2026/02/04 06:29 1/19 PostgreSQL par MICHAEL et JABEUR

(=]
PostgreSQL par MICHAEL et JABEUR

1.Historique et présentation de PostgreSQL

PostgreSQL est un systeme de gestion de base de données relationnelle et objet (SGBDRO). C'est un outil libre disponible selon les termes d'une
licence de type BSD. Ce systeme est concurrent d'autres systemes de gestion de base de données, qu'ils soient libres (comme MariaDB, MySQL et
Firebird), ou propriétaires (comme Oracle, Sybase, DB2, Informix et Microsoft SQL Server). Comme les projets libres Apache et Linux, PostgreSQL n'est
pas contrdlé par une seule entreprise, mais est fondé sur une communauté mondiale de développeurs et d'entreprises. L'histoire de PostgreSQL
remonte a la base de données Ingres, développée a Berkeley par Michael Stonebraker. Lorsque ce dernier décida en 1985 de recommencer le
développement de zéro, il nomma le logiciel Postgres, comme raccourci de post-Ingres. Lors de I'ajout des fonctionnalités SQL en 1995, Postgres fut
renommé Postgres95. Ce nom fut changé a la fin de 1996 en PostgreSQL.

Le projet s'organise de maniere a maintenir simultanément plusieurs versions stables ainsi qu'un dépdt mis a jour en continue. Cette pratique est
extrémement appréciable pour les productions des systemes informatiques car elle leur permet de lisser les besoins de migration obligée de leurs
applications qui utilisent des bases de données sur les moments de faible charge et de disponibilités de leurs ressources. Elles réalisent ainsi de tres
sérieuses économies, puisqu'on estime en moyenne que cette charge représente au moins 40%, mais le plus souvent jusqu'a 60% des colts de
fonctionnement des organisations informatiques au sein des entreprises. Ce SGBDRO utilise des types de données modernes, dit composés ou enrichis
suivant les terminologies utilisées dans le vocable informatique usuel. Ceci signifie que PostgreSQL peut stocker plus de types de données que les
types simples traditionnels entiers, caracteres, etc. L'utilisateur peut créer des types, des fonctions, utiliser I'héritage de type, etc.

PostgreSQL est largement reconnu pour son comportement stable, proche de Oracle. Mais aussi pour ses possibilités de programmation étendues,
directement dans le moteur de la base de données, via PL/pgSQL. Le traitement interne des données peut aussi étre couplé a d'autres modules
externes compilés dans d'autres langages.

Dans le jargon des bases de données, PostgreSQL™ utilise un modele client/serveur. Une session PostgreSQL™ est le résultat de la coopération des
processus suivants :

1. Un processus serveur qui gere les fichiers de la base de données, accepte les connexions a la base de la part des applications clientes et effectue
sur la base les actions des clients. Le programme serveur est appelé postgres.

2. L'application cliente qui veut effectuer des opérations sur la base de données. Les applications clientes peuvent étre de nature tres différentes :
un client peut étre un outil texte, une application graphique, un serveur web qui accede a la base de données ou un outil spécialisé dans la
maintenance de bases de données. Certaines applications clientes sont fournies avec PostgreSQL™.

www.ittraining.team - https://ittraining.team/

https://ittraining.team/lib/exe/fetch.php?tok=c4c29d&media=https%3A%2F%2Fwww.wildcardcorp.com%2Fblog%2Fplone-relstorage-postgresql-bucardo%2F%40%40download%2Fimage%2Fpostgresql_bumper.sh-600x600.png

2026/02/04 06:29 2/19 PostgreSQL par MICHAEL et JABEUR

Comme souvent avec les applications client/serveur, le client et le serveur peuvent étre sur des hotes différents. Dans ce cas, ils communiquent a
travers une connexion réseau TCP/IP. Vous devez garder cela a I'esprit car les fichiers qui sont accessibles sur la machine cliente peuvent ne pas I'étre
(ou I'étre seulement en utilisant des noms de fichiers différents) sur la machine exécutant le serveur de bases de données. Le serveur PostgreSQL™
peut traiter de multiples connexions simultanées depuis les clients. Dans ce but, il démarre un nouveau processus pour chaque connexion. A ce
moment, le client et le nouveau processus serveur communiquent sans intervention de la part du processus postgres original. Ainsi, le processus
serveur maitre s'exécute toujours, attendant de nouvelles connexions clientes, tandis que le client et les processus serveurs associés vont et viennent.

