
2026/02/04 12:03 1/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Version - 2025.01

Last update : 2025/01/17 16:09

DOE308 - Introduction to Securing K8s

Contents

DOE308 - Introduction to Securing K8s
Contents
LAB #1 - Role Based Access Control and TLS Certificates

1.1 - Overview
1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File
1.3 - Creating a serviceAccount
1.4 - Creating a User
1.5 - TLS Certificates

LAB #2 - Pod Security Implementation
2.1 - Overview
2.2 - Kubernetes Security Context
2.3 - Kubernetes Network Policies
2.4 - Kubernetes Resource Allocation Management

LAB #1 - Role Based Access Control and TLS Certificates

1.1 - Overview

A Kubernetes object is either linked to a Namespace or not linked to a Namespace.

Kubernetes uses the rbac.authorization.k8s.io API to manage authorizations. The actors involved in this API are:

2026/02/04 12:03 2/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Namespaces,
can be considered as virtual clusters,
allow isolation and logical segmentation,
allow users, roles and resources to be grouped together,
are used with applications, customers, projects or teams.

Subjects,
Regular Users - enable management of authorized access from outside the cluster, whether by a physical user or in some other form. User
management is the responsibility of the cluster administrator,
ServiceAccounts - set permissions on software entities. Kubernetes creates a certain number of serviceAccounts automatically, but the
Administrator can create others. Each pod has a serviceAccount that manages the privileges granted to the pod's process and containers,
User Groups - Kubernetes groups users using common properties such as the prefix of a serviceAccount or the organization field in a
certificate. It is then possible to grant RBAC-type privileges to the groups thus created.

Resources,
These are entities to which Subjects will have access,
A resource is an entity such as a pod, a deployment or sub-resources such as pod logs,
The Pod Security Policy (PSP) is also considered a resource.

Roles and ClusterRoles,
Roles - allow you to define rules representing a set of permissions, such as GET WATCH LIST CREATE UPDATE PATCH and DELETE, which
can be used with resources in a Namespace,

Permissions are added, not removed. So there are no deny rules.
ClusterRoles - is not linked to a Namespace. A ClusterRole is used to :

Define permissions for resources to be used in a Namespace
Set permissions for resources to be used in all Namespaces
Set permissions for cluster resources.

An example of a Role for granting permissions in the default Namespace is :

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader

2026/02/04 12:03 3/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Important : apiGroups: [“”] - “” indicates the core or legacy api group. This group is never specified in an apiVersion field, which is why
we write apiVersion: v1 and not apiVersion api/v1.

An example of a ClusterRole for granting read permissions to secrets in a specific Namespace or in all Namespaces is :

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: secret-reader
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get", "watch", "list"]

RoleBindings and ClusterRoleBindings,
Allow you to grant permissions defined in Roles or ClusterRoles to Subjects,
RoleBindings are NameSpace-specific,
ClusterRoleBindings apply at cluster level.

1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File

The use of RBAC is defined by the value of the –authorization-mode directive in the /etc/kubernetes/manifests/kube-apiserver.yaml file:

root@kubemaster:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml
apiVersion: v1

2026/02/04 12:03 4/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

kind: Pod
metadata:
 annotations:
 kubeadm.kubernetes.io/kube-apiserver.advertise-address.endpoint: 192.168.56.2:6443
 creationTimestamp: null
 labels:
 component: kube-apiserver
 tier: control-plane
 name: kube-apiserver
 namespace: kube-system
spec:
 containers:
 - command:
 - kube-apiserver
 - --advertise-address=192.168.56.2
 - --allow-privileged=true
 - --authorization-mode=Node,RBAC
 - --client-ca-file=/etc/kubernetes/pki/ca.crt
 - --enable-admission-plugins=NodeRestriction
 - --enable-bootstrap-token-auth=true
 - --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
 - --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
 - --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
 - --etcd-servers=https://127.0.0.1:2379
 - --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-client.crt
 - --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt
 - --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.key
 - --requestheader-allowed-names=front-proxy-client
 - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
 - --requestheader-extra-headers-prefix=X-Remote-Extra-
 - --requestheader-group-headers=X-Remote-Group
 - --requestheader-username-headers=X-Remote-User

