
2025/08/11 11:52 1/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Version : 2024.01

Last update : 2024/11/26 10:56

RH12405 - The Command Line Interface

Contents

RH12405 - The Command Line Interface
Contents
The Shell
LAB #1 - The /bin/bash Shell

1.1 - Shell Internal and External Commands
1.2 - Aliases
1.3 - Defining a user's shell
1.4 - The Prompt
1.5 - Recalling commands
1.6 - Generating file name endings
1.7 - The interactive shell

Character *
Character ?
Character []

1.8 - The extglob option
?(expression)
*(expression)
+(expression)
@(expression)
!(expression)
Protecting Metacharacters

1.9 - Exit Codes
1.10 - Redirections

2025/08/11 11:52 2/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

1.11 - Pipes
1.12 - Command substitution
1.13 - Command chaining
1.14 - Displaying shell variables

Main variables
Internationalization and Localization Variables
Special variables

1.15 - The env command
1.16 - Bash Shell options

Examples
noclobber
noglob
nounset

The Shell

A shell is a command line interpreter (C.L.I). It is used as an interface to give instructions or commands to the operating system.

The word shell is generic. There are many shells in the Unix world, for example :

Shell Name Release Date Inventer Command Comments
tsh Thompson Shell 1971 Ken Thompson sh The first shell
sh Bourne Shell 1977 Stephen Bourne sh The shell common to all Unix and Linux OSs: /bin/sh
csh C-Shell 1978 Bill Joy csh The BSD shell: /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh A fork of the csh shell: /bin/tcsh
ksh Korn Shell 1980 David Korn ksh Open Source since 2005: /bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash The default shell for Linux, MacOS X, Solaris 11: /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh is an extended Bourne shell with a large number of improvements, including
some features of bash, ksh, and tcsh: /usr/bin/zsh

Under RHEL 9 the /bin/sh shell is a symbolic link to /bin/bash :

2025/08/11 11:52 3/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ ls -l /bin/sh
lrwxrwxrwx. 1 root root 4 Feb 15 2024 /bin/sh -> bash

LAB #1 - The /bin/bash Shell

This module is about using the bash shell under Linux. The bash shell allows you to:

Recall previously typed commands
Auto-generate the end of a file name
Use Aliases
Use tables
Use C language numerical and math variables
Manage strings
Use Functions

A command always begins with a keyword. This keyword is interpreted by the shell according to the type of command and in the following order:

An Alias,
A Function,
A Built-in Command,
An External Command.

1.1 - Built-in and External Shell Commands

Built-in shell commands are commands such as cd. To check the type of command, use the type command:

[trainee@redhat9 ~]$ type cd
cd is a shell builtin

Commands external to the shell are executable binaries or scripts, generally located in /bin, /sbin, /usr/bin or /usr/sbin :

2025/08/11 11:52 4/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ type ifconfig
ifconfig is /usr/sbin/ifconfig

1.2 - Aliases

Aliases are names used to designate a command or a sequence of commands and are specific only to the shell that created them and to the user's
environment :

[trainee@redhat9 ~]$ type ls
ls is aliased to `ls --color=auto'

Important: Note that in this case the ls alias is indeed an alias that uses the ls command
itself.

An alias is defined using the alias command:

[trainee@redhat9 ~]$ alias dir=‘ls -l’
[trainee@redhat9 ~]$ dir
total 4
-rw-r--r--. 1 trainee trainee 0 Sep 25 15:11 aac
-rw-r--r--. 1 trainee trainee 0 Sep 25 15:11 abc
-rw-r--r--. 1 trainee trainee 0 Sep 25 15:11 bca
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Desktop
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Documents
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Downloads
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Music
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Pictures
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Public
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Templates
drwxr-xr-x. 2 trainee trainee 6 Oct 19 2023 Videos

2025/08/11 11:52 5/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

-rw-r--r--. 1 trainee trainee 442 Sep 25 14:24 vitext
-rw-r--r--. 1 trainee trainee 0 Sep 25 15:11 xyz

Important: Note that the dir command actually exists. Creating an alias that is called dir
implies that the alias will be executed instead of the dir command.

