
2026/02/04 19:49 1/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Version : 2024.01

Dernière mise-à-jour : 2024/10/21 11:20

RH13401 - Les Scripts Shell

Contenu du Module

RH13401 - Les Scripts Shell
Contenu du Module
LAB #1 - Les Scripts Shell

1.1 - Exécution
1.2 - La commande read

Code de retour
La variable IFS

1.3 - La commande test
Tests de Fichiers
Tests de chaînes de caractère
Tests sur des nombres
Les opérateurs
Tests d'environnement utilisateur

1.4 - La commande [[expression]]
1.5 - Opérateurs du shell
1.6 - L'arithmétique

La commande expr
Opérateurs Arithmétiques
Opérateurs de Comparaison
Opérateurs Logiques

La commande let
Opérateurs Arithmétiques
Opérateurs de comparaison

2026/02/04 19:49 2/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques
Opérateurs travaillant sur les bits

1.7 - Structures de contrôle
If
case

Exemple
1.8 - Boucles

for
while
Exemple

1.9 - Scripts de Démarrage
~/.bash_profile
~/.bashrc

1.10 - Rappel des Expressions Régulières dans Bash

LAB #1 - Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

1.1 - Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

2026/02/04 19:49 3/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

myscript

Pour lancer le script sans qu'il soit dans un répertoire du PATH, il convient de se placer dans le répertoire contenant le script et de le lancer ainsi :

./myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@redhat9 ~]$ script
Script started, output log file is 'typescript'.

[trainee@redhat9 ~]$ pwd
/home/trainee

2026/02/04 19:49 4/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

[trainee@redhat9 ~]$ ls
Desktop Documents Downloads Music Pictures Public Templates typescript Videos

[trainee@redhat9 ~]$ exit
exit
Script done.

[trainee@redhat9 ~]$ cat typescript
Script started on 2024-10-21 11:57:26+02:00 [TERM="xterm-256color" TTY="/dev/pts/0" COLUMNS="86" LINES="24"]
[trainee@redhat9 ~]$ pwd
/home/trainee
[trainee@redhat9 ~]$ ls
Desktop Documents Downloads Music Pictures Public Templates typescript Videos
[trainee@redhat9 ~]$ exit
exit

Script done on 2024-10-21 11:57:36+02:00 [COMMAND_EXIT_CODE="0"]

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, créez le fichier myscript avec vi :

[trainee@redhat9 ~]$ vi myscript
[trainee@redhat9 ~]$ cat myscript
pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

[trainee@redhat9 ~]$ /bin/bash myscript
/home/trainee
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

2026/02/04 19:49 5/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Lancez ensuite le script en redirigeant son entrée standard :

[trainee@redhat9 ~]$ /bin/bash < myscript
/home/trainee
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

[trainee@redhat9 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Dans le cas de RHEL 9, même si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@redhat9 ~]$ ls
Desktop Downloads myscript Public typescript
Documents Music Pictures Templates Videos

Créez donc ce répertoire :

[trainee@redhat9 ~]$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@redhat9 ~]$ mv myscript ~/bin
[trainee@redhat9 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

[trainee@redhat9 ~]$ cd /tmp

[trainee@redhat9 tmp]$ myscript
/tmp

2026/02/04 19:49 6/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

dbus-BKNtynzn0b
dbus-G7skg3Wlpv
dbus-pGKMf26gAW
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-colord.service-GbUnUn
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-dbus-broker.service-94ZOZ9
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-kdump.service-waLNMP
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-ModemManager.service-7yMSFI
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-power-profiles-daemon.service-NP07Sj
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-rtkit-daemon.service-FHomNd
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-switcheroo-control.service-QyA5XT
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-systemd-logind.service-S5YYJs
systemd-private-c3bb2399f5814488bf583ccb169e7ffc-upower.service-Cd1DLj

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

[trainee@redhat9 tmp]$ cd ~/bin

[trainee@redhat9 bin]$./myscript
/home/trainee/bin
myscript

[trainee@redhat9 bin]$. myscript
/home/trainee/bin
myscript

1.2 - La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@redhat9 bin]$ read var1 var2 var3 var4
fenestros edu is great!