2026/02/04 12:03 5/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 - --secure-port=6443
 - --service-account-issuer=https://kubernetes.default.svc.cluster.local
 - --service-account-key-file=/etc/kubernetes/pki/sa.pub
 - --service-account-signing-key-file=/etc/kubernetes/pki/sa.key
 - --service-cluster-ip-range=10.96.0.0/12
 - --tls-cert-file=/etc/kubernetes/pki/apiserver.crt
 - --tls-private-key-file=/etc/kubernetes/pki/apiserver.key
 image: k8s.gcr.io/kube-apiserver:v1.24.2
 imagePullPolicy: IfNotPresent
 livenessProbe:
 failureThreshold: 8
 httpGet:
 host: 192.168.56.2
 path: /livez
 port: 6443
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 name: kube-apiserver
 readinessProbe:
 failureThreshold: 3
 httpGet:
 host: 192.168.56.2
 path: /readyz
 port: 6443
 scheme: HTTPS
 periodSeconds: 1
 timeoutSeconds: 15
 resources:
 requests:
 cpu: 250m
 startupProbe:
 failureThreshold: 24

2026/02/04 12:03 6/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 httpGet:
 host: 192.168.56.2
 path: /livez
 port: 6443
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 volumeMounts:
 - mountPath: /etc/ssl/certs
 name: ca-certs
 readOnly: true
 - mountPath: /etc/ca-certificates
 name: etc-ca-certificates
 readOnly: true
 - mountPath: /etc/kubernetes/pki
 name: k8s-certs
 readOnly: true
 - mountPath: /usr/local/share/ca-certificates
 name: usr-local-share-ca-certificates
 readOnly: true
 - mountPath: /usr/share/ca-certificates
 name: usr-share-ca-certificates
 readOnly: true
 hostNetwork: true
 priorityClassName: system-node-critical
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - hostPath:
 path: /etc/ssl/certs
 type: DirectoryOrCreate
 name: ca-certs

2026/02/04 12:03 7/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 - hostPath:
 path: /etc/ca-certificates
 type: DirectoryOrCreate
 name: etc-ca-certificates
 - hostPath:
 path: /etc/kubernetes/pki
 type: DirectoryOrCreate
 name: k8s-certs
 - hostPath:
 path: /usr/local/share/ca-certificates
 type: DirectoryOrCreate
 name: usr-local-share-ca-certificates
 - hostPath:
 path: /usr/share/ca-certificates
 type: DirectoryOrCreate
 name: usr-share-ca-certificates
status: {}

1.3 - Creating a serviceAccount

It is preferable to create one serviceAccount per service. This allows you to fine-tune the security settings for the service. If a serviceAccount is not
specified when pods are created, these pods will be assigned the Namespace default serviceAccount.

Let's say you want your application to interact with the Kubernetes API to obtain information about pods in a Namespace. The default serviceAccount in
the Namespace default cannot perform this task:

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:default:default
no

Important: the format of the –as option value is system:serviceaccount:namespace:serviceaccount_name.

2026/02/04 12:03 8/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Now create the flask.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi flask.yaml
root@kubemaster:~# cat flask.yaml
apiVersion: v1
kind: Namespace
metadata:
 name: flask

apiVersion: v1
kind: ServiceAccount
metadata:
 name: flask-backend
 namespace: flask

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: flask-backend-role
 namespace: flask
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: flask-backend-role-binding

https://www.dropbox.com/scl/fi/ttklc9ejfhpuyq3eh7wbo/flask.yaml?rlkey=gt1fxvfd8a1vxh75e8y8bz6yw&dl=0

2026/02/04 12:03 9/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 namespace: flask
subjects:
 - kind: ServiceAccount
 name: flask-backend
 namespace: flask
roleRef:
 kind: Role
 name: flask-backend-role
 apiGroup: rbac.authorization.k8s.io

This file creates :

a Namespace called flask,
a serviceAccount called flask-backend for the Namespace flask,
a Role called flask-backend-role that grants get, watch and list permissions on pods in the flask Namespace,
a RoleBinding called flask-backend-role-binding that grants the permissions defined in the flask-backend-role Role to the serviceAccount
called flask-backend.

