
2026/02/04 12:56 1/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Dernière mise-à-jour : 2020/01/30 03:28

LSF105 - La Ligne de Commande

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.I). Il est utilisé comme interface pour donner des
instructions ou commandes au système d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

Shell Nom Date de
Sortie Inventeur Commande Commentaires

tsh Thompson Shell 1971 Ken Thompson sh Le premier shell
sh Bourne Shell 1977 Stephen Bourne sh Le shell commun à tous les Unix. Sous SLES 12 : /usr/bin/sh
csh C-Shell 1978 Bill Joy csh Le shell BSD. Sous SLES 12 : /usr/bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous SLES 12 : /usr/bin/tcsh
ksh Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous SLES 12 : /usr/bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous SLES 12 : /bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh est plutôt orienté pour l'interactivité avec l'utilisateur. Sous SLES 12 :
/usr/bin/zsh

Sous SLES 12 le shell /bin/sh est un lien symbolique vers /bin/bash :

trainee@SLES12SP1:~> ls -l /bin/sh
lrwxrwxrwx 1 root root 4 1 mai 2016 /bin/sh -> bash

2026/02/04 12:56 2/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le Shell /bin/bash

Ce module concerne l'utilisation du shell bash sous Linux. Le shell bash permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaînes de caractères
Utiliser les fonctions

Une commande commence toujours par un mot clef. Ce mot clef est interpréter par le shell selon le type de commande et dans l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type :

trainee@SLES12SP1:~> type cd
cd is a shell builtin

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /bin, /sbin, /usr/bin ou /usr/sbin :

trainee@SLES12SP1:~> type passwd
passwd is /usr/bin/passwd

2026/02/04 12:56 3/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les alias

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
qu'à l'environnement de l'utilisateur :

trainee@SLES12SP1:~> type ls
ls is aliased to `_ls'

Important : Notez que dans ce cas l'alias ls est en effet un alias qui utilise la commande
ls elle-même.

Un alias se définit en utilisant la commande alias :

trainee@SLES12SP1:~> alias dir='ls -l'
trainee@SLES12SP1:~> dir
total 4
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 aac
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 abc
-rw-r--r-- 1 trainee users 0 1 oct. 06:55 bca
drwxr-xr-x 1 trainee users 0 1 mai 2016 bin
drwxr-xr-x 1 trainee users 0 2 mai 2016 Desktop
drwxr-xr-x 1 trainee users 0 2 mai 2016 Documents
drwxr-xr-x 1 trainee users 0 2 mai 2016 Downloads
drwxr-xr-x 1 trainee users 0 2 mai 2016 Music
drwxr-xr-x 1 trainee users 0 2 mai 2016 Pictures
drwxr-xr-x 1 trainee users 0 2 mai 2016 Public
drwxr-xr-x 1 trainee users 20 1 mai 2016 public_html
drwxr-xr-x 1 trainee users 0 2 mai 2016 Templates
drwxr-xr-x 1 trainee users 0 2 mai 2016 Videos
-rw-r--r-- 1 trainee users 391 30 sept. 10:27 vitext

2026/02/04 12:56 4/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 trainee users 0 1 oct. 06:55 xyz

Important : Notez que la commande dir existe vraiment. Le fait de créer un alias qui
s'appelle dir implique que l'alias sera exécuté à la place de la commande dir.

La liste des alias définis peut être visualisée en utilisant la commande alias :

trainee@SLES12SP1:~> alias
alias +='pushd .'
alias -='popd'
alias ..='cd ..'
alias ...='cd ../..'
alias aumix='padsp aumix'
alias beep='echo -en "\007"'
alias cd..='cd ..'
alias dir='ls -l'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l='ls -alF'
alias la='ls -la'
alias ll='ls -l'
alias ls='_ls'
alias ls-l='ls -l'
alias md='mkdir -p'
alias o='less'
alias rd='rmdir'
alias rehash='hash -r'
alias sox='padsp sox'
alias timidity='timidity -Oe'
alias unmount='echo "Error: Try the command: umount" 1>&2; false'

2026/02/04 12:56 5/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

alias you='if test "$EUID" = 0 ; then /sbin/yast2 online_update ; else su - -c "/sbin/yast2 online_update" ; fi'

Important : Notez que cette liste contient, sans distinction, les alias définis dans les
fichiers de démarrage du système ainsi que l'alias dir créé par trainee qui n'est que
disponible à trainee dans le terminal courant.

Pour forcer l'exécution d'une commande et non l'alias il faut faire précéder la commande par le caractère \ :

trainee@SLES12SP1:~> \dir
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Pour supprimer un alias, il convient d'utiliser la commande unalias :

trainee@SLES12SP1:~> unalias dir
trainee@SLES12SP1:~> dir
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Le shell des utilisateurs est défini par root dans le dernier champs du fichier /etc/passwd :

trainee@SLES12SP1:~> cat /etc/passwd
at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
ftpsecure:x:488:65534:Secure FTP User:/var/lib/empty:/bin/false
games:x:12:100:Games account:/var/games:/bin/bash
gdm:x:486:485:Gnome Display Manager daemon:/var/lib/gdm:/bin/false
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false

2026/02/04 12:56 6/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
messagebus:x:499:499:User for D-Bus:/var/run/dbus:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
nobody:x:65534:65533:nobody:/var/lib/nobody:/bin/bash
nscd:x:496:495:User for nscd:/run/nscd:/sbin/nologin
ntp:x:74:492:NTP daemon:/var/lib/ntp:/bin/false
openslp:x:494:2:openslp daemon:/var/lib/empty:/sbin/nologin
polkitd:x:497:496:User for polkitd:/var/lib/polkit:/sbin/nologin
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
pulse:x:490:489:PulseAudio daemon:/var/lib/pulseaudio:/sbin/nologin
root:x:0:0:root:/root:/bin/bash
rpc:x:495:65534:user for rpcbind:/var/lib/empty:/sbin/nologin
rtkit:x:491:490:RealtimeKit:/proc:/bin/false
scard:x:487:487:Smart Card Reader:/var/run/pcscd:/usr/sbin/nologin
sshd:x:498:498:SSH daemon:/var/lib/sshd:/bin/false
statd:x:489:65534:NFS statd daemon:/var/lib/nfs:/sbin/nologin
usbmux:x:493:65534:usbmuxd daemon:/var/lib/usbmuxd:/sbin/nologin
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
vnc:x:492:491:user for VNC:/var/lib/empty:/sbin/nologin
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
trainee:x:1000:100:trainee:/home/trainee:/bin/bas