The list of defined aliases can be viewed using the alias command:

[trainee@redhat9 ~]$ alias
alias dir=‘ls -l’
alias egrep=‘egrep --color=auto’
alias fgrep=‘fgrep --color=auto’
alias grep=‘grep --color=auto’
alias l.=‘ls -d .* --color=auto’
alias ll=‘ls -l --color=auto’
alias ls=‘ls --color=auto’
alias xzegrep=‘xzegrep --color=auto’
alias xzfgrep=‘xzfgrep --color=auto’
alias xzgrep=‘xzgrep --color=auto’
alias zegrep=‘zegrep --color=auto’
alias zfgrep=‘zfgrep --color=auto’
alias zgrep=‘zgrep --color=auto’

Important: Note that this list contains, indiscriminately, aliases defined in system startup
files as well as the dir alias created by trainee that is only available to trainee in the
current terminal.

To force execution of a command and not the alias you must precede the command with the \ character:

2025/08/11 11:52 6/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ \dir
aac abc bca Desktop Documents Downloads Music Pictures Public Templates Videos vitext xyz

To delete an alias, use the unalias command:

[trainee@redhat9 ~]$ unalias dir
[trainee@redhat9 ~]$ dir
aac abc bca Desktop Documents Downloads Music Pictures Public Templates Videos vitext xyz

1.3 - Defining a user's shell

The user shell is defined by root in the last field of the /etc/passwd file:

[trainee@redhat9 ~]$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin
systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
polkitd:x:998:996:User for polkitd:/:/sbin/nologin
avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin
tss:x:59:59:Account used for TPM access:/dev/null:/sbin/nologin

2025/08/11 11:52 7/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

colord:x:997:993:User for colord:/var/lib/colord:/sbin/nologin
clevis:x:996:992:Clevis Decryption Framework unprivileged user:/var/cache/clevis:/usr/sbin/nologin
rtkit:x:172:172:RealtimeKit:/proc:/sbin/nologin
sssd:x:995:991:User for sssd:/:/sbin/nologin
geoclue:x:994:990:User for geoclue:/var/lib/geoclue:/sbin/nologin
libstoragemgmt:x:988:988:daemon account for libstoragemgmt:/:/usr/sbin/nologin
systemd-oom:x:987:987:systemd Userspace OOM Killer:/:/usr/sbin/nologin
setroubleshoot:x:986:986:SELinux troubleshoot server:/var/lib/setroubleshoot:/sbin/nologin
pipewire:x:985:984:PipeWire System Daemon:/var/run/pipewire:/sbin/nologin
flatpak:x:984:983:User for flatpak system helper:/:/sbin/nologin
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
cockpit-ws:x:983:982:User for cockpit web service:/nonexisting:/sbin/nologin
cockpit-wsinstance:x:982:981:User for cockpit-ws instances:/nonexisting:/sbin/nologin
gnome-initial-setup:x:981:980::/run/gnome-initial-setup/:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/usr/share/empty.sshd:/sbin/nologin
chrony:x:980:979:chrony system user:/var/lib/chrony:/sbin/nologin
dnsmasq:x:979:978:Dnsmasq DHCP and DNS server:/var/lib/dnsmasq:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
trainee:x:1000:1000:trainee:/home/trainee:/bin/bash

However the user can change their shell using the chsh command. The shells available to system users are listed in the /etc/shells file. Enter the cat
/etc/shells command:

[trainee@redhat9 ~]$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash

Then use the echo command to display the current trainee shell:

[trainee@redhat9 ~]$ echo $SHELL
/bin/bash

2025/08/11 11:52 8/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Important: Note that under RHEL 9, the system informs us that the current shell of the
trainee user is /bin/bash and not /usr/bin/bash. This is because the /bin directory is a
symbolic link pointing to the /usr/bin directory.

Then change the trainee shell using the chsh command, specifying the value of /bin/sh for the new shell:

[trainee@redhat9 ~]$ chsh
Changing shell for trainee.
New shell [/bin/bash]: /bin/sh
Password: trainee
Shell changed.

Important: Note that the password entered will not be visible.

Next, check the active shell for trainee :

[trainee@redhat9 ~]$ echo $SHELL
/bin/bash

Lastly check the shell stipulated in the /etc/passwd file for trainee:

[trainee@redhat9 ~]$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee:/home/trainee:/bin/sh

Important: You will notice that the active shell is always /bin/bash whereas the shell
stipulated in the /etc/passwd file is the /bin/sh. The /bin/sh shell will only become
trainee's active shell the next time it connects to the system.

2025/08/11 11:52 9/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Change your shell to /bin/bash again using the chsh command:

[trainee@redhat9 ~]$ chsh
Changing shell for trainee.
New shell [/bin/sh]: /bin/bash
Password: trainee
Shell changed.