Apply the yaml file:

root@kubemaster:~# kubectl create -f flask.yaml
namespace/flask created
serviceaccount/flask-backend created
role.rbac.authorization.k8s.io/flask-backend-role created
rolebinding.rbac.authorization.k8s.io/flask-backend-role-binding created

Now create the deployment.yaml file that creates pods that will use the serviceAccount called flask-backend:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi deployment.yaml

https://www.dropbox.com/scl/fi/ujyzyh5ixqibqtychuyzr/deployment.yaml?rlkey=u4tnbrh2f0b6ewk1mt15y6y63&dl=0

2026/02/04 12:03 10/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# cat deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
 namespace: flask
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 serviceAccount: flask-backend
 containers:
 - name: nginx-container
 image: nginx

 replicas: 3
 selector:
 matchLabels:
 type: front-end

Run kubectl :

root@kubemaster:~# kubectl create -f deployment.yaml
deployment.apps/myapp-deployment created

2026/02/04 12:03 11/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Check the presence of the deployment:

root@kubemaster:~# kubectl get deployment -n flask
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 32s

Now check that the serviceAccount flask-backend can list pods in the Namespace flask :

root@kubemaster:~# kubectl auth can-i list pods -n flask --as=system:serviceaccount:flask:flask-backend
yes

Note, however, that the flask-backend serviceAccount does not have the create permission in the flask Namespace:

root@kubemaster:~# kubectl auth can-i create pods -n flask --as=system:serviceaccount:flask:flask-backend
no

and the flask-backend serviceAccount does not have the list permission in the default Namespace:

root@kubemaster:~# kubectl auth can-i list pods -n default --as=system:serviceaccount:flask:flask-backend
no

1.4 - Creating a User

Users are part of the configuration context that defines the cluster name and the namespace name:

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin

Important: A context is an element that groups access parameters under a name. There are three access parameters: cluster,
namespace and user. The kubectl command uses the parameters of the current context to communicate with the cluster.

2026/02/04 12:03 12/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Looking at the current context, we see that the user kubernetes-admin@kubernetes has two attributes named :

client-certificate-data: REDACTED
client-key-data: REDACTED

root@kubemaster:~# kubectl config view
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: DATA+OMITTED
 server: https://192.168.56.2:6443
 name: kubernetes
contexts:
- context:
 cluster: kubernetes
 user: kubernetes-admin
 name: kubernetes-admin@kubernetes
current-context: kubernetes-admin@kubernetes
kind: Config
preferences: {}
users:
- name: kubernetes-admin
 user:
 client-certificate-data: REDACTED
 client-key-data: REDACTED

Important : The word REDACTED indicates that the values are hidden for security reasons.

To create a new user, first create a private key for the user:

root@kubemaster:~# openssl genrsa -out trainee.key 2048
Generating RSA private key, 2048 bit long modulus

2026/02/04 12:03 13/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

....................................+++

..............+++
e is 65537 (0x10001)

Now create a CSR:

root@kubemaster:~# openssl req -new -key trainee.key -out trainee.csr -subj “/CN=trainee/O=examplegroup”

Important: Note that Kubernetes will use the organization key value for user grouping.