Cependant l'utilisateur peut changer son shell grâce à la commande chsh. Les shells disponibles aux utilisateurs du système sont inscrits dans le
fichier /etc/shells. Saisissez la commande cat /etc/shells :

trainee@SLES12SP1:~> cat /etc/shells
/bin/ash
/bin/bash
/bin/csh
/bin/dash
/bin/false
/bin/ksh
/bin/ksh93
/bin/mksh

2026/02/04 12:56 7/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

/bin/pdksh
/bin/sh
/bin/tcsh
/bin/true
/bin/zsh
/usr/bin/csh
/usr/bin/dash
/usr/bin/ksh
/usr/bin/ksh93
/usr/bin/mksh
/usr/bin/passwd
/usr/bin/pdksh
/usr/bin/bash
/usr/bin/tcsh
/usr/bin/zsh
</code

Ensuite utilisez la commande **echo** pour afficher le shell actuel de **trainee** :

<code>
trainee@SLES12SP1:~> echo $SHELL
/bin/bash

Changez ensuite le shell de trainee en utilisant la commande chsh en indiquant la valeur de /bin/sh pour le nouveau shell :

trainee@SLES12SP1:~> chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/bash]: /bin/sh

Important : Notez que le mot de passe saisi ne sera pas visible.

2026/02/04 12:56 8/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Vérifiez ensuite le shell actif pour trainee :

trainee@SLES12SP1:~> echo $SHELL
/bin/bash

Dernièrement contrôlez le shell stipulé dans le fichier /etc/passwd pour trainee :

trainee@SLES12SP1:~> cat /etc/passwd | grep trainee
trainee:x:1000:100:trainee:/home/trainee:/bin/sh

Important : Vous noterez que le shell actif est toujours /bin/bash tandis que le shell
stipulé dans le fichier /etc/passwd est le /bin/sh. Le shell /bin/sh ne deviendra le shell
actif de trainee que lors de sa prochaine connexion au système.

Modifiez votre shell à /bin/bash de nouveau en utilisant la commande chsh :

trainee@SLES12SP1:~> chsh
Password: trainee
Changing the login shell for trainee
Enter the new value, or press ENTER for the default
 Login Shell [/bin/sh]: /bin/bash

Important : Notez que le mot de passe saisi ne sera pas visible.

Le Prompt

Le prompt d'un utilisateur dépend de son statut :

2026/02/04 12:56 9/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

> pour un utilisateur normal,
pour root.

Rappeler des Commandes

Le shell /bin/bash permet le rappel des dernières commandes saisies. Afin de connaître la liste des commandes mémorisées, utilisez la commande
history :

trainee@SLES12SP1:~> history | more
 1 su -
 2 su -
 3 clear
 4 cd /
 5 ls -l
 6 ls -l /var/run
 7 cd /mnt
 8 ls
 9 cd
 10 mount
 11 mount --help
 12 cat /etc/fstab
 13 umount --help
 14 dumpe2fs /dev/sda1 | grep -i superbloc
 15 ls -ld /dev/console /dev/initctl /dev/loop0 /etc /etc/passwd
 16 ls -ld /dev/console /dev/initctl /etc /etc/passwd
 17 ls -ldi /dev/console /dev/initctl /etc /etc/passwd
 18 cd /tmp; mkdir inode; cd inode; touch fichier1; ls -ali
 19 ln fichier1 fichier2
 20 ls -ali
 21 ln -s fichier1 fichier3
 22 ls -ali
 23 su -

2026/02/04 12:56 10/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

--More--

Important: L'historique est spécifique à chaque utilisateur.

L'historique des commandes est en mode emacs par défaut. De ce fait, le rappel de la dernière commande se fait en utilisant la touche [Flèche vers
le haut] ou bien les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant la touche [Flèche vers le bas] ou bien les touches
[CTRL]-[N] :

Caractère de Contrôle Définition
[CTRL]-[P] (= flèche vers le haut) Rappelle la commande précédente
[CTRL]-[N] (= flèche vers le bas) Rappelle la commande suivante

Pour se déplacer dans la ligne de l'historique :

Caractère de Contrôle Définition
[CTRL]-[A] Se déplacer au début de la ligne
[CTRL]-[E] Se déplacer à la fin de la ligne
[CTRL]-[B] Se déplacer un caractère à gauche
[CTRL]-[F] Se déplacer un caractère à droite
[CTRL]-[D] Supprimer le caractère sous le curseur

Pour rechercher dans l'historique il convient d'utiliser les touches :

Caractère de Contrôle Définition

[CTRL]-[R] chaine Recherche en arrière de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[S] chaine Recherche en avant de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[G] Sortir du mode recherche

Il est aussi possible de rappeler la dernière commande de l'historique en utilisant les caractères !!:

2026/02/04 12:56 11/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~> ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext
trainee@SLES12SP1:~> !!
ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Vous pouvez rappeler une commande spécifique de l'historique en utilisant le caractère ! suivi du numéro de la commande à rappeler :

trainee@SLES12SP1:~> !131
ls
aac bca Desktop Downloads Pictures public_html Videos xyz
abc bin Documents Music Public Templates vitext

Le paramétrage de la fonction du rappel des commandes est fait pour tous les utilisateurs dans le fichier /etc/profile. Dans ce fichier, les variables
concernant le rappel des commandes peuvent être définis. Le plus important est HISTSIZE. Sous Debian et Ubuntu par contre, le paramétrage est fait
pour chaque utilisateur individuellement dans le fichier ~/.bashrc où ~/ indique le répertoire personnel de l'utilisateur concerné :

trainee@SLES12SP1:~> cat /etc/profile | grep HISTSIZE
 HISTSIZE=1000
 export HISTSIZE

Vous noterez que dans le cas précédent, la valeur de HISTSIZE est de 1000. Ceci implique que les dernières mille commandes sont mémorisées.

