current user.
UID UID of the current user.
PPID PID of the parent of the current process.
PWD The current directory.
OLDPWD The previous current directory (like the cd -command).
RANDOM A random number between 0 and 32767.
SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.
COLUMNS The number of columns in a screen .
HISTFILE The history file.
HISTFILESIZE The history file size.
HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth
HOME The user's home directory.
HOSTTYPE Machine type.
OSTYPE The OS type.
MAIL The file containing the user's mail.
MAILCHECK Frequency in seconds that a user's mail is checked.

2026/02/04 17:23 27/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Variable Description
PATH The paths to executables.
PROMPT_COMMAND Command executed before each prompt is displayed.
PS1 User's default prompt.
PS2 User's 2nd level default prompt.
PS3 User's 3rd level prompt.
PS4 User's 4th level prompt.
SHELL User's current shell.
SHLVL The number of shell instances.
TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalisation and Localisation

Internationalisation, also called i18n since there are 18 letters between the I and n, consists of modifying software so that it conforms to regional
parameters:

Text processing differences,
Writing direction,
Different systems of numerals,
Telephone numbers, addresses and international postal codes,
Weights and measures,
Date/time format,
Paper sizes,
Keyboard layout,
etc …

Localisation, also called L10n since there are 10 letters between the L and n, consists of modifying the Internationalisation so that it conforms to a
specific locale:

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,

2026/02/04 17:23 28/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

en_ZA = South Africa,
en_CA = Canada.

The most important variables are:

[trainee@centos8 ~]$ echo $LC_ALL

[trainee@centos8 ~]$ echo $LC_CTYPE

[trainee@centos8 ~]$ echo $LANG
en_GB.UTF-8
[trainee@centos8 ~]$ locale
LANG=en_GB.UTF-8
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=

Special Variables

Variable Description
$LINENO Contains the current line number of the script or function being executed
$$ Contains the PID of the current process
$PPID Contains the PID of the parent of the current process

2026/02/04 17:23 29/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Variable Description
$0 Contains the name of the current script
$1, $2 … Contains respectively the 1st, 2nd etc arguments passed to the script
$# Contains the total number of arguments passed to the script
$* Contains all of the arguments passed to the script
$@ Contains all of the arguments passed to the script

The env Command

The env command can be used to run a program in a modified environment or just list the values of all environmental variables associated with the
user calling the program env:

[trainee@centos8 ~]$ env
LS_COLORS=rs=0:di=38;5;33:ln=38;5;51:mh=00:pi=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38;5;11:cd=48;5;232;38;
5;3:or=48;5;232;38;5;9:mi=01;05;37;41:su=48;5;196;38;5;15:sg=48;5;11;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5
;16:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5;40:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj=38;5;9:*.taz=38
;5;9:*.lha=38;5;9:*.lz4=38;5;9:*.lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5;9:*.tzo=38;5;9:*.t7z=38;5;9:*.z
ip=38;5;9:*.z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.zst=38;5;9:*.tzs
t=38;5;9:*.bz2=38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*.tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9:*
.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cpio=38;5;9:*.7z=38;5
;9:*.rz=38;5;9:*.cab=38;5;9:*.wim=38;5;9:*.swm=38;5;9:*.dwm=38;5;9:*.esd=38;5;9:*.jpg=38;5;13:*.jpeg=38;5;13:*.mj
pg=38;5;13:*.mjpeg=38;5;13:*.gif=38;5;13:*.bmp=38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;13:*.tga=38;5;13:*.
xbm=38;5;13:*.xpm=38;5;13:*.tif=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38;5;13:*.svgz=38;5;13:*.mng=38;5;13:*
.pcx=38;5;13:*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5;13:
.mp4=38;5;13:.m4v=38;5;13:*.mp4v=38;5;13:*.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38;5;13:*.asf=38;5;13:*
.rm=38;5;13:*.rmvb=38;5;13:*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv=38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xc
f=38;5;13:*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf=38;5;13:*.ogv=38;5;13:*.ogx=38;5;13:*.aac=38;5;45:*.au=
38;5;45:*.flac=38;5;45:*.m4a=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38;5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg
=38;5;45:*.ra=38;5;45:*.wav=38;5;45:*.oga=38;5;45:*.opus=38;5;45:*.spx=38;5;45:*.xspf=38;5;45:
SSH_CONNECTION=10.0.2.2 42834 10.0.2.15 22
LANG=en_GB.UTF-8
HISTCONTROL=ignoredups
GUESTFISH_RESTORE=\e[0m