2026/02/04 19:49 7/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

[trainee@redhat9 bin]$ echo $var1
fenestros

[trainee@redhat9 bin]$ echo $var2
edu

[trainee@redhat9 bin]$ echo $var3
is

[trainee@redhat9 bin]$ echo $var4
great!

Important: Notez que chaque champs a été placé dans une variable différente. Notez
aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
afin de les distinguer des variables système qui sont en majuscules.

[trainee@redhat9 bin]$ read var1 var2
fenestros edu is great!

[trainee@redhat9 bin]$ echo $var1
fenestros

[trainee@redhat9 bin]$ echo $var2
edu is great!

Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros
est mis dans $var2.

2026/02/04 19:49 8/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

[trainee@redhat9 bin]$ read var

↵ Entrée

[trainee@redhat9 bin]$ echo $?
0
[trainee@redhat9 bin]$ echo $var

[trainee@redhat9 bin]$

Le contenu de la variable var1 peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

[trainee@redhat9 bin]$ read var

Ctrl+D

[trainee@redhat9 bin]$ echo $?
0
[trainee@redhat9 bin]$ read var

[trainee@redhat9 bin]$ echo $?
1

[trainee@redhat9 bin]$

2026/02/04 19:49 9/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

[trainee@redhat9 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée
standard au format octal. Ceci est utile afin de visualiser les caractères non-imprimables.
L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou
dans le contenu fourni à l'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

[trainee@redhat9 bin]$ IFS=":"

[trainee@redhat9 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

[trainee@redhat9 bin]$ read var1 var2 var3
fenestros:edu is:great!

[trainee@redhat9 bin]$ echo $var1
fenestros

2026/02/04 19:49 10/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

[trainee@redhat9 bin]$ echo $var2
edu is

[trainee@redhat9 bin]$ echo $var3
great!

Restaurez l'ancienne valeur de IFS :

[trainee@redhat9 bin]$ unset IFS

1.3 - La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2

2026/02/04 19:49 11/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Test Description
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

Testez si le fichier a100 est un fichier ordinaire :

[trainee@redhat9 bin]$ mkdir ../training

[trainee@redhat9 bin]$ cd ../training

[trainee@redhat9 training]$ touch a100

[trainee@redhat9 training]$ test -f a100

[trainee@redhat9 training]$ echo $?
0

[trainee@redhat9 training]$ [-f a100]

[trainee@redhat9 training]$ echo $?
0

Testez si le fichier a101 existe :

[trainee@redhat9 training]$ [-f a101]

[trainee@redhat9 training]$ echo $?
1

Testez si /home/trainee/training est un répertoire :

[trainee@redhat9 training]$ [-d /home/trainee/training]

[trainee@redhat9 training]$ echo $?

2026/02/04 19:49 12/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

Testez si les deux chaînes sont égales :

[trainee@redhat9 training]$ string1="root"

[trainee@redhat9 training]$ string2="fenestros"

[trainee@redhat9 training]$ echo $string1
root

[trainee@redhat9 training]$ echo $string2
fenestros

[trainee@redhat9 training]$ [$string1 = $string2]

[trainee@redhat9 training]$ echo $?
1

Testez si la string1 n'a pas de longueur 0 :

[trainee@redhat9 training]$ [-n $string1]

[trainee@redhat9 training]$ echo $?

2026/02/04 19:49 13/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

0

Testez si la string1 a une longueur de 0 :

[trainee@redhat9 training]$ [-z $string1]

[trainee@redhat9 training]$ echo $?
1

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

Comparez les deux nombres value1 et value2 :

[trainee@redhat9 training]$ read value1
35

[trainee@redhat9 training]$ read value2
23

[trainee@redhat9 training]$ [$value1 -lt $value2]

[trainee@redhat9 training]$ echo $?
1

[trainee@redhat9 training]$ [$value2 -lt $value1]

2026/02/04 19:49 14/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

[trainee@redhat9 training]$ echo $?
0

[trainee@redhat9 training]$ [$value2 -eq $value1]

[trainee@redhat9 training]$ echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

Testez si $file n'est pas un répertoire :

[trainee@redhat9 training]$ file=a1OO

[trainee@redhat9 training]$ [! -d $file]

[trainee@redhat9 training]$ echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

[trainee@redhat9 training]$ directory=/usr

[trainee@redhat9 training]$ [-d $directory -a -x $directory]

[trainee@redhat9 training]$ echo $?