Les commandes mémorisées sont stockées dans le fichier ~/.bash_history. Les commandes de la session en cours ne sont sauvegardées dans ce
fichier qu'à la fermerture de la session :

trainee@SLES12SP1:~> nl .bash_history | more
 1 su -
 2 su -
 3 clear
 4 cd /
 5 ls -l

2026/02/04 12:56 12/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

 6 ls -l /var/run
 7 cd /mnt
 8 ls
 9 cd -
 10 mount
 11 mount --help
 12 cat /etc/fstab
 13 umount --help
 14 dumpe2fs /dev/sda1 | grep -i superbloc
 15 ls -ld /dev/console /dev/initctl /dev/loop0 /etc /etc/passwd
 16 ls -ld /dev/console /dev/initctl /etc /etc/passwd
 17 ls -ldi /dev/console /dev/initctl /etc /etc/passwd
 18 cd /tmp; mkdir inode; cd inode; touch fichier1; ls -ali
 19 ln fichier1 fichier2
 20 ls -ali
 21 ln -s fichier1 fichier3
 22 ls -ali
 23 su -
--More--

Important : Notez l'utilisation de la commande nl pour numéroter les lignes de l'affichage
du contenu du fichier .bash_history.

Générer les fins de noms de fichiers

Le shell /bin/bash permet la génération des fins de noms de fichiers. Celle-ci est accomplie grâce à l'utilisation de la touche [Tab]. Dans l'exemple qui
suit, la commande saisie est :

$ ls .b [Tab][Tab][Tab]

2026/02/04 12:56 13/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~> ls .bash
.bash_history .bashrc

Important : Notez qu'en appuyant sur la touche Tab trois fois le shell propose 3 ou 4
possibilités de complétion de nom de fichier. En effet, sans plus d'information, le shell ne
sait pas quel fichier est concerné.

La même possibilité existe pour la génération des fins de noms de commandes. Dans ce cas saisissez la commande suivante :

$ mo [Tab][Tab]

Appuyez sur la touche Tab deux fois. Vous obtiendrez une fenêtre similaire à celle-ci :

trainee@SLES12SP1:~> mo
modeprint modsign-verify mount mouse-test
modetest more mountpoint

Le shell interactif

Lors de l'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractères spéciaux.

Caractère Spéciaux Description
* Représente 0 ou plus de caractères
? Représente un caractère
[abc] Représente un caractère parmi ceux entre crochets
[!abc] Représente un caractère ne trouvant pas parmi ceux entre crochets
?(expression1|expression2| …) Représente 0 ou 1 fois l'expression1 ou 0 ou 1 fois l'expression2 …
*(expression1|expression2| …) Représente 0 à x fois l'expression1 ou 0 à x fois l'expression2 …

2026/02/04 12:56 14/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère Spéciaux Description
+(expression1|expression2| …) Représente 1 à x fois l'expression1 ou 1 à x fois l'expression2 …
@(expression1|expression2| …) Représente 1 fois l'expression1 ou 1 fois l'expression2 …
!(expression1|expression2| …) Représente 0 fois l'expression1 ou 0 fois l'expression2 …

Caractère *

Dans votre répertoire individuel, créez un répertoire training. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

trainee@SLES12SP1:~> mkdir training
trainee@SLES12SP1:~> cd training
trainee@SLES12SP1:~/training> touch f1 f2 f3 f4 f5

Afin de démontrer l'utilisation du caractère spécial *, saisissez la commande suivante :

trainee@SLES12SP1:~/training> echo f*
f1 f2 f3 f4 f5

Important : Notez que le caractère * remplace un caractère ou une suite de caractères.

Caractère ?

Créez maintenant les fichiers f52 et f62 :

trainee@SLES12SP1:~/training> touch f52 f62

Saisissez ensuite la commande suivante :

2026/02/04 12:56 15/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/training> echo f?2
f52 f62

Important : Notez que le caractère ? remplace un seul caractère.

Caractères []

L'utilisation peut prendre plusieurs formes différentes :

Joker Description
[xyz] Représente le caractère x ou y ou z
[m-t] Représente le caractère m ou n …. t
[!xyz] Représente un caractère autre que x ou y ou z
[!m-t] Représente un caractère autre que m ou n …. t

Afin de démontrer l'utilisation des caractères [et], créez le fichier a100 :

trainee@SLES12SP1:~/training> touch a100

Ensuite saisissez les commandes suivantes et notez le résultat :

trainee@SLES12SP1:~/training> echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
trainee@SLES12SP1:~/training> echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Important : Notez ici que tous les fichiers commençant par les lettres a, b, c, d, e ou f
sont affichés à l'écran.

2026/02/04 12:56 16/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/training> echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Important : Notez ici que tous les fichiers sont affichés à l'écran, à l'exception d'un fichier
commençant par la lettre a .

trainee@SLES12SP1:~/training> echo [a-b]*
a100

Important : Notez ici que seul le fichier commençant par la lettre a est affiché à l'écran
car il n'existe pas de fichiers commençant par la lettre b.

trainee@SLES12SP1:~/training> echo [a-f]
[a-f]

Important : Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, c, d, e ou f.
Pour cette raison, n'ayant trouvé aucune correspondance entre le filtre utilisé et les objets
dans le répertoire courant, le commande echo retourne le filtre passé en argument, c'est-
à-dire [a-f].

L'option extglob

Activez l'option extglob du shell bash afin de pouvoir utiliser ?(expression), *(expression), +(expression), @(expression) et !(expression) :

2026/02/04 12:56 17/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/training> shopt -s extglob

La commande shopt est utilisée pour activer ou désactiver les options du comportement optional du shell. La liste des options peut être visualisée en
exécutant la commande shopt sans options :

trainee@SLES12SP1:~/training> shopt
autocd off
cdable_vars off
cdspell off
checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off
direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off

2026/02/04 12:56 18/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off
progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo off

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

trainee@SLES12SP1:~/training> touch f f.txt f123.txt f123123.txt f123123123.txt

Saisissez la commande suivante :

trainee@SLES12SP1:~/training> ls f?(123).txt
f123.txt f.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1
occurence de la chaîne 123.

2026/02/04 12:56 19/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

*(expression)

Saisissez la commande suivante :

trainee@SLES12SP1:~/training> ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant de 0
jusqu'à x occurences de la chaîne 123.

+(expression)

Saisissez la commande suivante :

trainee@SLES12SP1:~/training> ls f+(123).txt
f123123123.txt f123123.txt f123.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant entre
1 et x occurences de la chaîne 123.

@(expression)

Saisissez la commande suivante :

trainee@SLES12SP1:~/training> ls f@(123).txt

2026/02/04 12:56 20/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

f123.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 1
seule occurence de la chaîne 123.