2026/02/04 17:23 30/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

HOSTNAME=centos8.ittraining.loc
GUESTFISH_INIT=\e[1;34m
XDG_SESSION_ID=9
USER=trainee
GUESTFISH_PS1=\[\e[1;32m\]><fs>\[\e[0;31m\]
SELINUX_ROLE_REQUESTED=
PWD=/home/trainee
HOME=/home/trainee
SSH_CLIENT=10.0.2.2 42834 22
SELINUX_LEVEL_REQUESTED=
SSH_TTY=/dev/pts/0
MAIL=/var/spool/mail/trainee
TERM=xterm-256color
SHELL=/bin/bash
SELINUX_USE_CURRENT_RANGE=
SHLVL=1
LOGNAME=trainee
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus
XDG_RUNTIME_DIR=/run/user/1000
PATH=/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
GUESTFISH_OUTPUT=\e[0m
HISTSIZE=1000
LESSOPEN=||/usr/bin/lesspipe.sh %s
_=/usr/bin/env
OLDPWD=/home/trainee/training

To run a program, such as xterm in a modified environment the command is:

$ env EDITOR=vim xterm

2026/02/04 17:23 31/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Bash Shell Options

To view all the options of the bash shell, use the command set:

[trainee@centos8 ~]$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

2026/02/04 17:23 32/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

To turn on an option you need to specify which option as an argument to the previous command:

[trainee@centos8 ~]$ set -o allexport
[trainee@centos8 ~]$ set -o
allexport on
braceexpand on
...

To turn off an option, use set with the +o option:

[trainee@centos8 ~]$ set +o allexport
[trainee@centos8 ~]$ set -o
allexport off
braceexpand on
...

These are the most interesting options:

Option Default value Description
allexport off The shell automatically exports all variables
emacs on emacs editing mode
noclobber off Simple re-directions do not squash the target file if it exists
noglob off Turns off special characters
nounset off The shell will return an error if the variable is not set
verbose off Echos back the typed command
vi off vi editing mode

noclobber

[trainee@centos8 ~]$ set -o noclobber
[trainee@centos8 ~]$ pwd > file
-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd > file

2026/02/04 17:23 33/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd >| file
[trainee@centos8 ~]$ set +o noclobber

Important : Note that the noclobber option can be overidden by using a pipe.

noglob

[trainee@centos8 ~]$ set -o noglob
[trainee@centos8 ~]$ echo *
*
[trainee@centos8 ~]$ set +o noglob
[trainee@centos8 ~]$ echo *
aac abc bca codes Desktop Documents Downloads errorlog file file1 Music Pictures Public Templates training Videos
vitext xyz

Important : Note that metacharacters are turned off when the noglob option is set.

nounset

[trainee@centos8 ~]$ set -o nounset
[trainee@centos8 ~]$ echo $FENESTROS
-bash: FENESTROS: unbound variable
[trainee@centos8 ~]$ set +o nounset
[trainee@centos8 ~]$ echo $FENESTROS

2026/02/04 17:23 34/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$

Important : Note that the inexistant variable $FENESTROS is identified as such when the
nounset option is set.

Basic Shell Scripting

Execution

A script is a text file that is read by the system and it's contents executed. There are five ways to execute a script:

By stipulating the shell that will execute the script:

/bin/bash myscript

by a reverse redirection:

/bin/bash < myscript

By calling the script by it's name, provided that the script is executable and that it resides in a directory specified by your path :

myscript

By placing yourself in the directory where the script resides and using one of the two following possibilities :

. myscript et ./myscript

Important: In the first case the script is executed in the parent shell. In the second case

2026/02/04 17:23 35/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

the script is executed in a child shell.