2.Avantages et Inconvénients par rapport a MySQL/MariaDB

Bien que PostgreSQL soit plus avancé technologiqguement que MySQL, il a une lacune en vitesse sur les faibles volumes de données. Ainsi MySQL, par
le fait qu'il ne gere pas I'intégrité référentielle par exemple, se révele plus rapide que PostgreSQL puisqu'il ne doit pas faire les tests d'intégrité (qui
permettent de vérifier qu'une base de données est cohérente pour rappel).

MySQL est jeune, bien plus que PostgreSQL, mais il a connu un développement plus qu'honorable et supporte depuis sa version 5 beaucoup d'aspects
du langage SQL. Je pense en particulier aux vues, triggers et UDF qui ont été rajoutés dans cette version, ainsi qu'aux sous-requétes implémentées
depuis la version 4.1.

Malgré tout, PostgreSQL garde I'avantage avec une panoplie beaucoup plus étendue: il gere en plus les regles, les types utilisateur, les tableaux, des
langages procéduraux tels que PHP, Python, Java et bien d'autres. PostgreSQL jouit également d'un systeme d'extensions vraiment utile et d'autres
aspects moins connus mais bien pratique de la norme tels que les regles qui permettent d'insérer des données depuis une vue par exemple, les
séguences (équivalent avancé de I'auto incrément de MySQL), les domaines (types sur lesquels on peut apposer une contrainte et réutilisables), ainsi
qgue bien d'autres.

MySQL s'occupe avec excellence des petits volumes de données, avec un faible nombre d'utilisateurs. En effet, dans ces cas la I'intégrité référentielle
n'est souvent pas nécessaire puisqu'il est rare que plusieurs utilisateurs agissent simultanément sur la méme table et encore plus sur le méme
enregistrement. La vitesse d'exécution des requétes s'en retrouve accélérée, ce qui explique les résultats incomparables de MySQL sur ce genre de
base de données. PostgreSQL par contre peut gérer les tres gros volumes de données. Des bases de 13 teras existent et tournent parfaitement sous
PostgreSQL. Son optimiseur fait des merveilles a partir du moment ou il y a suffisamment de données pour qu'il soit efficace.

Gérer une base de données n'est pas une chose simple, surtout si on veut bien le faire. MySQL a permis a tout un chacun de s'essayer dans ce
domaine, mais pour moi ce n'est pas réellement un SGBDR. Pour ceux qui ont connu ce moment, vous avez connu également la différence
considérable de performances : MySQL n'était tout simplement plus capable de gérer une base de données devenue trop grosse et trop complexe.

<note important>En conclusion, il faut utiliser I'outil adéquat pour chaque projet :

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 3/19 PostgreSQL par MICHAEL et JABEUR

1. MySQL pour les petites bases de données avec un nombre faible d'acces.
2. PostGreSQL pour les bases de données plus grosses.

</note>

3.Installation et configuration de PostgreSQL 9 sur CentOS

Accéder au référentiel PostgreSQL page de téléchargement, et ajouter le dépdt PostgreSQL 9.4 en fonction de I' architecture de votre serveur.
Pour CentOS 6.x 64bit:
#rpm -Uvh http://yum.postgresql.org/9.4/redhat/rhel-6-x86 64/pgdg-centos94-9.4-2.noarch.rpm
Pour CentOS 7 64bit:
#rpm -Uvh http://yum.postgresql.org/9.4/redhat/rhel-7-x86 64/pgdg-centos94-9.4-2.noarch.rpm
Mettre a jour la liste des dépots en utilisant la commande:
#yum update
<note warning>Les dépdts par défaut de CentOS contiennent des emballages de Postgres, afin que nous puissions les installer sans tracas a I' aide du
yum systeme de package.</note> Installez le paquet postgresql-server et le paquet “contrib”, qui ajoute quelques utilitaires et des fonctionnalités
supplémentaires:

#yum install postgresql-server postgresql-contrib

Accepter l'invite, en répondant avec uny .
Initialisation base de données PostgreSQL en utilisant la commande suivante:

Sur CentOS 6:

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 4/19

PostgreSQL par MICHAEL et JABEUR

service postgresql-setup initdb
Sur CentOS 7:

#/usr/pgsql-9.4/bin/postgresql94-setup initdb

Ensuite, démarrer le service PostgreSQL et le faire démarrer automatiquement a chaque redémarrage.