!(expression)

Saisissez la commande suivante :

trainee@SLES12SP1:~/training> ls f!(123).txt
f123123123.txt f123123.txt f.txt

Important : Notez ici que la commande n'affiche que les fichiers ayant un nom qui ne
contient pas la chaîne 123.

Caractères d'Échappement

Afin d'utiliser un caractère spécial dans un contexte littéral, il faut utiliser un caractère d'échappement. Il existe trois caractères d'échappement :

Caractère Description
\ Protège le caractère qui le suit
' ' Protège tout caractère, à l'exception du caractère ' lui-même, se trouvant entre les deux '
“ ” Protège tout caractère, à l'exception des caractères “ lui-même, $, \ et ', se trouvant entre les deux “

Afin d'illustrer l'utilisation des caractères d'échappement, considérons la commande suivante :

2026/02/04 12:56 21/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ echo * est un caractère spécial [Entrée]

Lors de la saisie de cette commande dans votre répertoire training, vous obtiendrez une fenêtre similaire à celle-ci :

trainee@SLES12SP1:~/training> echo * est un caractère spécial
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

trainee@SLES12SP1:~/training> echo * est un caractère spécial
* est un caractère spécial

trainee@SLES12SP1:~/training> echo "* est un caractère spécial"
* est un caractère spécial

trainee@SLES12SP1:~/training> echo '* est un caractère spécial'
* est un caractère spécial

Codes Retour

Chaque commande retourne un code à la fin de son exécution. La variable spéciale $? sert à stocker le code retour de la dernière commande
exécutée.

Par exemple :

trainee@SLES12SP1:~/training> cd ..
trainee@SLES12SP1:~> mkdir codes
trainee@SLES12SP1:~> echo $?
0
trainee@SLES12SP1:~> touch codes/exit.txt
trainee@SLES12SP1:~> rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
trainee@SLES12SP1:~> echo $?
1

2026/02/04 12:56 22/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.

La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un un.

Si le code retour est zéro la dernière commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la dernière commande s'est déroulée avec une erreur.

Redirections

Votre dialogue avec le système Linux utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et l’écran, le canal
de sortie standard :

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande à l’écran.

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette façon, le résultat d’une commande telle free peut être
stocké dans un fichier pour une consultation ultérieure :

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aopensuse%3A11%3Autilisateur%3Al105&media=free:stdin.png

2026/02/04 12:56 23/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Cet effet est obtenu en utilisant une redirection :

trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> cd training
trainee@SLES12SP1:~/training> free > file
trainee@SLES12SP1:~/training> cat file
 total used free shared buffers cached
Mem: 394524 386024 8500 5716 452 300420
-/+ buffers/cache: 85152 309372
Swap: 2103292 4 2103288

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande free.

Par contre si le fichier existe déjà, il sera écrasé :

trainee@SLES12SP1:~/training> date > file
trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016

Pour ajouter des données supplémentaires au même fichier cible, il faut utiliser une double redirection :

trainee@SLES12SP1:~/training> free >> file
trainee@SLES12SP1:~/training> cat file
Mon 28 Nov 15:48:29 CET 2016
 total used free shared buffers cached

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Aopensuse%3A11%3Autilisateur%3Al105&media=free:redirection.png

2026/02/04 12:56 24/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Mem: 394524 386876 7648 5716 452 300936
-/+ buffers/cache: 85488 309036
Swap: 2103292 4 2103288

De cette façon, la date du jour sera rajoutée à la fin de votre fichier après les informations de la commande free.

Important : Notez que la sortie standard ne peut être redirigée que dans une seule
direction.

Les canaux d’entrées et de sorties sont numérotés :

0 = Le Canal d’entrée Standard
1 = Le Canal de Sortie Standard
2 = Le Canal d’erreur

La commande suivante créera un fichier nommé errorlog qui contient les messages d’erreur de l’exécution de la commande rmdir :

trainee@SLES12SP1:~/training> cd ..
trainee@SLES12SP1:~> rmdir training/ 2>errorlog
trainee@SLES12SP1:~> cat erreurlog
rmdir: failed to remove ‘training/’: Directory not empty

En effet l'erreur est générée parce que le répertoire training n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche à
droite.

Dans l’exemple suivant, nous réunissons le canal de sortie et le canal d’erreurs :

trainee@SLES12SP1:~> free > file 2>&1

La syntaxe 2>&1 envoie la sortie du canal 2 au même endroit que le canal 1, à savoir le fichier dénommé file.

2026/02/04 12:56 25/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Il est possible de modifier le canal d'entrée standard afin de lire des informations à partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractère < :

$ wc -w < erreurlog [Entrée]

Dans cet exemple la commande wc compte le nombre de mots (-w) dans le fichier errorlog et l’affiche à l’écran :

trainee@SLES12SP1:~> wc -w < errorlog
8

D'autres redirections existent :

Caractères Définition
&> Rediriger les canaux 1 et 2 au même endroit

<< Permet d'utiliser le texte taper ensuite en tant que entrée standard. Par exemple programme << EOF utilisera le texte taper après en
tant qu'entrée standard jusqu'à l'apparition de EOF sur une ligne seule.

<> Permet d'utiliser le fichier specifié en tant que entrée standard et sortie standard

Tubes

Il est aussi possible de relier des commandes avec un tube | .

Dans ce cas, le canal de sortie de la commande à gauche du tube est envoyé au canal d’entrée de la commande à droite du tube :

$ ls | wc -w [Entrée]

Cette commande, lancée dans votre répertoire personnel, prend la sortie de la commande ls et demande à la commande wc de compter le nombre de
mots inclus dans la sortie de ls :

trainee@SLES12SP1:~> ls | wc -w
18

2026/02/04 12:56 26/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Important : Il est à noter qu'il est possible de relier plusieurs tubes dans la même
commande.

Rappelez-vous que la sortie standard ne peut être redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
la visualiser à l'écran, nous devons utiliser la commande tee avec un pipe :

trainee@SLES12SP1:~> date | tee file1
Mon 28 Nov 16:14:43 CET 2016
trainee@SLES12SP1:~> cat file1
Mon 28 Nov 16:14:43 CET 2016

Cette même technique nous permet de créer deux fichiers :

$ date | tee fichier1 > fichier2 [Entrée]

trainee@SLES12SP1:~> date | tee fichier1 > fichier2
trainee@SLES12SP1:~> cat fichier1
Mon 28 Nov 16:16:15 CET 2016
trainee@SLES12SP1:~> cat fichier2
Mon 28 Nov 16:16:15 CET 2016

Important : Par défaut la commande tee écrase le fichier de destination. Pour ajouter des
données supplémentaires au même fichier cible, il convient d'utiliser l'option -a de la
commande tee.