Comments in a script are lines starting with #. However, each script starts with a pseudo-comment that informs the system which shell should be used
to execute the script:

#!/bin/sh

Since a script in it's simplest form is a list of commands that are sequentially executed, it is often useful to test those command prior to writing the
script> Linux has a command that can help you debug a future script. The script command can be used to generate a log file, called typescript, that
contains a record of everything occurred on standard output. To exit the recording mode, use exit:

[trainee@centos8 ~]$ script
Script started, file is typescript
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit
Script done, file is typescript

[trainee@centos8 ~]$ cat typescript
Script started on 2021-04-20 10:59:58-04:00
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit

Script done on 2021-04-20 11:00:09-04:00

2026/02/04 17:23 36/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Lets start by creating a simple script called myscript:

[trainee@centos8 ~]$ vi myscript
[trainee@centos8 ~]$ cat myscript
pwd
ls

Save the file and use the five ways to execute it.

As an argument de /bin/bash:

[trainee@centos8 ~]$ /bin/bash myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Using a redirection:

[trainee@centos8 ~]$ /bin/bash < myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

In order to be able to call the script by it's name from another directory, such as /tmp, you need to move the script into the /home/trainee/bin
directory and make it executable. Note that in this case, the the value of the environmental variable $PATH should contain a reference to
/home/trainee/bin:

[trainee@centos8 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

In the case of RHEL/CentOS, even though PATH contains $HOME/bin, the directory is not present:

[trainee@centos8 ~]$ ls
aac bca errorlog file1 myscript typescript

2026/02/04 17:23 37/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

abc codes file file2 training xyz

So you need to create the directory:

[trainee@centos8 ~]$ mkdir bin

Now you need to move the script to $HOME/bin and make it executable:

[trainee@centos8 ~]$ mv myscript ~/bin
[trainee@centos8 ~]$ chmod u+x ~/bin/myscript

Move to /tmp and can call the script by just using it's name:

[trainee@centos8 ~]$ cd /tmp
[trainee@centos8 tmp]$ myscript
/tmp
expand
expand1
filepartaa
filepartab
filepartac
filepartad
filepartae
greptest
greptest1
greptest.patch
newfile
sales.awk
sales.txt
scriptawk
sedtest
sedtest1
systemd-private-d9ff2376a8a44f0392f860d80c839be4-chronyd.service-6im4Ii

2026/02/04 17:23 38/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Now move back to ~/bin and use the following two commands to execute myscript:

[trainee@centos8 tmp]$ cd ~/bin
[trainee@centos8 bin]$./myscript
/home/trainee/bin
myscript
[trainee@centos8 bin]$. myscript
/home/trainee/bin
myscript

To do: Note the difference in the output of these two commands and explain that
difference.

The read command

The read command reads the standard input and stores the information in the variables that are specified as arguments. The separator between fields
is a space, a tabultaion or a carriage return:

[trainee@centos8 bin]$ read var1 var2 var3 var4
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu
[trainee@centos8 bin]$ echo $var3
is
[trainee@centos8 bin]$ echo $var4
great!

2026/02/04 17:23 39/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Important: Note that each field has been placed in a seperate variable. Note also that by
convention, user declared variables are in lower case in order to distinguish them from
system variables.

[trainee@centos8 bin]$ read var1 var2
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is great!

Important: Note that in this case, $var2 contains three fields.

Exit Codes

The contents of a variable can also be empty:

[trainee@centos8 bin]$ read var

↵ Entrée

[trainee@centos8 bin]$ echo $?
0
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

2026/02/04 17:23 40/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

But not null:

[trainee@centos8 bin]$ read var

Ctrl+D

[trainee@centos8 bin]$ echo $?
1
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

The IFS Variable

The IFS variable contains the default separator characters: SpaceBar , Tab ⇆ and ↵ Enter :

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important: The od command (Octal Dump) returns the contents of a file in octal format.
The -c switch prints to standard output any ASCII characters or backslashes contained
within the file.

