Version: **2025.01**

Last update: 2025/01/19 14:39

DOE311 - Exam - Acquired knowledge

The Infrastructure Used

VM	FQDN	IP	os	Version	vCPUs	RAM (MB)	HDD (GB)	User	PW	root PW
Gateway_10.0.2.40	gateway.ittraining.loc	10.0.2.40	Debian	11.8	4	4096	32 / 4 / 64	trainee	trainee	fenestros
CentOS_10.0.2.45	centos8.ittraining.loc	10.0.2.45	CentOS	8.5.2111	4	4096	500 / 4 / 64 / 32	trainee	trainee	fenestros
Kubemaster_10.0.2.65	kubemaster.ittraining.loc	192.168.56.2	Debian	9.13	4	4096	20	trainee	trainee	fenestros
Kubenode01_10.0.2.66	kubenode01.ittraining.loc	192.168.56.3	Debian	9.13	4	4096	20	trainee	trainee	fenestros
Kubenode02_10.0.2.67	kubenode02.ittraining.loc	192.168.56.4	Debian	9.13	4	4096	20	trainee	trainee	fenestros

In your VirtualBox you must create a private host network called vboxnet0 with address 192.168.56.1/24.

Pre-configured **VirtualBox** VMs can be downloaded free of charge here:

- Gateway 10.0.2.40,
- CentOS 10.0.2.45,
- Kubemaster_10.0.2.65,
- Kubenode01 10.0.2.66,
- Kubenode02 10.0.2.67.

Reminder of the Training Content

- DOE301 Creating Kubernetes clusters
 - Container Orchestration
 - Introduction to Kubernetes (k8s)

- Control Plane
- Controller
- Nodes (Minions)
- LAB #1 Creating a Kubernetes cluster with Virtual Machines
 - 1.1 Overview
 - 1.2 Connecting to the kubemaster
 - 1.3 Testing the network
 - 1.4 Initializing the Cluster Controller
 - 1.5 Installing a Network Extension for communication between PODs
 - 1.6 Connecting workers to the Controller
 - 1.7 K8s and High Availability
- LAB #2 Creating a Kubernetes cluster with Minikube
 - 2.1 Introducing Minikube
 - 2.2 Installing Minikube
 - 2.3 Configuring Minikube
 - 2.4 Installing Docker
 - 2.5 Installing kubectl
 - 2.6 The minikube addons command
 - 2.7 The minikube dashboard addon

• DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

- ∘ LAB #1 Creating a pod
 - 1.1 Introducing a pod
 - 1.2 Manual pod creation
 - 1.3 Creating a pod using a YAML file
 - apiVersion
 - kind
 - metadata
 - spec
 - Using the YAML file
- LAB #2 Using Replication Controllers and ReplicaSets
 - 2.1 Replication Controllers
 - Overview
 - Implementation

DOE311 - Exam - Acquired knowledge

- 2.2 ReplicaSets
 - Overview
 - Implementation
- ∘ LAB #3 Deployment management
 - 3.1 Overview
 - 3.2 Implementation
 - Rollouts
 - Rolling Updates
 - Rollbacks
- ∘ LAB #4 Maintenance
 - 4.1 The drain command
 - 4.2 The uncordon command
- LAB #5 Managing Cluster Updates
 - 5.1 Updating kubeadm
 - 5.2 Updating Workers

• DOE303 - The kubectl, krew and kustomize commands

- ∘ LAB #1 Using the kubectl command
 - 1.1 Getting help with kubectl commands
 - 1.2 Obtaining information about the Cluster
 - The version command
 - The cluster-info command
 - The api-versions command
 - The api-resources command
 - 1.3 Obtaining information about nodes
 - The describe node command
 - The top command
 - 1.4 Obtaining information about Pods
 - The describe pod command
 - The top command
 - 1.5 Working with the kubectl command
 - The apply command
 - The create command
 - The get command

- Using Options
- The exec command
- Imperative commands
- LAB #2 Managing kubectl plugins with the krew command
 - 2.1 Installing krew
 - 2.2 Viewing the list of plugins
 - 2.3 Installing and using plugins
 - 2.4 Updating and deleting plugins
- LAB #3 Managing patches with the kustomize command

• DOE304 - Working with Pods and Containers

- ∘ LAB #1 Application Configuration
 - 1.1 Overview
 - 1.2 Creating a ConfigMap
 - 1.3 Creating a Secret
 - 1.4 Using ConfigMaps and Secrets
 - Using Environment variables
 - Using Configuration Volumes
- LAB #2 Container Resource Management
 - 2.1 Overview
 - 2.2 Resource Requests
 - 2.3 Resource Limits
- ∘ LAB #3 Container supervision
 - 3.1 Overview
 - 3.2 Liveness Probes
 - The exec Probe
 - The httpGet Probe
 - 3.3 Startup Probes
 - 3.4 Readiness Probes
- ∘ LAB #4 Restart Policy Management
 - 4.1 Overview
 - 4.2 Always
 - 4.3 OnFailure
 - 4.4 Never

- ∘ LAB #5 Creating Multi-container Pods
 - 5.1 Overview
 - 5.2 Implementation
- LAB #6 Init containers
 - 6.1 Overview
 - 6.2 Implementation
- ∘ LAB #7 Scheduling
 - 7.1 Overview
 - 7.2 Implementation
- ∘ LAB #8 DaemonSets
 - 8.1 Overview
 - 8.2 Implementation
- ∘ LAB #9 Static Pods
 - 9.1 Overview
 - 9.2 Implementation