2026/02/04 12:56 27/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par sa valeur de sa sortie. Afin d'illustrer ce point, considérons les
commandes suivantes :

trainee@SLES12SP1:~> echo date
date
trainee@SLES12SP1:~> echo $(date)
Mon 28 Nov 16:19:53 CET 2016
trainee@SLES12SP1:~> echo `date`
Mon 28 Nov 16:19:53 CET 2016

Important : Notez le format de chaque substitution $(commande) ou `commande`. Sur
un clavier français, l'anti-côte est accessible en utilisant les touches Alt Gr et 77 .

Chainage de Commandes

Il est possible de regrouper des commandes à l’aide d’un sous-shell :

$ (ls -l; ps; who) > list [Entrée]

Cet exemple envoie le résultat des trois commandes vers le fichier list en les traitant en tâches de fond.

Les commandes peuvent être aussi chainées en fonction du code retour de la commande précédente.

&& est utilisé afin de s’assurer que la deuxième commande s’exécute dans le cas où la valeur du statut de sortie est 0, autrement dit qu’il n’y a pas eu
d’erreurs.

|| est utilisé afin de s’assurer de l’inverse.

2026/02/04 12:56 28/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le syntaxe de cette commande est :

Commande1 && Commande2

Dans ce cas, Commande 2 est exécutée uniquement dans le cas où Commande1 s’est exécuté sans erreur

Ou :

Commande1 || Commande2

Dans ce cas, Commande2 est exécuté si Commande1 a rencontré une erreur.

Affichage des variables du shell

Une variable du shell peut être affichée grâce à la commande :

$ echo $VARIABLE [Entrée]

Les variables principales

Variable Description
BASH Le chemin complet du shell.
BASH_VERSION La version du shell.
EUID EUID de l'utilisateur courant.
UID UID de l'utilisateur courant.
PPID Le PID du processus père.
PWD Le répertoire courant.
OLDPWD Le répertoire avant la dernière commande cd. Même chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767
SECONDS Le nombre de scondes écoules depuis le lancement du shell
LINES Le nombre de lignes de l'écran.

2026/02/04 12:56 29/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
COLUMNS La largeur de l'écran.
HISTFILE Le fichier historique
HISTFILESIZE La taille du fichier historique
HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HISTCMD Le numéro de la commande courante dans l'historique
HISTCONTROL ignorespace ou ignoredups ou ignoreboth
HOME Le répertoire de connexion.
HOSTTYPE Le type de machine.
OSTYPE Le système d'exploitation.
MAIL Le fichier contenant le courrier.
MAILCHECK La fréquence de vérification du courrier en secondes.
PATH Le chemin de recherche des commandes.
PROMPT_COMMAND La commande exécutée avant chaque affichage du prompt.
PS1 Le prompt par défaut.
PS2 Le deuxième prompt par défaut
PS3 Le troisième prompt par défaut
PS4 Le quatrième prompt par défaut
SHELL Le shell de préférence.
SHLVL Le nombre d'instances du shell.
TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.

Les Variables de Régionalisation et d'Internationalisation

L'Internationalisation, aussi appelé i18n car il y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste à adapter un
logiciel aux paramètres variant d'une région à l'autre :

longueur des mots,
accents,
écriture de gauche à droite ou de droite à gauche,
unité monétaire,

2026/02/04 12:56 30/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

styles typographiques et modèles rédactionnels,
unités de mesures,
affichage des dates et des heures,
formats d'impression,
format du clavier,
etc …

Le Régionalisation, aussi appelé l10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste à modifier l'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractères. Par exemple, pour la langue anglaise les valeurs de langue-PAYS
sont :

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,
en_ZA = South Africa,
en_CA = Canada.

Les variables système les plus importants contenant les informations concernant le régionalisation sont :

Variable Description
LC_ALL Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE Détermine les paramètres régionaux pour l'interprétation de séquence d'octets de données texte en caractères.

Par exemple :

trainee@SLES12SP1:~> echo $LC_ALL
en_GB.UTF-8
trainee@SLES12SP1:~> echo $LC_CTYPE

trainee@SLES12SP1:~> echo $LANG

2026/02/04 12:56 31/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

en_GB.UTF-8

trainee@SLES12SP1:~> locale
LANG=en_GB.UTF-8
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=en_GB.UTF-8

Les variables spéciales

Variable Description
$LINENO Contient le numéro de la ligne courante du script ou de la fonction
$$ Contient le PID du shell en cours
$PPID Contient le PID du processus parent du shell en cours
$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 … Contient respectivement le premier argument, deuxième argument etc passés au script
$# Contient le nombre d'arguments passés au script
$* Contient l'ensemble des arguments passés au script
$@ Contient l'ensemble des arguments passés au script

La Commande env

2026/02/04 12:56 32/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande env envoie sur la sortie standard les valeurs des variables système de l'environnement de l'utilisateur qui l'invoque :

trainee@SLES12SP1:~> env
LESSKEY=/etc/lesskey.bin
NNTPSERVER=news
MANPATH=/usr/local/man:/usr/share/man
XDG_SESSION_ID=1
HOSTNAME=SLES12SP1
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
HOST=SLES12SP1
TERM=xterm-256color
SHELL=/bin/bash
PROFILEREAD=true
HISTSIZE=1000
SSH_CLIENT=10.0.2.2 46258 22
MORE=-sl
SSH_TTY=/dev/pts/0
LC_ALL=en_GB.UTF-8
USER=trainee
LS_COLORS=no=00:fi=00:di=01;34:ln=00;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=41;33;01:ex=00;32:*
.cmd=00;32:*.exe=01;32:*.com=01;32:*.bat=01;32:*.btm=01;32:*.dll=01;32:*.tar=00;31:*.tbz=00;31:*.tgz=00;31:*.rpm=
00;31:*.deb=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.lzma=00;31:*.zip=00;31:*.zoo=00;31:*.z=00;31:*.Z=00;31:*.
gz=00;31:*.bz2=00;31:*.tb2=00;31:*.tz2=00;31:*.tbz2=00;31:*.xz=00;31:*.avi=01;35:*.bmp=01;35:*.fli=01;35:*.gif=01
;35:*.jpg=01;35:*.jpeg=01;35:*.mng=01;35:*.mov=01;35:*.mpg=01;35:*.pcx=01;35:*.pbm=01;35:*.pgm=01;35:*.png=01;35:
.ppm=01;35:.tga=01;35:*.tif=01;35:*.xbm=01;35:*.xpm=01;35:*.dl=01;35:*.gl=01;35:*.wmv=01;35:*.aiff=00;32:*.au=0
0;32:*.mid=00;32:*.mp3=00;32:*.ogg=00;32:*.voc=00;32:*.wav=00;32:
XNLSPATH=/usr/share/X11/nls
QEMU_AUDIO_DRV=pa
HOSTTYPE=x86_64
FROM_HEADER=
PAGER=less
CSHEDIT=emacs
XDG_CONFIG_DIRS=/etc/xdg
LIBGL_DEBUG=quiet