It is possible to change the contents of this variable:

[trainee@centos8 bin]$ OLDIFS="$IFS"
[trainee@centos8 bin]$ IFS=":"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 : \n

2026/02/04 17:23 41/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

0000002

Now test the new configuration:

[trainee@centos8 bin]$ read var1 var2 var3
fenestros:edu is:great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is
[trainee@centos8 bin]$ echo $var3
great!

Restore the old value of IFS before proceeding further: IFS=“$OLDIFS”

[trainee@centos8 bin]$ IFS="$OLDIFS"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

The test Command

The test command uses two forms:

test expression

or

[SpaceBarexpressionSpaceBar]

2026/02/04 17:23 42/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Testing Files

Test Description
-f file Returns true if file is an ordinary file
-d file Returns true if file is a directory
-r file Returns true if user can read file
-w file Returns true if user can write file
-x file Returns true if user can execute file
-e file Returns true if file exists
-s file Returns true if file is not empty
file1 -nt file2 Returns true if file1 is newer than file2
file1 -ot file2 Returns true if file1 is older than file2
file1 -ef file2 Returns true if file1 is identical to file2

Test whether the a100 file is an ordinary file:

[trainee@centos8 bin]$ cd ../training/
[trainee@centos8 training]$ test -f a100
[trainee@centos8 training]$ echo $?
0
[trainee@centos8 training]$ [-f a100]
[trainee@centos8 training]$ echo $?
0

Important: The value contained in $? is 0. This indicates true.

Test whether the a101 file is an ordinary file:

[trainee@centos8 training]$ [-f a101]
[trainee@centos8 training]$ echo $?

2026/02/04 17:23 43/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

1

Important: The value contained in $? is 1. This indicates false. This is obvious since a101
does not exist.

Test whether /home/trainee/training is a directory:

[trainee@centos8 training]$ [-d /home/trainee/training]
[trainee@centos8 training]$ echo $?
0

Testing Strings

Test Description
-n string Returns true if string is not zero in length
-z string Returns true if string is zero in length
string1 = string2 Returns true if string1 is equal to string2
string1 != string2 Returns true if string1 is different to string2
string1 Returns true if string1 is not empty

Test whether two strings are indentical:

[trainee@centos8 training]$ string1="root"
[trainee@centos8 training]$ string2="fenestros"
[trainee@centos8 training]$ [$string1 = $string2]
[trainee@centos8 training]$ echo $?
1

Important: The value contained in $? is 1. This indicates false.

2026/02/04 17:23 44/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Test if string1 is not zero in length:

[trainee@centos8 training]$ [-n $string1]
[trainee@centos8 training]$ echo $?
0

Important: The value contained in $? is 1. This indicates false.

Testing Numbers

Test Description
value1 -eq value2 Returns true if value1 is equal to value2
value1 -ne value2 Returns true if value1 is not equal to value2
value1 -lt value2 Returns true if value1 is less than value2
value1 -le value2 Returns true if value1 is less than or equal to value2
value1 -gt value2 Returns true if value1 is greater than value2
value1 -ge value2 Returns true if value1 is greater than or equal to value2

Compare the two numbers value1 and value2:

[trainee@centos8 training]$ read value1
35
[trainee@centos8 training]$ read value2
23
[trainee@centos8 training]$ [$value1 -lt $value2]
[trainee@centos8 training]$ echo $?
1
[trainee@centos8 training]$ [$value2 -lt $value1]
[trainee@centos8 training]$ echo $?
0

2026/02/04 17:23 45/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ [$value2 -eq $value1]
[trainee@centos8 training]$ echo $?
1

Expressions

Test Description
!expression Returns true if expression is false
expression1 -a expression2 Represents a logical OR between expression1 and expression2
expression1 -o expression2 Represents a logical AND between expression1 and expression2
\(expression\) Parenthesis let you group together expressions

Test if $file is not a directory:

[trainee@centos8 training]$ file=a1OO
[trainee@centos8 training]$ [! -d $file]
[trainee@centos8 training]$ echo $?
0