Important: Note that the password entered will not be visible.

1.4 - The Prompt

A user's prompt depends on their status:

$ for a normal user,
for root.

1.5 - Recalling commands

The /bin/bash shell can be used to recall the last commands entered. To see the list of memorised commands, use the history command:

[trainee@redhat9 ~]$ history | more
 1 su -
 2 exit
 3 su -
 4 clear
 5 cd /
 6 ls -l
 7 cd afs

2025/08/11 11:52 10/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

 8 ls
 9 cd /
 10 su -
 11 cd ~
 12 vi vitext
 13 view vitext
 14 vi vitext
 15 vi .exrc
 16 vi vitext
 17 su -
 18 stty -a
 19 date
 20 who
 21 df
 22 df -h
 23 free
 24 free -h
 25 whoami
 26 su -
 27 pwd
 28 cd /tmp
 29 pwd
 30 ls
 31 su -
 32 touch test
 33 ls
 34 echo fenestros
 35 cp test ~
 36 ls -l ~
 37 file ~/test
--More--
[q]

2025/08/11 11:52 11/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Important: The history is specific to each user.

The command history is in emacs mode by default. As a result, the last command is recalled using the [Up Arrow] key or the [CTRL]-[P] keys and
the next command is recalled using the [Down Arrow] key or the [CTRL]-[N] keys :

Control Character Action
[CTRL]-[P] (= Up Arrow) Navigates backwards through the list
[CTRL]-[N] (= Down Arrow) Navigates forwards through the list

To move through the history line :

Control Character Action
[CTRL]-[A] Move to the beginning of the line
[CTRL]-[E] Move to the end of the line
[CTRL]-[B] Move one character to the left
[CTRL]-[F] Move one character to the right
[CTRL]-[D] Delete the character under the cursor

To search the history, use the keys :

Control Character Action
[CTRL]-[R] string Search backwards for string in the history. Using [CTRL]-[R] again will search for the previous occurence of string
[CTRL]-[S] string Search forwards for string in the history. Using [CTRL]-[S] again will search for the next occurence of string
[CTRL]-[G] Quit the search mode

It is also possible to recall the last command in the history using the !! characters:

[trainee@redhat9 ~]$ ls
aac abc bca Desktop Documents Downloads Music Pictures Public Templates Videos vitext xyz

2025/08/11 11:52 12/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$!!
ls
aac abc bca Desktop Documents Downloads Music Pictures Public Templates Videos vitext xyz

You can recall a specific command from the history by using the ! character followed by the number of the command to be recalled:

[trainee@redhat9 ~]$ history
 1 su -
 2 exit
 3 su -
 4 clear
 5 cd /
 6 ls -l
 7 cd afs
 8 ls
 9 cd /
 10 su -
...
 85 echo $SHELL
 86 cat /etc/passwd | grep trainee
 87 chsh
 88 history | more
 89 clear
 90 ls
 91 history

[trainee@redhat9 ~]$!90
ls
aac abc bca Desktop Documents Downloads Music Pictures Public Templates Videos vitext xyz

The command callback function is set up for all users in the /etc/profile file. In this file, variables concerning the order callback can be defined. The
most important is HISTSIZE :

[trainee@redhat9 ~]$ cat /etc/profile | grep HISTSIZE

2025/08/11 11:52 13/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

You will notice that in the previous case, the value of HISTSIZE is 1000. This implies that the last thousand commands are memorised.

The memorised commands are stored in the ~/.bash_history file. The commands for the current session are not saved in this file until the session is
closed:

[trainee@redhat9 ~]$ nl .bash_history | tail
 59 ls
 60 ls | sort
 61 ls | sort -r
 62 more /etc/services
 63 less /etc/services
 64 find acc
 65 find aac
 66 su -
 67 sleep 10
 68 su -

Important: Note the use of the nl command to number the lines in the display of the
contents of the .bash_history file.

1.6 - Generating file name endings

The /bin/bash shell is used to generate file name endings. This is accomplished by using the [Tab] key. In the following example, the command entered
is :

$ ls .b [Tab][Tab][Tab]

2025/08/11 11:52 14/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ ls .bash
.bash_history .bash_logout .bash_profile .bashrc

Important: Note that by pressing the Tab key three times the shell offers 4 filename
completion possibilities. This is because, without more information, the shell does not
know which file is involved.