Sur CentOS 6:

#Service postgresql-9.4 start
#chkconfig postgresql-9.4 on

Sur CentOS 7:

#systemctl enable postgresql-9.4
#systemctl start postgresql-9.4

Ensuite, ajuster les iptables et firewall pour accéder aux systemes postgresql distants.

Sur CentOS 6:
#vi /etc/sysconfig/iptables-config
Ajouter la ligne suivante:

#-A INPUT -m state --state NEW -m tcp -p tcp --dport 5432 -j ACCEPT
#-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT

Sauvegader et quitter le fichier.Redémarrer le service iptables:

#service iptables restart

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 5/19 PostgreSQL par MICHAEL et JABEUR

Sur CentOS 7:

firewall-cmd --permanent --add-port
firewall-cmd --permanent --add-port
firewall-cmd --reload

5432 / tcp
80 / tcp

Sauvegader et quitter le fichier.Redémarrer le service iptables:
#systemctl restart firewalld.service

Exécuter la commande suivante pour que PostgreSQL puisse fonctionné si SELinux est activé sur votre systeme.
#setsebool -P httpd can network connect db 1

<note warning>Vous ne pouvez pas vous connecter a PostegreSQL si vous n'avez pas exécuté la commande ci-dessus.</note>

Authentification du client par mot de passe

L'authentification du client est contrélée par un fichier, traditionnellement nommé pg_hba.conf et situé dans le répertoire data du groupe de bases de
données, par exemple /usr/local/pgsql/data/pg_hba.conf (HBA signifie “host-based authentication”). Un fichier pg_hba.conf par défaut est installé
lorsque le répertoire data est initialisé par initdb. Néanmoins, il est possible de placer le fichier de configuration de I'authentification ailleurs.

Chaque enregistrement précise un type de connexion, une plage d'adresses IP (si approprié au type de connexion), un nom de base de données, un
nom d'utilisateur et la méthode d'authentification a utiliser pour les connexions correspondant a ces parameétres. Le premier enregistrement qui
correspond au type de connexion, a I'adresse client, a la base de données demandée et au nom d'utilisateur est utilisé pour effectuer I'authentification.

Un enregistrement peut avoir I'un des sept formats suivants.

local database user auth-method [auth-options]

host database user address auth-method [auth-options]

hostssl database wuser address auth-method [auth-options]

hostnossl database user address auth-method [auth-options]

host database user IP-address IP-mask auth-method [auth-options]
hostssl database user IP-address IP-mask auth-method [auth-options]

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 6/19 PostgreSQL par MICHAEL et JABEUR

hostnossl database user IP-address 1IP-mask auth-method [auth-options]
Les méthodes fondées sur une authentification par mot de passe sont md5 et password. Ces méthodes fonctionnent de facon analogue a I'exception du
mode d'envoi du mot de passe a travers la connexion : respectivement, hachage MD5 et texte en clair. <note important>L'authentification MD5 exige
que le client fournisse un mot de passe chiffré. Pour ce faire, modifier /var/lib/pgsql/9.4/data/pg_hba.conf : </note>

vi /var/lib/pgsql/9.4/data/pg _hba.conf

Ajouter ou modifier les lignes comme indiqué ci-dessous:

[...]
TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all md5
IPv4 local connections:
host all all 127.0.0.1/32 md5
host all all 192.168.1.0/24 md5
IPv6 local connections:
host all all ::1/128 md5

[...]

Redémarrer le service de postgresql pour appliquer les modifications:

Sur CentOS6:

Service postgresql-9.4 restart
Sur CentOS7:

systemctl restart postgresql-9.4

Configurer PostgreSQL-Configurer TCP/IP

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 7/19 PostgreSQL par MICHAEL et JABEUR

<note warning>Par défaut, la connexion TCP / IP est désactivé, de tel sorte que les utilisateurs d'un autre ordinateur ne peuvent pas accéder a
postgresql.</note> Pour permettre aux utilisateurs de se connecter a un autre ordinateur. Modifier le fichier /var/lib/pgsql/9.4/data/postgresql.conf :

vi /var/lib/pgsql/9.4/data/postgresql.conf
Vous trouverez le résultat suivant:

[...]

#listen addresses = 'localhost'
[...]

#Port = 5432

[...]