• DOE305 - Network, Service and Microservices Architecture Management

- ∘ LAB #1 Network and Service Management
 - 1.1 Overview of Network Extensions
 - 1.2 DNS K8s
 - Overview
 - Implementation
 - 1.3 Network Policies
 - Overview
 - Implementation
 - 1.4 Services
 - Overview
 - Implementation
 - The NodePort service
 - The ClusterIP service
 - 1.5 Services and the K8s DNS
 - Overview
 - Implementation
 - 1.6 K8s Ingress management

- Overview
- Implementation
- LAB #2 Microservices Architecture Management
 - 2.1 Overview
 - 2.2 Creating Deployments
 - 2.3 Creating Services
 - 2.4 Deploying the Application
 - 2.5 Scaling Up

• DOE306 - Managing Volumes with Kubernetes

- Overview
 - Volumes
 - Persistent Volumes
 - Volume Types
- ∘ LAB #1 Using K8s Volumes
 - 1.1 Volumes and volumeMounts
 - 1.2 Sharing volumes between containers
- ∘ LAB #2 Persistent Volumes
 - 2.1 Storage Classes
 - 2.2 Persistent Volumes
 - 2.3 Persistent Volume Claims
 - 2.4 Using a PersistentVolumeClaim in a pod
 - 2.5 Resizing a PersistentVolumeClaim

• DOE307 - Troubleshooting K8s

- ∘ LAB #1 The API Server
 - 1.1 Connection Refused
 - 1.2 System Pod Logs
- $\circ\,$ LAB #2 The Nodes
 - 2.1 NotReady Status
- ∘ LAB #3 Pods
 - 3.1 The ImagePullBackOff Error
 - 3.2 The CrashLoopBackOff Error
- ∘ LAB #4 Containers
 - 4.1 The exec Command

- LAB #5 Networking
 - 5.1 kube-proxy and DNS
 - 5.2 The netshoot Container

DOE308 - Introduction to Securing K8s

- LAB #1 Role Based Access Control and TLS Certificates
 - 1.1 Overview
 - 1.2 The /etc/kubernetes/manifests/kube-apiserver.yaml File
 - 1.3 Creating a serviceAccount
 - 1.4 Creating a User
 - 1.5 TLS Certificates
- ∘ LAB #2 Pod Security Implementation
 - 2.1 Overview
 - 2.2 Kubernetes Security Context
 - 2.3 Kubernetes Network Policies
 - 2.4 Kubernetes Resource Allocation Management

• DOE309 - Package Management for Kubernetes with Helm

- Overview
- ∘ LAB #1 Working with Helm
 - 1.1 Installing Helm
 - 1.2 The helm search hub Command
 - 1.3 Searching the Artifact Hub
 - 1.4 Adding and Deleting a Repository
 - 1.5 The helm search repo Command
 - 1.6 The helm show Command
 - 1.7 Installing a Chart
 - 1.8 The helm get Command
 - 1.9 Using NOTES
 - 1.10 The helm upgrade Command
 - 1.11 The helm history Command
 - 1.12 The helm rollback Command
 - 1.13 The helm uninstall Command
- ∘ LAB #2 Monitoring Kubernetes with the EFK Stack
 - 2.1 Overview

- 2.2 Installing the elasticsearch Chart
- 2.3 Installing fluentd-elasticsearch Chart
- 2.4 Installing the kibana Chart
- 2.5 Generating Logs in Kubernetes
- 2.6 Visualizing Data with Kibana

• DOE310 - StatefulSets, Advanced StorageClass Usage, Creating a Helm Chart and Monitoring

- StatefulSets
 - Overview
 - LAB #1 Setting up a simple StatefulSet
 - 1.1 Service and StatefulSet creation
 - 1.2 Scaling Up a StatefulSet
 - 1.3 Scaling Down a StatefulSet
 - 1.4 Deleting a StatefulSet
- Advanced StorageClass Usage
 - LAB #2 Dynamic NFS provisioning
 - 2.1 NFS Server Configuration
 - 2.2 NFS Client Configuration
 - 2.3 Configuring K8s
 - 2.4 Creating a PersistentVolumeClaim
 - 2.5 Using the PersistentVolumeClaim with a Pod
 - 2.6 Creating a Second PersistentVolumeClaim
 - 2.7 Deleting the PersistentVolumeClaims
- Creating a Helm Chart
 - Overview
 - LAB #3 Creating a Simple Helm Package
 - 3.1 The values.yaml File
 - 3.2 Templates
 - 3.3 Installation and Removal
- Monitoring
 - Overview
 - LAB #4 Implementing a Prometheus Solution
 - 4.1 Stack Deployment with Helm
 - 4.2 Viewing Data with Grafana

DOE311 - Exam - Acquired knowledge

- 4.3 Viewing Alerts with the Prometheus Web UI
- DOE311 Exam Acquired knowledge
 - ∘ 60 questions from a pool of 104 questions

Training Evaluation and Acquired Knowledge Assessment

To validate your training, please complete the Training Evaluation and Acquired Knowledge Assessment.

Copyright © 2025 Hugh Norris - Non-contractual document. Curriculum subject to change without notice.

DOE311 - Exam - Acquired knowledge