2026/02/04 19:49 15/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@redhat9 training]$ [-w a100 -a \(-d /usr -o -d /tmp \)]

[trainee@redhat9 training]$ echo $?
0

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

[trainee@redhat9 training]$ [-o allexport]

[trainee@redhat9 training]$ echo $?
1

1.4 - La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

2026/02/04 19:49 16/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@redhat9 training]$ [[-w a100 && (-d /usr || -d /tmp)]]

[trainee@redhat9 training]$ echo $?
0

1.5 - Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

[trainee@redhat9 training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists

[trainee@redhat9 training]$ [[-d /root]] || echo "The root directory exists"

[trainee@redhat9 training]$

1.6 - L'arithmétique

La commande expr

La commande expr prend la forme :

2026/02/04 19:49 17/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

2026/02/04 19:49 18/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

Ajoutez 2 à la valeur de $x :

[trainee@redhat9 training]$ x=2

[trainee@redhat9 training]$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@redhat9 training]$ expr $x+2
2+2

Les opérateurs doivent être protégés :

[trainee@redhat9 training]$ expr $x * 2
expr: syntax error

[trainee@redhat9 training]$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@redhat9 training]$ resultat=`expr $x + 10`

[trainee@redhat9 training]$ echo $resultat
12

2026/02/04 19:49 19/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

2026/02/04 19:49 20/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

[trainee@redhat9 training]$ x=2

[trainee@redhat9 training]$ ((x=$x+10))

[trainee@redhat9 training]$ echo $x
12

[trainee@redhat9 training]$ ((x=$x+20))

[trainee@redhat9 training]$ echo $x
32

1.7 - Structures de contrôle

2026/02/04 19:49 21/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

ou encore :

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

2026/02/04 19:49 22/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

fi

Créez le script user_check suivant :

[trainee@redhat9 training]$ vi user_check
[trainee@redhat9 training]$ cat user_check
#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

[trainee@redhat9 training]$ chmod 770 user_check

[trainee@redhat9 training]$./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur

[trainee@redhat9 training]$./user_check root
Utilisateur root est défini sur ce système

[trainee@redhat9 training]$./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur

2026/02/04 19:49 23/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

[trainee@redhat9 training]$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

Exemple

 case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start

2026/02/04 19:49 24/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de
script. La même logique est appliquée dans le cas où le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom
du script.

1.8 - Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

2026/02/04 19:49 25/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

1.9 - Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL 9, le système exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

2026/02/04 19:49 26/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts
suivants ligne par ligne.

~/.bash_profile

[trainee@redhat9 training]$ cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@redhat9 training]$ cat ~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment

2026/02/04 19:49 27/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

if ! [["$PATH" =~ "$HOME/.local/bin:$HOME/bin:"]]
then
 PATH="$HOME/.local/bin:$HOME/bin:$PATH"
fi
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions
if [-d ~/.bashrc.d]; then
 for rc in ~/.bashrc.d/*; do
 if [-f "$rc"]; then
 . "$rc"
 fi
 done
fi

unset rc

1.10 - Rappel des Expressions Régulières dans Bash

Option Description
^ Trouver la chaîne au début de la ligne
$ Trouver la chaîne à la fin de la ligne
\ Annuler l'effet spécial du caractère suivant
[] Trouver n'importe quel des caractères entre les crochets
[^] Exclure les caractères entre crochets
. Trouver n'importe quel caractère sauf à la fin de la ligne
* Trouver 0 ou plus du caractère qui précède
\< Trouver la chaîne au début d'un mot
\> Trouver la chaîne à la fin d'un mot