The same possibility exists for generating command name endings. In this case enter the following command:

$ mo [Tab][Tab]

Press the Tab key twice. You will get a window similar to this one:

[trainee@redhat9 ~]$ mo
modinfo modulemd-validator more mount.composefs mount.fuse3
modprobe monitor-sensor mount mount.fuse mountpoint

1.7 - The interactive shell

When using the shell, we often need to execute a command on several files instead of processing them individually. For this purpose we can use
metacharacters.

Metacharacter Description
* Matches one or more characters
? Matches a single character
[abc] Matches any one of the characters between square brackets
[!abc] Matches any character except those between square brackets
[m-t] Matches any character from m through to t
[!m-t] Matches any character other than m through to t

2025/08/11 11:52 15/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Metacharacter Description
?(expression1|expression2| …) Matches 0 or 1 occurence of expression1 OR 0 or 1 occurence of expression2 OR …
*(expression1|expression2| …) Matches 0 to x occurences of expression1 OR 0 to x occurences of expression2 OR …
+(expression1|expression2| …) Matches 1 to x occurences of expression1 OR 1 to x occurences of expression2 OR …
@(expression1|expression2| …) Matches 1 occurrence of expression1 OR 1 occurence of expression2 OR …
!(expression1|expression2| …) Matches 0 occurrences of expression1 OR 0 occurrences of expression2 OR …

The * Metacharacter

In your home directory, create a training directory. Then create 5 files in this directory named f1, f2, f3, f4 and f5 respectively:

[trainee@redhat9 ~]$ mkdir training
[trainee@redhat9 ~]$ cd training
[trainee@redhat9 training]$ touch f1 f2 f3 f4 f5
[trainee@redhat9 training]$ ls
f1 f2 f3 f4 f5

To demonstrate the use of the metacharacter *, enter the following command:

[trainee@redhat9 training]$ echo f*
f1 f2 f3 f4 f5

Important: Note that the * character replaces a character or a string of characters.

The ? Metacharacter

Now create the f52 and f62 files:

2025/08/11 11:52 16/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 training]$ touch f52 f62

Then enter the following command:

[trainee@redhat9 training]$ echo f?2
f52 f62

Important: Note that the ? character replaces a single character.

The [] Metacharacter

Usage can take several different forms:

Metacharacter Description
[xyz] Represents either x or y or z
[m-t] Represents a character in the range m to t
[!xyz] Represents any character other than x or y or z
[!m-t] Represents any character outside of the range m to t

To demonstrate the use of the characters [and], create the file a100 :

[trainee@redhat9 training]$ touch a100

Then enter the following commands and note the result:

[trainee@redhat9 training]$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62

2025/08/11 11:52 17/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Important: Note here that all files starting with the letters a, b, c, d, e or f are displayed
on the screen.

[trainee@redhat9 training]$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Important: Note here that all files starting with the letters a or f are displayed on the
screen.

[trainee@redhat9 training]$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Important: Note here that all files are displayed on the screen, with the exception of one
file beginning with the letter a .

[trainee@redhat9 training]$ echo [a-b]*
a100

Important: Note here that only the file starting with the letter a is displayed on the screen
as there are no files starting with the letter b.

[trainee@redhat9 training]$ echo [a-f]

2025/08/11 11:52 18/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[a-f]

Important: Note that in this case, there are no files named a, b, c, d, e or f. For this
reason, having found no correspondence between the filter used and the objects in the
current directory, the echo command returns the filter passed as an argument, i.e. [a-f].

1.8 - The extglob option

Enable the extglob option in the bash shell so that you can use ?(expression), *(expression), +(expression), @(expression) and !(expression):

[trainee@redhat9 training]$ shopt -s extglob

The shopt command is used to enable or disable options for optional shell behaviour. The list of options can be viewed by executing the shopt
command without options:

[trainee@redhat9 training]$ shopt
autocd off
assoc_expand_once off
cdable_vars off
cdspell off
checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off
compat42 off
compat43 off

2025/08/11 11:52 19/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

compat44 off
complete_fullquote on
direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globasciiranges on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
inherit_errexit off
interactive_comments on
lastpipe off
lithist off
localvar_inherit off
localvar_unset off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off
progcomp on
progcomp_alias off

2025/08/11 11:52 20/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

promptvars on
restricted_shell off
shift_verbose off
sourcepath on
syslog_history off
xpg_echo off

?(expression)

Create the files f, f.txt, f123.txt, f123123.txt, f123123123.txt :

[trainee@redhat9 training]$ touch f f.txt f123.txt f123123.txt f123123123.txt

Enter the following command:

[trainee@redhat9 training]$ ls f?(123).txt
f123.txt f.txt

Important: Note here that the command displays files with names containing 0 or 1
occurrences of the string 123.