The CSR must be signed by the Kubernetes root CA:

root@kubemaster:~# ls -l /etc/kubernetes/pki/ca.*
-rw-r--r-- 1 root root 1099 Jul 12 13:23 /etc/kubernetes/pki/ca.crt
-rw------- 1 root root 1679 Jul 12 13:23 /etc/kubernetes/pki/ca.key

Sign the CSR :

root@kubemaster:~# openssl x509 -req -in trainee.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out trainee.crt
Signature ok
subject=/CN=trainee/O=examplegroup
Getting CA Private Key

View the trainee certificate :

root@kubemaster:~# openssl x509 -in trainee.crt -text
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:

2026/02/04 12:03 14/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 b6:f7:59:8f:75:19:bc:10
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN = kubernetes
 Validity
 Not Before: Jul 14 07:49:14 2022 GMT
 Not After : Aug 13 07:49:14 2022 GMT
 Subject: CN = trainee, O = examplegroup
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:9b:2d:e8:7d:ba:e9:9f:b3:da:8f:14:13:21:83:
 64:c6:6e:7b:2c:ee:4f:e6:71:65:a7:e4:ca:6a:23:
 ee:cf:e1:43:18:e0:b0:1f:ef:ff:53:21:de:d2:e8:
 38:d1:39:ab:b0:8d:78:f4:af:7c:80:b0:1a:c3:a2:
 cb:64:b4:73:e6:a5:30:33:69:f1:6d:9a:5b:66:2e:
 58:f6:c2:51:7c:42:95:16:ac:60:0e:1d:4d:09:aa:
 06:29:51:79:f1:45:70:48:b9:1c:e2:05:fc:5c:33:
 82:d7:82:5f:a2:31:13:b5:23:4c:10:bf:a5:8a:4f:
 37:2a:d6:cc:ac:c7:c0:ad:97:71:95:9e:26:4f:60:
 b5:41:8a:7b:c5:79:38:02:28:b0:88:84:23:0b:18:
 d2:c2:f9:9f:ff:ec:ec:fb:0a:41:d7:7d:f3:90:2f:
 29:08:86:1e:e7:cb:ab:cf:56:5e:a9:ba:06:d8:83:
 c2:3c:1d:38:cc:fa:fd:69:17:4e:c3:7e:79:dd:34:
 11:9a:ff:5d:32:e4:68:a8:0f:cc:4c:bf:27:bc:2e:
 19:b7:9d:ad:68:45:d9:87:06:74:9f:e4:ad:bf:df:
 06:c8:28:c7:a4:78:f2:31:b2:6c:c7:9e:90:b8:bf:
 48:d4:ae:fd:65:e9:38:fd:8f:30:41:e9:32:f5:de:
 69:69
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 6d:c8:0d:cd:7c:34:5c:08:67:98:b6:ae:80:26:e8:73:f1:14:
 3b:02:09:dd:b4:6d:f1:7f:bb:12:8a:16:86:d6:d6:be:ad:92:
 99:a8:23:a1:d7:de:d4:e9:03:ec:6f:b9:19:46:2d:d8:f4:30:

2026/02/04 12:03 15/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 71:8c:f0:6e:43:ad:d8:10:46:15:ab:9f:46:c1:56:4c:6c:81:
 ab:ba:dd:5b:78:6a:57:82:d3:1a:d7:1a:5f:63:ca:4e:0f:fb:
 ce:fe:f1:a5:78:64:a5:03:41:ad:c5:b7:28:45:62:31:ce:02:
 09:1b:73:1d:e0:96:a4:1b:c4:09:18:a6:b1:5e:8c:88:03:75:
 92:64:47:d3:0c:ce:87:91:9c:25:f7:72:a7:44:9d:36:41:87:
 48:61:71:31:9a:24:ae:36:4f:40:c8:f3:08:32:f5:b1:9d:f5:
 8a:0a:71:80:e6:70:d9:af:e1:96:55:81:9f:a1:95:39:53:b5:
 1b:f3:37:3e:50:d5:a1:6b:d1:4b:d1:c6:75:fb:63:f0:63:06:
 ce:99:fb:c3:15:c1:51:3b:ed:d9:c8:68:43:66:3c:ef:92:ba:
 ae:a5:0d:02:48:8d:42:1a:70:22:13:75:47:ad:69:d5:48:11:
 6b:b1:24:80:7e:d6:0d:f7:92:0c:bb:28:91:6e:d4:4c:a1:14:
 c9:2d:47:2c
-----BEGIN CERTIFICATE-----
MIICujCCAaICCQC291mPdRm8EDANBgkqhkiG9w0BAQsFADAVMRMwEQYDVQQDEwpr
dWJlcm5ldGVzMB4XDTIyMDcxNDA3NDkxNFoXDTIyMDgxMzA3NDkxNFowKTEQMA4G
A1UEAwwHdHJhaW5lZTEVMBMGA1UECgwMZXhhbXBsZWdyb3VwMIIBIjANBgkqhkiG
9w0BAQEFAAOCAQ8AMIIBCgKCAQEAmy3ofbrpn7PajxQTIYNkxm57LO5P5nFlp+TK
aiPuz+FDGOCwH+//UyHe0ug40TmrsI149K98gLAaw6LLZLRz5qUwM2nxbZpbZi5Y
9sJRfEKVFqxgDh1NCaoGKVF58UVwSLkc4gX8XDOC14JfojETtSNMEL+lik83KtbM
rMfArZdxlZ4mT2C1QYp7xXk4AiiwiIQjCxjSwvmf/+zs+wpB133zkC8pCIYe58ur
z1ZeqboG2IPCPB04zPr9aRdOw3553TQRmv9dMuRoqA/MTL8nvC4Zt52taEXZhwZ0
n+Stv98GyCjHpHjyMbJsx56QuL9I1K79Zek4/Y8wQeky9d5paQIDAQABMA0GCSqG
SIb3DQEBCwUAA4IBAQBtyA3NfDRcCGeYtq6AJuhz8RQ7AgndtG3xf7sSihaG1ta+
rZKZqCOh197U6QPsb7kZRi3Y9DBxjPBuQ63YEEYVq59GwVZMbIGrut1beGpXgtMa
1xpfY8pOD/vO/vGleGSlA0GtxbcoRWIxzgIJG3Md4JakG8QJGKaxXoyIA3WSZEfT
DM6HkZwl93KnRJ02QYdIYXExmiSuNk9AyPMIMvWxnfWKCnGA5nDZr+GWVYGfoZU5
U7Ub8zc+UNWha9FL0cZ1+2PwYwbOmfvDFcFRO+3ZyGhDZjzvkrqupQ0CSI1CGnAi
E3VHrWnVSBFrsSSAftYN95IMuyiRbtRMoRTJLUcs
-----END CERTIFICATE-----

Create a second user in the same Organization:

root@kubemaster:~# openssl genrsa -out stagiaire.key 2048
Generating RSA private key, 2048 bit long modulus

2026/02/04 12:03 16/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

...

...............+++

.................+++
e is 65537 (0x10001)

root@kubemaster:~# openssl req -new -key stagiaire.key -out stagiaire.csr -subj “/CN=stagiaire/O=examplegroup”

root@kubemaster:~# openssl x509 -req -in stagiaire.csr -CA /etc/kubernetes/pki/ca.crt -CAkey
/etc/kubernetes/pki/ca.key -CAcreateserial -out stagiaire.crt
Signature ok
subject=/CN=stagiaire/O=examplegroup
Getting CA Private Key

Now create the trainee context:

root@kubemaster:~# kubectl config set-credentials trainee --client-certificate=trainee.crt --client-
key=trainee.key
User “trainee” set.

root@kubemaster:~# kubectl config set-context trainee@kubernetes --cluster=kubernetes --user=trainee
Context “trainee@kubernetes” created.

Check that the context is present:

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
 trainee@kubernetes kubernetes trainee

Use the trainee context :

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

2026/02/04 12:03 17/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
 kubernetes-admin@kubernetes kubernetes kubernetes-admin
* trainee@kubernetes kubernetes trainee
root@kubemaster:~# kubectl get pods
Error from server (Forbidden): pods is forbidden: User "trainee" cannot list resource "pods" in API group "" in
the namespace "default"

Important: Note that trainee cannot list pods because RBAC permissions have not been set.