2026/02/04 19:49 28/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Option Description
? Trouver 0 ou 1 occurrence de ce qui précède
+ Trouver 1 ou n d'occurrences de ce qui précède
{x,y} Trouver de x à y occurrences de ce qui précède
{x} Trouver exactement le nombre x d'occurrences de ce qui précède
{x,} Trouver le nombre x ou plus d'occurrences de ce qui précède
{,x} Trouver le nombre x ou moins d'occurrences de ce qui précède
() Faire un ET des expressions régulières entre les paranthèses
| Faire un OU des expressions régulières se trouvant de chaque côté du pipe

[:alnum:] Caractères alphanumériques : [:alpha :] et [:digit :]; dans la locale 'C' et le codage de caractères ASCII, cette expression est identique à
[0-9A-Za-z].

[:alpha:] Caractères alphabétiques : [:lower :] et [:upper :]; dans les paramètres régionaux 'C' et le codage de caractères ASCII, cette expression est
identique à [A-Za-z].

[:blank:] Caractères vides : espace et tabulation.
[:cntrl:] Caractères de contrôle. En ASCII, ces caractères ont les codes octaux 000 à 037, et 177 (DEL).
[:digit:] Chiffres : 0 1 2 3 4 5 6 7 8 9.
[:graph:] Caractères graphiques : [:alnum :] et [:punct :].
[:lower:] Lettres minuscules ; dans la locale « C » et le codage de caractères ASCII : a b c d e f g h i j k l m n o p q r s t u v w x y z.
[:print:] Caractères imprimables : [:alnum :], [:punct :] et espace.

[:punct:] Caractères de ponctuation ; dans les paramètres régionaux « C » et le codage des caractères ASCII : ! « # $ % & ' () * + , - . / : ; < = > ? @ [
\] ^ _ ' { | } ~.

[:space:] Caractères d'espacement : dans les paramètres régionaux « C », il s'agit de la tabulation, de la nouvelle ligne, de la tabulation verticale, du
saut de page, du retour chariot et de l'espacement.

[:upper:] Lettres majuscules : dans les paramètres régionaux « C » et le codage des caractères ASCII : A B C D E F G H I J K L M N O P Q R S T U V W X
Y Z.

[:xdigit:] Chiffres hexadécimaux : 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f.
\b Faire correspondre la chaîne vide au bord d'un mot.
\B Correspondre à la chaîne vide à condition qu'elle ne se trouve pas à la périphérie d'un mot.
\< Correspondre à la chaîne vide au début d'un mot.
\> Correspondre à la chaîne vide à la fin d'un mot.
\w Correspondre au mot constituant. Synonyme de [_[:alnum :]].
\W Correspondre à un constituant non-mot. Synonyme de [^_[:alnum :]].

2026/02/04 19:49 29/29 RH13401 - Les Scripts Shell

www.ittraining.team - https://ittraining.team/

Option Description
\s Correspondre à l'espace blanc. Synonyme de '[[:espace :]`].
\S Correspondre à un espace non blanc. Synonyme de [^[:espace :]].

Copyright © 2024 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:l100

Last update: 2024/10/21 11:20

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:redhat:rh134:l100

	RH13401 - Les Scripts Shell
	Contenu du Module
	LAB #1 - Les Scripts Shell
	1.1 - Exécution
	1.2 - La commande read
	Code de retour
	La variable IFS

	1.3 - La commande test
	Tests de Fichiers
	Tests de chaînes de caractère
	Tests sur des nombres
	Les opérateurs
	Tests d'environnement utilisateur

	1.4 - La commande [[expression]]
	1.5 - Opérateurs du shell
	1.6 - L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits

	1.7 - Structures de contrôle
	If
	case
	Exemple

	1.8 - Boucles
	for
	while
	Exemple

	1.9 - Scripts de Démarrage
	~/.bash_profile
	~/.bashrc

	1.10 - Rappel des Expressions Régulières dans Bash