Décommenter les deux lignes et définir I'adresse IP de votre serveur PostgreSQL ou définir '*' pour écouter de tous les clients comme indiqué ci-
dessous:

listen addresses = '*!
port = 5432

Redémarrer le service PostgreSQL pour enregistrer les modifications:
Sur CentOS 6:
service postgresql-9.4 restart
Sur CentOS 7:
systemctl restart postgresql-9.4
LE CLIENT PostgreSQL

Utilisation

Le nom de base de données et I'utilisateur par défaut sont “postgres”. Basculer vers |'utilisateur postgres pour effectuer des opérations de PostgreSQL

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 8/19 PostgreSQL par MICHAEL et JABEUR

liées:
#su - postgres
Pour vous connecter a PostgreSQL, entrez la commande:
$psql
Exemple de sortie:
$psql (9.4.0)
Type "help" for help.
postgres = #
<note warning>Pour quitter rapidement PosgreSQL, tapez \q suivit par exit pour retourner au terminal.</note>

Ensuite, ajouter un mot de passe a I'utilisateur “postgres”:

Ssu - postgres
bash-4.2$ psql

..et définir le mot de passe postgres avec la commande suivante:
postgres=# \password postgres
enter new password: centos
Enter it again: centos

postgres=# \q

Créer un nouvel utilisateur et base de données

Par exemple, créons un nouvel utilisateur appelé “fenestros” avec mot de passe “centos” et base de données appelée “formation”. Basculer vers
I'utilisateur postgres:

#su - postgres

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 9/19 PostgreSQL par MICHAEL et JABEUR

Créer un utilisateur fenestros.

$ Createuser fenestros
Créer la base de données:

$ Createdb formation

<note warning>L'utilisateur créé précédement ce situe dans la base de donnée de postgres et non dans la base de LINUX.</note>

Maintenant, connectez-vous a l'invite de psql, et définir un mot de passe et I'acces Grant a la base de données formation pour fenestros:

$ psql

psql (9.4.0)

Type "help" for help.

postgres = # alter user fenestros with encrypted password 'centos';

ALTER ROLE

postgres = # grant all privileges on database formation to fenestros;
GRANT

postgres = #

Pour visualiser I'ensemble des bases de données, examinez le catalogue pg_database:
SELECT datname FROM pg database;
on obtient un résultat similaire:

datname
-templatel
-templateO
-postgres
-formation

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 10/19 PostgreSQL par MICHAEL et JABEUR

(4 rows)

Supprimer les utilisateurs et les bases de données

Pour supprimer la base de données, passer a I'utilisateur postgres:
su - postgres

Entrez la commande:
$ dropdb formation

Pour supprimer un utilisateur, entrer la commande suivante:

$ dropuser fenestros

Créer et Supprimer des Tables

Maintenant que vous savez comment se connecter au systéme de base de données PostgreSQL, nous allons commencer a aller sur la facon de remplir
certaines taches de base. Tout d'abord, recréer la base de données formation puis nous allons créer une table “famille” pour stocker des données. La
syntaxe de base de cette commande est quelque chose comme ceci:

$ Createdb formation

postgres=# CREATE TABLE nom table (

postgres=# column namel col type (field length) column constraints ,
postgres=# column name2 col type (field length),

postgres=# column _name3 col type (field length),

postgres=#);

Comme vous pouvez le voir, nous donnons a la table un nom, puis on définit les colonnes que nous voulons, ainsi que le type de colonne et la longueur
maximale des données de terrain. Nous pouvons également ajouter des contraintes de table pour chaque colonne. Pour nos besoins, nous allons créer

un tableau simple comme ceci:

postgres=# CREATE TABLE famille (

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 11/19 PostgreSQL par MICHAEL et JABEUR

postgres=# code famille integer primary key,
postgres=# nom text,
postgres=# nombre integer,
postgres=#);
Insérer les valeurs dans une table:

INSERT INTO famille (code famille, nom, nombre) VALUES ('l', 'toto', '5'");

INSERT INTO famille (code famille, nom, nombre) VALUES ('2', 'michael', '8');

INSERT INTO famille (code famille, nom, nombre) VALUES ('3', 'jabeur', '7'");
Pour visualiser les entrées de cette table, exécuter la commande:

SELECT * FROM famille;

Vous obtiendrez un résultat similaire:

code famille | nom | nombre
______________ dboocoooooocodiccocooocoooo
-1 | toto | 5
-2 | michael | 8
- 3 | jabeur | 7
(3 rows)