*(expression)

Enter the following command:

[trainee@redhat9 training]$ ls f*(123).txt
f123123123.txt f123123.txt f123123.txt f.txt

2025/08/11 11:52 21/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Important: Note here that the command displays files with names containing from 0 up to
x occurrences of the string 123.

+(expression)

Enter the following command:

[trainee@redhat9 training]$ ls f+(123).txt
f123123123.txt f123123.txt f123.txt

Important : Note here that the command displays files with names containing between 1
and x occurrences of the string 123.

@(expression)

Enter the following command:

[trainee@redhat9 training]$ ls f@(123).txt
f123.txt

Important: Note here that the command displays files with names containing 1 single
occurrence of the string 123.

2025/08/11 11:52 22/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

!(expression)

Enter the following command:

[trainee@redhat9 training]$ ls f!(123).txt
f123123123.txt f123123.txt f.txt

Important: Note here that the command only displays files with a name that does not
contain the string 123.

Protecting Metacharacters

In order to use a metacharacter in a literal context, an escape character must be used. There are three escape characters:

Character Description
\ Escapes the character which immediately follows
' ' Protects any character between the two '
“ ” Protects any character between the two “ except the following: $, \ and '

To illustrate the use of escape characters, consider the following command:

echo * is a metacharacter [Enter].

When you enter this command in your training directory, you will get a window similar to this one:

[trainee@redhat9 training]$ echo * is a metacharacter
a100 f f1 f123123123.txt f123123.txt f123123.txt f2 f3 f4 f5 f52 f62 f.txt is a metacharacter

[trainee@redhat9 training]$ echo * is a metacharacter

2025/08/11 11:52 23/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

* is a metacharacter

[trainee@redhat9 training]$ echo "* is a metacharacter"
* is a metacharacter

[trainee@redhat9 training]$ echo ‘* is a metacharacter’
* is a metacharacter

1.9 - Exit codes

Each command returns an exit status when it is executed. This exit status is stored in a special variable: $?.

For example:

[trainee@redhat9 training]$ cd ..
[trainee@redhat9 ~]$ mkdir codes
[trainee@redhat9 ~]$ echo $?
0
[trainee@redhat9 ~]$ touch codes/exit.txt
[trainee@redhat9 ~]$ rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
[trainee@redhat9 ~]$ echo $?
1

In this example the codes directory was created successfully. The exit code stored in the $? variable is a zero.

Deleting the directory encountered an error because codes contained the file return. The exit code stored in the $? variable is one.

If the exit code is zero, the last command was executed without error.

If the exit code is other than zero, the last command was completed with an error.

2025/08/11 11:52 24/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

1.10 - Redirections

Your dialogue with the Linux system uses input and output channels. The keyboard is called the standard input channel and the screen is called the
standard output channel:

In other words, when you type a command on the keyboard, you see the result of that command on the screen.

Sometimes, however, it is useful to redirect the standard output channel to a file. In this way, the result of a command such as free can be stored in a
file for future reference:

This effect is achieved by using a redirection:

[trainee@redhat9 ~]$ pwd
/home/trainee
[trainee@redhat9 ~]$ cd training
[trainee@redhat9 training]$ free > file
[trainee@redhat9 training]$ cat file
 total used free shared buff/cache available
Mem: 7869560 996400 4964048 15324 2229600 6873160
Swap: 5242876 0 5242876

If the target file does not exist, it is created and its contents will be the result of the free command.

On the other hand if the file already exists, it will be overwritten :

[trainee@redhat9 training]$ date > file
[trainee@redhat9 training]$ cat file
Thu Sep 26 12:49:11 PM CEST 2024

To add additional data to the same target file, a double redirect must be used:

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aredhat%3Arh124en%3Al104&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aredhat%3Arh124en%3Al104&media=free:redirection.png

2025/08/11 11:52 25/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 training]$ free >> file
[trainee@redhat9 training]$ free >> file
[trainee@redhat9 training]$ cat file
Thu Sep 26 12:49:11 PM CEST 2024
 total used free shared buff/cache available
Mem: 7869560 996392 4964048 15324 2229608 6873168
Swap: 5242876 0 5242876

This way, the output of the free command will be added to the end of your file after the information in the free command.