Test if $directory is a directory and if trainee can cd into it:

[trainee@centos8 training]$ directory=/usr
[trainee@centos8 training]$ [-d $directory -a -x $directory]
[trainee@centos8 training]$ echo $?
0

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

[trainee@centos8 training]$ [-w a100 -a \(-d /usr -o -d /tmp \)]
[trainee@centos8 training]$ echo $?
0

2026/02/04 17:23 46/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Testing the User Environment

Test Description
-o option Returns true if the shell option “option” is on

[trainee@centos7 training]$ [-o allexport]
[trainee@centos7 training]$ echo $?
1

The [[expression]] Command

The [[SpaceBarexpressionSpaceBar]] command is an improved test command with some minor changes to syntax:

Test Description
expression1 && expression2 Represents a logical OR between expression1 and expression2
expression1 || expression2 Represents a logical AND between expression1 and expression2
(expression) Parenthesis let you group together expressions

and some additional operators :

Test Description
string = model Returns true if string corresponds to model
string != model Returns true if string does not correspond to model
string1 < string2 Returns true if string1 is lexicographically before string2
string1 > string2 Returns true if string1 is lexicographically after string2

Test if trainee has the write permission for the a100 file and test if /usr is a directory or test if /tmp is a directory:

[trainee@centos8 training]$ [[-w a100 && (-d /usr || -d /tmp)]]
[trainee@centos8 training]$ echo $?
0

2026/02/04 17:23 47/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Shell Operators

Operator Description
Command1 && Command2 Command2 is executed if the exit code of Command1 is zero
Command1 || Command2 Command2 is executed is the exit code of Command1 is not zero

[trainee@centos8 training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists
[trainee@centos8 training]$ [[-d /root]] || echo "The root directory exists"
[trainee@centos8 training]$

The expr Command

Theexpr command's syntax is as follows :

expr SpaceBar number1 SpaceBar operator SpaceBar number2 SpaceBar

ou

expr Tab ⇆ number1 Tab operator Tab ⇆ number2 ↵ Enter

ou

expr SpaceBar string SpaceBar : SpaceBar regular_expression SpaceBar

or

expr Tab ⇆ string Tab ⇆ : Tab ⇆ regular_expression ↵ Enter

Maths

Operator Description
+ Addition

2026/02/04 17:23 48/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Operator Description
- Subtraction
* Multiplication
/ Division
% Modulo
\(\) Parentheses

Comparisons

Operator Description
\< Less than
\<= Less than or equal to
\> Greater then
\>= Greater then or equal to
= Equal to
!= Not equal to

Logic

Operator Description
\| Logical OR
\& Logical AND

Add two to the value of $x:

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ expr $x + 2
4

If the surrounding spaces are removed, the result is completely different:

[trainee@centos8 training]$ expr $x+2

2026/02/04 17:23 49/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

2+2

Certain operators need to be protected:

[trainee@centos8 training]$ expr $x * 2
expr: syntax error
[trainee@centos8 training]$ expr $x * 2
4

Now put the result of a calculation in a variable:

[trainee@centos8 training]$ resultat=`expr $x + 10`
[trainee@centos8 training]$ echo $resultat
12

The let Command

The let command is equivalent to ((expression)). The ((expression)) command provides the following additional features when compared with the expr
command :

greater number of operators,
no need for spaces or tabulations between arguments,
no need to prefix variables with the $ character,
the shell's special characters do not need to be escaped,
variables are defined directly in the command,
faster execution time.