Le programme PSQL dispose d'un certain nombre de commande interne qui ne sont pas des commandes SQL. Elles commencent avec le caracteres “\".
Vous pouvez obtenir de I'aide sur la syntaxe de nombreuses commandes SQL de PostgreSQL en exécutant:

formation=# \h

1.structure lexicale

Une commande est composée d'une séquence de jetons terminés par un point-virgule. La fin du flux en entrée termine aussi une commande; les jetons

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 12/19 PostgreSQL par MICHAEL et JABEUR

valides dépendent de la syntaxe particuliere de la commande. Un jeton peut étre un mot clé, un identificateur, un identificateur entre guillemets, une
constante ou un symbole de caractére spécial. Les jetons sont normalement séparés par des espaces blancs (espace, tabulation, nouvelle ligne) mais
n'ont pas besoin de I'étre s'il n'y a pas d'ambiguité. Par exemple, ce qui suit est valide pour une entrée SQL :

SELECT * FROM MA TABLE;
UPDATE MA TABLE SET A =5;
INSERT INTO MA TABLE VALUES (3, 'salut ici');

2.Valeurs par défaut

Une valeur par défaut peut étre attribuée a une colonne. Quand une nouvelle ligne est créée et qu'aucune valeur n'est indiquée pour certaines de ses
colonnes, celles-ci sont remplies avec leurs valeurs par défaut respectives. Une commande de manipulation de données peut aussi demander
explicitement que la valeur d'une colonne soit positionnée a la valeur par défaut, sans qu'il lui soit nécessaire de connaitre cette valeur. Si aucune
valeur n'est déclarée explicitement, la valeur par défaut est la valeur NULL. Dans la définition d'une table, les valeurs par défaut sont listées apres le
type de données de la colonne, par exemple:

CREATE TABLE produits(

no produit integer,

nom text,

prix numeric DEFAULT 9.99,
);

3.Contraintes

Les types de données sont un moyen de restreindre la nature des données qui peuvent étre stockées dans une table. Pour beaucoup d'applications, la
contrainte fournie par ce biais est trop grossiere. Une colonne qui contient le prix d'un produit ne doit accepter que des valeurs positives. Mais il
n'existe pas de type de données standard qui n'accepte que des valeurs positives. Un autre probleme peut provenir de la volonté de contraindre les
données d'une colonne par rapport aux autres colonnes ou lignes. Par exemple, dans une table contenant des informations de produit, il ne peut 'y
avoir qu'une ligne par numéro de produit. La contrainte de vérification est la contrainte la plus générique qui soit. Elle permet d'indiquer que la valeur
d'une colonne particuliere doit satisfaire une expression booléenne (valeur de vérité). Par exemple, pour obliger les prix des produits a étre positifs, on
peut utiliser :

CREATE TABLE produits (
no produit integer,

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 13/19 PostgreSQL par MICHAEL et JABEUR

nom text,
prix numeric CHECK (prix > 0),
)i

5.Modification des tables

Lorsqu'une table est créée et qu'une erreur a été commise ou que les besoins de I'application changent, il est alors possible de la supprimer et de la
récréer. Cela n'est toutefois pas pratique si la table contient déja des données ou qu'elle est référencée par d'autres objets de la base de données.
C'est pourquoi PostgreSQL™ offre une série de commandes permettant de modifier une table existante. Il est possible:

d'ajouter des colonnes ;

de supprimer des colonnes ;

d'ajouter des contraintes ;

de supprimer des contraintes ;

de modifier des valeurs par défaut ;

de modifier les types de données des colonnes ;
de renommer des colonnes ;

de renommer des tables.

© N U RWN

Toutes ces actions sont réalisées a l'aide de la commande ALTER TABLE:
ALTER TABLE produits ADD COLUMN description text;

La nouvelle colonne est initialement remplie avec la valeur par défaut précisée (NULL en I'absence de clause DEFAULT).

Des contraintes de colonne peuvent étre définies dans la méme commande a I'aide de la syntaxe habituelle :
ALTER TABLE produits ADD COLUMN description text CHECK(description <>'");

6.Droits

Quand un objet est créé, il se voit affecter un propriétaire. Le propriétaire est normalement le réle qui a exécuté la requéte de création. Pour la plupart
des objets, I'état initial est que seul le propriétaire (et les superutilisateurs) peuvent faire quelque chose avec cet objet. Pour permettre aux autres
roles de l'utiliser, des droits doivent étre donnés.