Important: Note that the standard output can only be redirected in one direction.

Input and output channels are numbered:

0 = The Standard Input Channel
1 = The Standard Output Channel
2 = The Error Channel

The following command will create a file named errorlog that contains error messages from the execution of the rmdir command:

[trainee@redhat9 training]$ cd ..
[trainee@redhat9 ~]$ rmdir training/ 2>errorlog
[trainee@redhat9 ~]$ cat errorlog
rmdir: failed to remove ‘training/’: Directory not empty

In fact the error is generated because the training directory is not empty.

You can join file descriptors using the & character:

[trainee@redhat9 ~]$ free > file 2>&1

2025/08/11 11:52 26/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

The syntax 2>&1 sends the output of channel 2 to the same place as channel 1, namely the file named file.

It is possible to modify the standard input channel in order to read information from a file. In this case the redirection is obtained by using the <
character:

[trainee@redhat9 ~]$ wc -w < errorlog
8

In this example the wc command counts the number of words (-w) in the errorlog file and displays it on the screen :

Other redirections exist:

Redirection Definition
&> Join file descriptors 1 and 2.
<< Takes the text typed on the next lines as standard input until EOF is found at the beginning of a line.
<> Allows the use of the same file as STDIN and STDOUT.

1.11 - Pipes

It is also possible to link commands using a | pipe.

In this case, the output channel of the command to the left of the pipe is sent to the input channel of the command to the right of the pipe :

[trainee@redhat9 ~]$ ls | wc -w
17

This command, run in your home directory, takes the output of the ls command and asks the wc command to count the number of words included in
the output of ls:

Important: Note that it is possible to link several tubes in the same command.

2025/08/11 11:52 27/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Remember that the standard output can only be redirected in one direction. In order to be able to redirect the standard output to a file and view it on
screen, we need to use the tee command with a pipe:

[trainee@redhat9 ~]$ date | tee file1
Thu Sep 26 12:54:36 PM CEST 2024
[trainee@redhat9 ~]$ cat file1
Thu Sep 26 12:54:36 PM CEST 2024

This same technique allows us to create two files:

[trainee@redhat9 ~]$ date | tee file1 > file2
[trainee@redhat9 ~]$ cat file1
Thu Sep 26 12:55:11 PM CEST 2024
[trainee@redhat9 ~]$ cat file2
Thu Sep 26 12:55:11 PM CEST 2024

Important: By default the tee command overwrites the destination file. To add additional
data to the same target file, the -a option to the tee command should be used.

1.12 - Command substitutions

It is sometimes interesting, particularly in scripts, to replace a command with its output value. To illustrate this point, let's consider the following
commands:

[trainee@redhat9 ~]$ echo date
date

[trainee@redhat9 ~]$ echo $(date)
Thu Sep 26 12:56:02 PM CEST 2024

2025/08/11 11:52 28/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ echo `date`
Thu Sep 26 12:56:17 PM CEST 2024

Important: Note the format of each $(command) or `commande` substitution. On a
French keyboard, the anti-coast is accessed using the Alt Gr and 77 keys.

1.13 - Command chaining

It is possible to group commands together using a sub-shell :

$ (ls -l; ps; who) > list [Enter]

This example sends the results of the three commands to the list file, processing them in the background.

The commands can also be chained according to the exit code of the previous command.

&& is used to ensure that the second command is executed if the output status value is 0, i.e. there were no errors.

|| is used to ensure the reverse.

The syntax of this command is :

Command1 && Command2

In this case, Command2 is only executed if Command1 has run without error.

Or :

Command1 || Command2

2025/08/11 11:52 29/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

In this case, Command2 is executed if Command1 has encountered an error.

1.14 - Displaying shell variables

A shell variable can be displayed using the command :

$ echo $VARIABLE [Input]

Main variables

Variable Description
BASH Complete path to current shell.
BASH_VERSION Shell version.
EUID EUID of the current user.
UID UID of the current user.
PPID PID of the parent of the current process.
PWD The current directory.
OLDPWD The previous current directory (like the cd -command).
RANDOM A random number between 0 and 32767.
SECONDS The numbers of seconds since the shell was started.
LINES The number of lines in a screen.
COLUMNS The number of columns in a screen .
HISTFILE The history file.
HISTFILESIZE The history file size.
HISTSIZE The number of commands that can be saved to the history file.
HISTCMD The current command's number in the History.
HISTCONTROL ignorespace or ignoredups or ignoreboth
HOME The user's home directory.
HOSTTYPE Machine type.
OSTYPE The OS type.