Maths

Operator Description
+ Addition
- Subtraction

2026/02/04 17:23 50/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

Operator Description
* Multiplication
/ Division
% Modulo
^ Power

Comparisons

Operator Description
< Less than
<= Less than or equal to
> Greater then
>= Greater then or equal to
== Equal
!= Not Equal

Logic

Operator Description
&& Logical AND
|| Logical OR
! Logical negation

Binary

Opérateur Description
~ Binary negation
>> décalage binaire à droite
<< décalage binaire à gauche
& Binary AND
| Binary OR
^ Exclusive binary OR

2026/02/04 17:23 51/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

For example:

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ ((x=$x+10))
[trainee@centos8 training]$ echo $x
12
[trainee@centos8 training]$ ((x=$x+20))
[trainee@centos8 training]$ echo $x
32

Control Structures

If

The syntax is as follows:

if condition
then
 command(s)
else
 command(s)
fi

or:

if condition
then
 command(s)
 command(s)
fi

or finally:

2026/02/04 17:23 52/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

if condition
then
 command(s)
elif condition
then
 command(s)
elif condition
then
 command(s)
else
 command(s)

fi

As an example, create the following script called user_check:

[trainee@centos8 training]$ vi user_check
[trainee@centos8 training]$ cat user_check
#!/bin/bash
if [$# -ne 1] ; then
 echo "Incorrect number of arguments"
 echo "Usage : $0 user name"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "User $1 has an account on this system"
else
 echo "User $1 does not have an account on this system"
fi
exit 0

Test this script:

2026/02/04 17:23 53/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ chmod 770 user_check
[trainee@centos8 training]$./user_check
Incorrect number of arguments
Usage : ./user_check user name
[trainee@centos8 training]$./user_check root
User root has an account on this system
[trainee@centos8 training]$./user_check mickey mouse
Incorrect number of arguments
Usage : ./user_check user name
[trainee@centos8 training]$./user_check "mickey mouse"
User mickey mouse does not have an account on this system

case

The syntax is as follows:

case $variable in
model1) function
 ...
 ;;
model2) function
 ...
 ;;
model3 | model4 | model5) function
 ...
 ;;
esac

For example:

 case "$1" in
 start)

2026/02/04 17:23 54/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Loops

for

The syntax is as follows:

for variable in variable_list
do
 command(s)
done

while

The syntax is as follows:

2026/02/04 17:23 55/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

while condition
do
 command(s)
done

Example

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Account fenestros$U created"
let U=U+1
done

Start-up Scripts

When Bash is called as a login shell it executes the start-up scripts in the following order:

/etc/profile,
~/.bash_profile or ~/.bash_login or ~/.profile dependant upon the distribution,

In the case of RHEL/CentOS, Bash executes ~/.bash_profile.

When a login shell is terminated, Bash executes the ~/.bash_logout file if it exists.

Whan Bash is called as an interactive shell as opposed to a login shell, it executes only the ~/.bashrc file

2026/02/04 17:23 56/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

LAB #1 - Start-up Scripts

To do : Using the knowledge you have acquired in this unit, explain each of the following
scripts.

~/.bash_profile

[trainee@centos8 training]$ cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@centos8 training]$ cat ~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment

2026/02/04 17:23 57/57 LCE405 - Command Line Interface

www.ittraining.team - https://ittraining.team/

PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

Copyright © 2023 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:rhel:6:utilisateur:l105

Last update: 2023/07/27 13:56

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:rhel:6:utilisateur:l105

	LCE405 - Command Line Interface
	Contents
	The Shell
	/bin/bash
	Internal And External Commands
	Aliases
	The Prompt
	The history Command
	The TAB key
	Metacharacters
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter
	The extglob Option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	Exit Status
	Redirections
	Pipes
	Command Substitution
	Conditional Command Execution

	Environment Variables
	Principal Variables
	Internationalisation and Localisation
	Special Variables
	The env Command

	Bash Shell Options
	noclobber
	noglob
	nounset

	Basic Shell Scripting
	Execution
	The read command
	Exit Codes
	The IFS Variable

	The test Command
	Testing Files
	Testing Strings
	Testing Numbers
	Expressions
	Testing the User Environment

	The [[expression]] Command
	Shell Operators
	The expr Command
	Maths
	Comparisons
	Logic

	The let Command
	Maths
	Comparisons
	Logic
	Binary

	Control Structures
	If
	case

	Loops
	for
	while
	Example

	Start-up Scripts
	LAB #1 - Start-up Scripts
	~/.bash_profile
	~/.bashrc