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 14/19 PostgreSQL par MICHAEL et JABEUR

[l existe un certain nombre de droits différents : SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER, CREATE, CONNECT,
TEMPORARY, EXECUTE et USAGE. Les droits applicables a un objet particulier varient selon le type d'objet (table, fonction,...). Le droit de modifier ou de
détruire un objet est le privilege du seul propriétaire.

La commande GRANT est utilisée pour accorder des privileges. Par exemple, si jabeur est un utilisateur et michael une table, le privilege d'actualiser la
table michael peut étre accordé a jabeur avec :

GRANT UPDATE ON michael TO jabeur;

Ecrire ALL & la place d'un droit spécifique accorde tous les droits applicables & ce type d'objet. Le nom d'utilisateur spécial PUBLIC peut étre utilisé pour
donner un privilege a tous les utilisateurs du systeme. De plus, les roles de type “group” peuvent étre configurés pour aider a la gestion des droits
quand il y a beaucoup d'utilisateurs dans une base. Pour révoquer un privilege, on utilise la commande REVOKE:

REVOKE ALL ON michael FROM PUBLIC;

Les privileges spéciaux du propriétaire de I'objet(le droit d'exécuter DROP, GRANT, REVOKE, etc.) appartiennent toujours implicitement au propriétaire.
lIs ne peuvent étre ni accordés ni révoqués. Mais le propriétaire de I'objet peut choisir de révoquer ses propres droits ordinaires pour mettre une table
en lecture seule pour lui-méme et pour les autres.

7.Partitionnement

Le partitionnement fait référence a la division d'une table logique volumineuse en plusieurs parties physiques plus petites. Le partitionnement
comporte de nombreux avantages :

1#les performances des requétes peuvent étre significativement améliorées dans certaines situations, particulierement lorsque la plupart des lignes
fortement accédées d'une table se trouvent sur une seule partition ou sur un petit nombre de partitions. Le partitionnement se substitue aux colonnes
principales des index, réduisant ainsi la taille des index et facilitant la tenue en mémoire des parties les plus utilisées de l'index;

24#lorsque les requétes ou les mises a jour accedent a un important pourcentage d'une seule partition, les performances peuvent étre grandement
améliorées par l'utilisation avantageuse de parcours séquentiels sur cette partition plutot que d'utiliser un index et des lectures aléatoires réparties sur
toute la table;

3#les chargements et suppressions importantes de données peuvent étre obtenus par I'ajout ou la suppression de partitions, sous réserve que ce
besoin ait été pris en compte lors de la conception du partitionnement. ALTER TABLE NO INHERIT et DROP TABLE sont bien plus rapides qu'une
opération de masse;

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 15/19 PostgreSQL par MICHAEL et JABEUR

5.LAB#- Utilisation

Créer une base de données projet avec le mot de passe centos:

$createdb projet
password:

<note warning>Le mot de passe ne sera pas visible</note>

Ensuite, entrer la commande suivante pour se connecter a projet:

$psql projet
password:

Créer une tablestagiaire:

projet=# CREATE TABLE stagiaire(
projet=# Code integer,
projet=# Nom varchar,
projet=# Prenom varchar,
projet=# Sujet varchar

¥

Insérer les valeurs dans la table:

e e e e e e
oNO UL WN =

INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES

()

()

"LEVI', 'Michael', 'PostgresQL');
"MESKINI', ‘'Jabeur', 'PostgresQL');
'TATINOU KENFACK', 'Stephan', 'Puppet');
'"MKACHER', 'Ines', 'Puppet');

"LOGA', 'Patrick', 'JBoss');

'"KEFSI', 'Mourad', 'JBoss');

'‘DIET', 'Antonin', 'MongoDB');
'SAYAVONGSA', 'Rathasath', 'MongoDB');

~

~

~

~

~

~

INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES
INSERT INTO stagiaire (Code, Nom, Prenom, Sujet) VALUES

~

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29

16/19

PostgreSQL par MICHAEL et JABEUR

Exécuter la commande:

projet=# SELECT * FROM Stagiaire;

Vous obtiendrez un résultat similaire

Code | nom | prenom | sujet
------ T T
-1 | LEVI | Michael | PostgresqQL

2 | MESKINI | Jabeur | PostgresqQL

3 | TATINOU KENFACK | Stephan | Puppet

4 | MKACHER | Ines | Puppet

5 | LOGA | Patrick | JBoss

6 | KEFSI | Mourad | JBoss

7 | DIET | Antonin | MongoDB

8 | SAYAVONGSA | Rathasath | MongoDB

1.Ajouter une colonne

La commande d'ajout d'une colonne ressemble a :