2025/08/11 11:52 30/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

Variable Description
MAIL The file containing the user's mail.
MAILCHECK Frequency in seconds that a user's mail is checked.
PATH The paths to executables.
PROMPT_COMMAND Command executed before each prompt is displayed.
PS1 User's default prompt.
PS2 User's 2nd level default prompt.
PS3 User's 3rd level prompt.
PS4 User's 4th level prompt.
SHELL User's current shell.
SHLVL The number of shell instances.
TMOUT The number of seconds less 60 before an unused terminal gets sent the exit command.

Internationalization and Localization Variables

Internationalization, also known as i18n because there are 18 letters between the letter I and the letter n in the word Internationalization, involves
adapting software to parameters that vary from one region to another:

Text processing differences,
Writing direction,
Different systems of numerals,
Telephone numbers, addresses and international postal codes,
Weights and measures,
Date/time format,
Paper sizes,
Keyboard layout,
etc …

The Localization, also called l10n because there are 10 letters between the letter L and the letter n in the word Localization, consists of modifying the
internalisation according to a specific region.

The complete country code takes the following form: language-PAYS.character_set. For example, for the English language the language-PAYS
values are :

2025/08/11 11:52 31/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,
en_ZA = South Africa,
en_CA = Canada.

The most important system variables containing regionalisation information are :

Variable Description
LC_ALL With a non-zero value, this takes precedence over the value of all other internationalisation variables.
LANG Provides a default value for environment variables whose value is null or undefined.
LC_CTYPE Determines the regional parameters for interpreting the sequence of bytes of text data in characters.

For example:

[trainee@redhat9 ~]$ echo $LC_ALL

[trainee@redhat9 ~]$ echo $LC_CTYPE

[trainee@redhat9 ~]$ echo $LANG
en_US.UTF-8
[trainee@redhat9 ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8’
LC_NUMERIC="en_US.UTF-8’
LC_TIME="en_US.UTF-8’
LC_COLLATE="en_US.UTF-8’
LC_MONETARY="en_US.UTF-8
LC_MESSAGES="en_US.UTF-8’
LC_PAPER="en_US.UTF-8’
LC_NAME="en_US.UTF-8’
LC_ADDRESS="en_US.UTF-8’
LC_TELEPHONE="en_US.UTF-8’

2025/08/11 11:52 32/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

LC_MEASUREMENT="en_US.UTF-8’
LC_IDENTIFICATION="en_US.UTF-8
LC_ALL=

Special variables

Variable Description
$LINENO Contains the current line number of the script or function being executed
$$ Contains the PID of the current process
$PPID Contains the PID of the parent of the current process
$0 Contains the name of the current script
$1, $2 … Contains respectively the 1st, 2nd etc arguments passed to the script
$# Contains the total number of arguments passed to the script
$* Contains all of the arguments passed to the script
$@ Contains all of the arguments passed to the script

1.15 - The env command

The env command sends the values of the system variables in the environment of the user invoking it to the standard output:

[trainee@redhat9 ~]$ env
SHELL=/bin/bash
HISTCONTROL=ignoredups
HISTSIZE=1000
HOSTNAME=redhat9.ittraining.loc
PWD=/home/trainee
LOGNAME=trainee
XDG_SESSION_TYPE=tty
MOTD_SHOWN=pam
HOME=/home/trainee
LANG=en_US.UTF-8
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;37;41

2025/08/11 11:52 33/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*
.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip
=01;31:*.z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.zst=01;31:*.tzst=01;31:*.b
z2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;
31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.w
im=01;31:*.swm=01;31:*.dwm=01;31:*.esd=01;31:*.jpg=01;35:*.jpeg=01;35:*.mjpg=01;35:*.mjpeg=01;35:*.gif=01;35:*.bm
p=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01
;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35
:*.webm=01;35:*.webp=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.
wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;
35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.f
lac=01;36:*.m4a=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=0
1;36:*.oga=01;36:*.opus=01;36:*.spx=01;36:*.xspf=01;36:
SSH_CONNECTION=10.0.2.1 37578 10.0.2.101 22
XDG_SESSION_CLASS=user
SELINUX_ROLE_REQUESTED=
TERM=xterm-256color
LESSOPEN=||/usr/bin/lesspipe.sh %s
USER=trainee
SELINUX_USE_CURRENT_RANGE=
SHLVL=1
XDG_SESSION_ID=4
XDG_RUNTIME_DIR=/run/user/1000
SSH_CLIENT=10.0.2.1 37578 22
which_declare=declare -f
XDG_DATA_DIRS=/home/trainee/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share:/u
sr/share
PATH=/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
SELINUX_LEVEL_REQUESTED=
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus
MAIL=/var/spool/mail/trainee
SSH_TTY=/dev/pts/0
BASH_FUNC_which%%=() { (alias;
 eval ${which_declare}) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-dot $@