2026/02/04 12:56 33/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

MINICOM=-c on
MAIL=/var/mail/trainee
PATH=/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games
CPU=x86_64
SSH_SENDS_LOCALE=yes
INPUTRC=/home/trainee/.inputrc
PWD=/home/trainee
LANG=fr_FR.UTF-8
PYTHONSTARTUP=/etc/pythonstart
GPG_TTY=/dev/pts/0
AUDIODRIVER=pulseaudio
QT_SYSTEM_DIR=/usr/share/desktop-data
SHLVL=1
HOME=/home/trainee
ALSA_CONFIG_PATH=/etc/alsa-pulse.conf
SDL_AUDIODRIVER=pulse
LESS_ADVANCED_PREPROCESSOR=no
OSTYPE=linux
LS_OPTIONS=-N --color=tty -T 0
XCURSOR_THEME=DMZ
WINDOWMANAGER=env GNOME_SHELL_SESSION_MODE=sle-classic gnome-session --session sle-classic
G_FILENAME_ENCODING=@locale,UTF-8,ISO-8859-15,CP1252
LESS=-M -I -R
MACHTYPE=x86_64-suse-linux
LOGNAME=trainee
XDG_DATA_DIRS=/usr/share
SSH_CONNECTION=10.0.2.2 46258 10.0.2.15 22
LESSOPEN=lessopen.sh %s
XDG_RUNTIME_DIR=/run/user/1000
NO_AT_BRIDGE=1
LESSCLOSE=lessclose.sh %s %s
G_BROKEN_FILENAMES=1
COLORTERM=1
_=/usr/bin/env

2026/02/04 12:56 34/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

OLDPWD=/home/trainee/training

La commande peut aussi être utilisée pour fixer une variable lors de l'exécution d'une commande. Par exemple, pour lancer xterm avec la variable
EDITOR fixée à vi :

$ env EDITOR=vim xterm

Options du Shell Bash

Pour visualiser les options du shell bash, il convient d'utiliser la commande set :

$ set -o [Entrée]

Par exemple :

trainee@SLES12SP1:~> set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off
functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off

2026/02/04 12:56 35/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

Pour activer une option il convient de nouveau à utiliser la commande set :

> set -o allexport [Entrée]

Par exemple :

trainee@SLES12SP1:~> set -o allexport
trainee@SLES12SP1:~> set -o
allexport on
braceexpand on
...

Notez que l'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec l'option +o :

> set +o allexport [Entrée]

trainee@SLES12SP1:~> set +o allexport
trainee@SLES12SP1:~> set -o
allexport off
braceexpand on

2026/02/04 12:56 36/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

...

Parmi les options, voici la description des plus intéressantes :

Option Valeur par Défaut Description
allexport off Le shell export automatiquement toute variable
emacs on L'édition de la ligne de commande est au style emacs
history on L'historique des commandes est activé
noclobber off Les simples re-directions n'écrasent pas le fichier de destination
noglob off Désactive l'expansion des caractères génériques
nounset off Le shell retourne une erreur lors de l'expansion d'une variable inconnue
verbose off Affiche les lignes de commandes saisies
vi off L'édition de la ligne de commande est au style vi

Exemples

noclobber

trainee@SLES12SP1:~> set -o noclobber
trainee@SLES12SP1:~> pwd > file
trainee@SLES12SP1:~> pwd > file
-bash: file: cannot overwrite existing file
trainee@SLES12SP1:~> pwd >| file
trainee@SLES12SP1:~> set +o noclobber

Important : Notez que l'option noclobber peut être contournée en utilisant la redirection
suivi par le caractère |.

2026/02/04 12:56 37/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

noglob

trainee@SLES12SP1:~> set -o noglob
trainee@SLES12SP1:~> echo *
*
trainee@SLES12SP1:~> set +o noglob
trainee@SLES12SP1:~> echo *
aac abc bca bin codes Desktop Documents Downloads errorlog file file1 Music Pictures Public public_html Templates
training Videos vitext xyz

Important : Notez que l'effet du caractère spécial est annulé sous l'influence de l'option
noglob.

nounset

trainee@SLES12SP1:~> set -o nounset
trainee@SLES12SP1:~> echo $FENESTROS
-bash: FENESTROS: unbound variable
trainee@SLES12SP1:~> set +o nounset
trainee@SLES12SP1:~> echo $FENESTROS

trainee@SLES12SP1:~>

Important : Notez que la variable inexistante $FENESTROS est identifiée comme telle
sous l'influence de l'option nounset. Or le comportement habituel de Linux est de
retourner une ligne vide qui n'indique pas si la variable n’existe pas ou si elle est
simplement vide.