ALTER TABLE stagiaire ADD COLUMN

num_tel integer;

La nouvelle colonne est initialement remplie avec la valeur par défaut précisée (NULL en I'absence de clause DEFAULT). Ajouter ensuite les numéros de

tel:

UPDATE stagiaire
UPDATE stagiaire
UPDATE stagiaire
UPDATE stagiaire
UPDATE stagiaire
UPDATE stagiaire
UPDATE stagiaire

SET
SET
SET
SET
SET
SET
SET

num tel='12345678"' WHERE
num tel='23456781"' WHERE
num tel='34567812"' WHERE
num tel='45678123"' WHERE
num tel='56781234"' WHERE
num tel='67812345"' WHERE
num tel='78123456"' WHERE

prenom='Michael’;
prenom="'Jabeur’;
prenom='Stephan';
prenom="'Ines"';
prenom="'Patrick";
prenom="'Mourad’;
prenom='Antonin’;

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 17/19 PostgreSQL par MICHAEL et JABEUR

UPDATE stagiaire SET num_ tel='81234567' WHERE prenom='Rathasth’;

Vous obtiendrez un résultat similaire:

Code | nom | prenom | sujet | num_tel
------ L L T S
-1 | LEVI | Michael | PostgresQL | 12345678
2 | MESKINI | Jabeur | PostgresQL | 23456781
3 | TATINOU KENFACK | Stephan | Puppet | 34567812
4 | MKACHER | Ines | Puppet | 45678123
5 | LOGA | Patrick | JBoss | 56781234
6 | KEFSI | Mourad | JBoss | 67812345
7 | DIET | Antonin | MongoDB | 78123456
8 | SAYAVONGSA | Rathasath | MongoDB | 81234567

2.Ajouter une contrainte

ALTER TABLE stagiaire ADD PRIMARY KEY (code);

ALTER TABLE stagiaire ADD CHECK (nom <> '' OR prenom <> '');
ALTER TABLE stagiaire ADD CONSTAINT nom UNIQUE (prenom);
ALTER TABLE stagiaire ALTER COLUMN sujet SET NOT NULL;

L'ajout d'une contrainte NOT NULL ne peut pas étre écrite sous forme d'une contrainte de table, la syntaxe
" suivante est utilisée :

ALTER TABLE nom table ALTER COLUMN nom colonne SET NOT NULL

3.Supprimer une contrainte

ALTER TABLE stagiaire DROP CONSTRAINT nom;

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 18/19 PostgreSQL par MICHAEL et JABEUR

4.Modifier le type de données d'une colonne

ALTER TABLE stagiaire ALTER COLUMN num tel TYPE varchar(8);
5.Renommer une colonne

ALTER TABLE stagiaire RENAME COLUMN num tel TO telephone;
6.Renommer une table

ALTER TABLE stagiaire RENAME TO stagiaires ;
Pour voir le résultat,exécuter la commande:

SELECT * FROM stagiaires;

Vous obtiendrez ceci:

Code | nom | prenom | sujet | telephone
------ e S
-1 | LEVI | Michael | PostgresqQL | 12345678

2 | MESKINI | Jabeur | PostgresQL | 23456781

3 | TATINOU KENFACK | Stephan | Puppet | 34567812

4 | MKACHER | Ines | Puppet | 45678123

5 | LOGA | Patrick | JBoss | 56781234

6 | KEFSI | Mourad | JBoss | 67812345

7 | DIET | Antonin | MongoDB | 78123456

8 | SAYAVONGSA | Rathasath | MongoDB | 81234567

(source WIKIPEDIA et POSTGRESQL.)

www.ittraining.team - https://ittraining.team/

2026/02/04 06:29 19/19 PostgreSQL par MICHAEL et JABEUR

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:otherl7

Last update: 2020/01/30 03:27

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:other17

	[PostgreSQL par MICHAEL et JABEUR]
	[PostgreSQL par MICHAEL et JABEUR]
	PostgreSQL par MICHAEL et JABEUR
	1.Historique et présentation de PostgreSQL
	2.Avantages et Inconvénients par rapport à MySQL/MariaDB

	3.Installation et configuration de PostgreSQL 9 sur CentOS
	5.LAB#- Utilisation