2025/08/11 11:52 34/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

}
_=/usr/bin/env
OLDPWD=/home/trainee/training

The command can also be used to set a variable when executing a command. For example, to run xterm with the EDITOR variable set to vi:

$ env EDITOR=vim xterm

1.16 - Bash Shell options

To view the bash shell options, use the set command:

$ set -o [Enter]

For example:

[trainee@redhat9 ~]$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off

2025/08/11 11:52 35/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

To activate an option it is again convenient to use the set command:

[trainee@redhat9 ~]$ set -o allexport
[trainee@redhat9 ~]$ set -o
allexport on
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off

2025/08/11 11:52 36/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

Note that the allexport option has been enabled.

To disable an option, we use the set command with the +o option:

$ set +o allexport [Enter]

[trainee@redhat9 ~]$ set +o allexport
[trainee@redhat9 ~]$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off

2025/08/11 11:52 37/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

These are the most interesting options:

Option Default value Description
allexport off The shell automatically exports all variables
emacs on emacs editing mode
noclobber off Simple re-directions do not squash the target file if it exists
noglob off Turns off metacharacters
nounset off The shell will return an error if the variable is not set
verbose off Echos back the typed command
vi off vi editing mode

Examples

noclobber

[trainee@redhat9 ~]$ set -o noclobber
[trainee@redhat9 ~]$ pwd > file
-bash: file: cannot overwrite existing file
[trainee@redhat9 ~]$ pwd >| file

2025/08/11 11:52 38/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ cat file
/home/trainee
[trainee@redhat9 ~]$ set +o noclobber

Important: Note that the noclobber option can be bypassed by using the redirect
followed by the | character.

noglob

[trainee@redhat9 ~]$ set -o noglob
[trainee@redhat9 ~]$ echo *
*
[trainee@redhat9 ~]$ set +o noglob
[trainee@redhat9 ~]$ echo *
aac abc bca codes Desktop Documents Downloads errorlog file file1 file2 list Music Pictures Public Templates
training Videos vitext xyz

Important: Note that the effect of the metacharacter is cancelled under the influence of
the noglob option.

nounset

[trainee@redhat9 ~]$ set -o nounset
[trainee@redhat9 ~]$ echo $FENESTROS
-bash: FENESTROS: unbound variable

2025/08/11 11:52 39/39 RH12405 - The Command Line Interface

Printed on 2025/08/11 11:52

[trainee@redhat9 ~]$ set +o nounset
[trainee@redhat9 ~]$ echo $FENESTROS

[trainee@redhat9 ~]$

Important: Note that the non-existent variable $FENESTROS is identified as such under
the influence of the nounset option. Now the usual behavior of Linux is to return an empty
line which does not indicate whether the variable does not exist or whether it is simply
empty.

Copyright © 2024 Hugh Norris.

	RH12405 - The Command Line Interface
	Contents
	The Shell
	LAB #1 - The /bin/bash Shell
	1.1 - Built-in and External Shell Commands
	1.2 - Aliases
	1.3 - Defining a user's shell
	1.4 - The Prompt
	1.5 - Recalling commands
	1.6 - Generating file name endings
	1.7 - The interactive shell
	The * Metacharacter
	The ? Metacharacter
	The [] Metacharacter

	1.8 - The extglob option
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)

	Protecting Metacharacters
	1.9 - Exit codes
	1.10 - Redirections
	1.11 - Pipes
	1.12 - Command substitutions
	1.13 - Command chaining
	1.14 - Displaying shell variables
	Main variables
	Internationalization and Localization Variables
	Special variables

	1.15 - The env command
	1.16 - Bash Shell options
	Examples
	noclobber
	noglob
	nounset