2026/02/04 12:56 38/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript et ./myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

2026/02/04 12:56 39/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

trainee@SLES12SP1:~> script
Script started, file is typescript
trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> ls
aac bin Documents fichier1 file1 Public training vitext
abc codes Downloads fichier2 Music public_html typescript xyz
bca Desktop errorlog file Pictures Templates Videos
trainee@SLES12SP1:~> exit
exit
Script done, file is typescript
trainee@SLES12SP1:~> cat typescript
Script started on Tue 29 Nov 2016 03:59:24 CET
trainee@SLES12SP1:~> pwd
/home/trainee
trainee@SLES12SP1:~> ls
aac bin Documents fichier1 file1 Public training vitext
abc codes Downloads fichier2 Music public_html typescript xyz
bca Desktop errorlog file Pictures Templates Videos
trainee@SLES12SP1:~> exit
exit

Script done on Tue 29 Nov 2016 03:59:31 CET

2026/02/04 12:56 40/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, éditez le fichier myscript avec vi :

> vi myscript [Entrée]

Éditez votre fichier ainsi :

pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

trainee@SLES12SP1:~> vi myscript
trainee@SLES12SP1:~> /bin/bash myscript
/home/trainee
aac bin Documents fichier1 file1 Pictures Templates Videos
abc codes Downloads fichier2 myscript Public training vitext
bca Desktop errorlog file Music public_html typescript xyz

Lancez ensuite le script en redirigeant son entrée standard :

trainee@SLES12SP1:~> /bin/bash < myscript
/home/trainee
aac bin Documents fichier1 file1 Pictures Templates Videos
abc codes Downloads fichier2 myscript Public training vitext
bca Desktop errorlog file Music public_html typescript xyz

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

trainee@SLES12SP1:~> echo $PATH
/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games

Déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

2026/02/04 12:56 41/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~> mv myscript ~/bin
trainee@SLES12SP1:~> chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

trainee@SLES12SP1:/tmp> myscript
/tmp
hsperfdata_root
inode
managera1411267841657715235client
managera3336001029897679475server
managera4847938942232964844client
managera5050357016347721452server
systemd-private-04f820fa26c745be8ddba814c6292f21-rtkit-daemon.service-o4lKP5
systemicontmp5578677472245134133dat
systemicontmp7082392205020802884dat

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

./myscript

. myscript

trainee@SLES12SP1:/tmp> cd ~/bin
trainee@SLES12SP1:~/bin> ./myscript
/home/trainee/bin
myscript
trainee@SLES12SP1:~/bin> . myscript
/home/trainee/bin
myscript

A faire : Notez bien la différence entre les sorties de cette dernière commande et la
précédente. Expliquez pourquoi.

2026/02/04 12:56 42/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

trainee@SLES12SP1:~/bin> read var1 var2 var3 var4
fenestros edu is great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros
trainee@SLES12SP1:~/bin> echo $var2
edu
trainee@SLES12SP1:~/bin> echo $var3
is
trainee@SLES12SP1:~/bin> echo $var4
great!

Important: Notez que chaque champs a été placé dans une variable différente. Notez
aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
afin de les distinguer des variables système qui sont en majuscules.

trainee@SLES12SP1:~/bin> read var1 var2
fenestros edu is great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros
trainee@SLES12SP1:~/bin> echo $var2
edu is great!

Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros
est mis dans $var2.

2026/02/04 12:56 43/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

trainee@SLES12SP1:~/bin> read var

↵ Entrée

trainee@SLES12SP1:~/bin> echo $?
0
trainee@SLES12SP1:~/bin> echo $var

trainee@SLES12SP1:~/bin>

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

trainee@SLES12SP1:~/bin> read var

Ctrl+D

trainee@SLES12SP1:~/bin> echo $?
1
trainee@SLES12SP1:~/bin> echo $var

trainee@SLES12SP1:~/bin>

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

2026/02/04 12:56 44/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée
standard au format octal. Ceci est utile afin de visualiser les caractères non-imprimables.
L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou
dans le contenu fourni à l'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

trainee@SLES12SP1:~/bin> OLDIFS="$IFS"
trainee@SLES12SP1:~/bin> IFS=":"
trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

trainee@SLES12SP1:~/bin> read var1 var2 var3
fenestros:edu is:great!
trainee@SLES12SP1:~/bin> echo $var1
fenestros
trainee@SLES12SP1:~/bin> echo $var2
edu is
trainee@SLES12SP1:~/bin> echo $var3
great!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

2026/02/04 12:56 45/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/bin> IFS="$OLDIFS"
trainee@SLES12SP1:~/bin> echo "$IFS" | od -c
0000000 \t \n \n
0000004

La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

LAB #1

2026/02/04 12:56 46/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Testez si le fichier a100 est un fichier ordinaire :

trainee@SLES12SP1:~/bin> cd ../training/
trainee@SLES12SP1:~/training> test -f a100
trainee@SLES12SP1:~/training> echo $?
0
trainee@SLES12SP1:~/training> [-f a100]
trainee@SLES12SP1:~/training> echo $?
0

Testez si le fichier a101 existe :

trainee@SLES12SP1:~/training> [-f a101]
trainee@SLES12SP1:~/training> echo $?
1

Testez si /home/trainee/training est un répertoire :

trainee@SLES12SP1:~/training> [-d /home/trainee/training]
trainee@SLES12SP1:~/training> echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

2026/02/04 12:56 47/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

LAB #2

Testez si les deux chaînes sont égales :

trainee@SLES12SP1:~/training> string1="root"
trainee@SLES12SP1:~/training> string2="fenestros"
trainee@SLES12SP1:~/training> [$string1 = $string2]
trainee@SLES12SP1:~/training> echo $?
1

Testez si la string1 n'a pas de longueur 0 :

trainee@SLES12SP1:~/training> [-n $string1]
trainee@SLES12SP1:~/training> echo $?
0

Testez si la string1 a une longueur de 0 :

trainee@SLES12SP1:~/training> [-z $string1]
trainee@SLES12SP1:~/training> echo $?
1

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

2026/02/04 12:56 48/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

LAB #3

Comparez les deux nombres value1 et value2 :

trainee@SLES12SP1:~/training> read value1
35
trainee@SLES12SP1:~/training> read value2
23
trainee@SLES12SP1:~/training> [$value1 -lt $value2]
trainee@SLES12SP1:~/training> echo $?
1
trainee@SLES12SP1:~/training> [$value2 -lt $value1]
trainee@SLES12SP1:~/training> echo $?
0
trainee@SLES12SP1:~/training> [$value2 -eq $value1]
trainee@SLES12SP1:~/training> echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

LAB #4

Testez si $file n'est pas un répertoire :

trainee@SLES12SP1:~/training> file=a1OO
trainee@SLES12SP1:~/training> [! -d $file]

2026/02/04 12:56 49/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/training> echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

trainee@SLES12SP1:~/training> directory=/usr
trainee@SLES12SP1:~/training> [-d $directory -a -x $directory]
trainee@SLES12SP1:~/training> echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@SLES12SP1:~/training> [-w a100 -a \(-d /usr -o -d /tmp \)]
trainee@SLES12SP1:~/training> echo $?
0

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

LAB #5

trainee@SLES12SP1:~/training> [-o allexport]
trainee@SLES12SP1:~/training> echo $?
1

La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

2026/02/04 12:56 50/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

LAB #6

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@SLES12SP1:~/training> [[-w a100 && (-d /usr || -d /tmp)]]
trainee@SLES12SP1:~/training> echo $?
0

Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

LAB #7

trainee@SLES12SP1:~/training> [[-d /root]] && echo "The root directory exists"

2026/02/04 12:56 51/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

The root directory exists
trainee@SLES12SP1:~/training> [[-d /root]] || echo "The root directory exists"
trainee@SLES12SP1:~/training>

L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo

2026/02/04 12:56 52/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

LAB #8

Ajoutez 2 à la valeur de $x :

trainee@SLES12SP1:~/training> x=2
trainee@SLES12SP1:~/training> expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

trainee@SLES12SP1:~/training> expr $x+2
2+2

2026/02/04 12:56 53/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les opérateurs doivent être protégés :

trainee@SLES12SP1:~/training> expr $x * 2
expr: syntax error
trainee@SLES12SP1:~/training> expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

trainee@SLES12SP1:~/training> resultat=`expr $x + 10`
trainee@SLES12SP1:~/training> echo $resultat
12

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo

2026/02/04 12:56 54/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

LAB #9

2026/02/04 12:56 55/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@SLES12SP1:~/training> x=2
trainee@SLES12SP1:~/training> ((x=$x+10))
trainee@SLES12SP1:~/training> echo $x
12
trainee@SLES12SP1:~/training> ((x=$x+20))
trainee@SLES12SP1:~/training> echo $x
32

Structures de contrôle

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

ou encore :

2026/02/04 12:56 56/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

fi

LAB #10

Créez le script user_check suivant :

#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

2026/02/04 12:56 57/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Testez-le :

trainee@SLES12SP1:~/training> chmod 770 user_check
trainee@SLES12SP1:~/training> ./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@SLES12SP1:~/training> ./user_check root
Utilisateur root est défini sur ce système
trainee@SLES12SP1:~/training> ./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@SLES12SP1:~/training> ./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

2026/02/04 12:56 58/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemple

 case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de
script. La même logique est appliquée dans le cas où le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom
du script.

2026/02/04 12:56 59/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1

2026/02/04 12:56 60/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

done

Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de SLES, le système exécute le fichier ~/.profile

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

LAB #11

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts
suivants ligne par ligne.

~/.profile

trainee@SLES12SP1:~/training> cat ~/.profile
Sample .profile for SuSE Linux
rewritten by Christian Steinruecken <cstein@suse.de>
#
This file is read each time a login shell is started.
All other interactive shells will only read .bashrc; this is particularly

2026/02/04 12:56 61/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

important for language settings, see below.

test -z "$PROFILEREAD" && . /etc/profile || true

Most applications support several languages for their output.
To make use of this feature, simply uncomment one of the lines below or
add your own one (see /usr/share/locale/locale.alias for more codes)
This overwrites the system default set in /etc/sysconfig/language
in the variable RC_LANG.
#
#export LANG=de_DE.UTF-8 # uncomment this line for German output
#export LANG=fr_FR.UTF-8 # uncomment this line for French output
#export LANG=es_ES.UTF-8 # uncomment this line for Spanish output

Some people don't like fortune. If you uncomment the following lines,
you will have a fortune each time you log in ;-)

#if [-x /usr/bin/fortune] ; then
echo
/usr/bin/fortune
echo
#fi

~/.bashrc

trainee@SLES12SP1:~/training> cat ~/.bashrc
Sample .bashrc for SuSE Linux
Copyright (c) SuSE GmbH Nuernberg

There are 3 different types of shells in bash: the login shell, normal shell
and interactive shell. Login shells read ~/.profile and interactive shells
read ~/.bashrc; in our setup, /etc/profile sources ~/.bashrc - thus all

2026/02/04 12:56 62/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

settings made here will also take effect in a login shell.
#
NOTE: It is recommended to make language settings in ~/.profile rather than
here, since multilingual X sessions would not work properly if LANG is over-
ridden in every subshell.

Some applications read the EDITOR variable to determine your favourite text
editor. So uncomment the line below and enter the editor of your choice :-)
#export EDITOR=/usr/bin/vim
#export EDITOR=/usr/bin/mcedit

For some news readers it makes sense to specify the NEWSSERVER variable here
#export NEWSSERVER=your.news.server

If you want to use a Palm device with Linux, uncomment the two lines below.
For some (older) Palm Pilots, you might need to set a lower baud rate
e.g. 57600 or 38400; lowest is 9600 (very slow!)
#
#export PILOTPORT=/dev/pilot
#export PILOTRATE=115200

test -s ~/.alias && . ~/.alias || true

<html>

Copyright © 2019 Hugh Norris.

</html>

2026/02/04 12:56 63/63 LSF105 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:opensuse:11:utilisateur:l105

Last update: 2020/01/30 03:28

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:opensuse:11:utilisateur:l105

	LSF105 - La Ligne de Commande
	Le Shell
	Le Shell /bin/bash
	Les Commandes Internes et Externes au shell
	Les alias
	Le Prompt
	Rappeler des Commandes
	Générer les fins de noms de fichiers
	Le shell interactif
	Caractère *
	Caractère ?
	Caractères []
	L'option extglob
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	Codes Retour
	Redirections
	Tubes
	Substitutions de Commandes
	Chainage de Commandes
	Affichage des variables du shell
	Les variables principales
	Les Variables de Régionalisation et d'Internationalisation
	Les variables spéciales

	La Commande env
	Options du Shell Bash
	Exemples
	noclobber
	noglob
	nounset

	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	LAB #1

	Tests de chaînes de caractère
	LAB #2

	Tests sur des nombres
	LAB #3

	Les opérateurs
	LAB #4

	Tests d'environnement utilisateur
	LAB #5

	La commande [[expression]]
	LAB #6

	Opérateurs du shell
	LAB #7

	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	LAB #8

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	LAB #9

	Structures de contrôle
	If
	LAB #10
	case
	Exemple

	Boucles
	for
	while
	Exemple

	Scripts de Démarrage
	LAB #11
	~/.profile
	~/.bashrc