Return to the administrator context:

root@kubemaster:~# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* kubernetes-admin@kubernetes kubernetes kubernetes-admin
 trainee@kubernetes kubernetes trainee

Now create a clusterrolebinding for the examplegroup :

root@kubemaster:~# kubectl create clusterrolebinding examplegroup-admin-binding --clusterrole=cluster-admin --
group=examplegroup
clusterrolebinding.rbac.authorization.k8s.io/examplegroup-admin-binding created

Use the trainee context again:

root@kubemaster:~# kubectl config use-context trainee@kubernetes
Switched to context "trainee@kubernetes".

2026/02/04 12:03 18/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
 kubernetes-admin@kubernetes kubernetes kubernetes-admin
* trainee@kubernetes kubernetes trainee
root@kubemaster:~# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-6766647d54-v4hrm 1/1 Running 0 44h
calico-node-5mrjl 1/1 Running 0 41h
calico-node-688lw 1/1 Running 0 44h
calico-node-j25xd 1/1 Running 0 41h
coredns-6d4b75cb6d-dw4ph 1/1 Running 0 44h
coredns-6d4b75cb6d-ms2jm 1/1 Running 0 44h
etcd-kubemaster.ittraining.loc 1/1 Running 1 (44h ago) 44h
kube-apiserver-kubemaster.ittraining.loc 1/1 Running 1 (44h ago) 44h
kube-controller-manager-kubemaster.ittraining.loc 1/1 Running 10 (75m ago) 44h
kube-proxy-bwctz 1/1 Running 0 41h
kube-proxy-j89vg 1/1 Running 0 41h
kube-proxy-jx76x 1/1 Running 0 44h
kube-scheduler-kubemaster.ittraining.loc 1/1 Running 11 (75m ago) 44h
metrics-server-7cb867d5dc-g55k5 1/1 Running 0 28h

1.5 - TLS Certificates

By default, communication between kubectl and the Kubernetes API is encrypted. Certificates are located in the /var/lib/kubelet/pki/ directory of each
node:

root@kubemaster:~# ls -l /var/lib/kubelet/pki/
total 12
-rw------- 1 root root 2851 Jul. 12 13:23 kubelet-client-2022-07-12-13-23-12.pem
lrwxrwxrwx 1 root root 59 Jul. 12 13:23 kubelet-client-current.pem -> /var/lib/kubelet/pki/kubelet-
client-2022-07-12-13-23-12.pem
-rw-r--r-- 1 root root 2367 Jul. 12 13:23 kubelet.crt

2026/02/04 12:03 19/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

-rw------- 1 root root 1675 Jul. 12 13:23 kubelet.key

Important: By default, kubelet certificates expire after one year.

LAB #2 - Pod Security Implementation

2.1 - Overview

An Admission Controller is a piece of code that intercepts requests to the Kubernetes API. The use of Admission Controllers is defined by the
–admission-control directive in the /etc/kubernetes/manifests/kube-apiserver.yaml file, for example :

--admission-control=Initializers, NamespaceLifecycle, LimitRanger, ServiceAccount, PersistentVolumeLabel,
DefaultStorageClass, DefaultTolerationSeconds, NodeRestriction, ResourceQuota

The most important Admission Controllers in terms of security are :

DenyEscalatingExec,
Prohibits the execution of commands with an escalated container in a privileged pod. The commands concerned are exec and attach. An
escalated container in a privileged pod is not isolated and therefore allows access to the host.

NodeRestriction,
Limits the number of node and pod objects that kubectl can modify,

PodSecurityPolicy,
Acts when a pod is created or modified to decide whether it can be admitted to the cluster according to the Security Context and applicable
policies,

ValidatingAdmissionWebhooks,
Allows you to call an external service that implements a security policy, such as Grafeas.

https://grafeas.io/

2026/02/04 12:03 20/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

2.2 - Kubernetes Security Context

The Security Context is configured from the pod or container. Here are a few examples.

ReadOnlyRootFilesystem

Create the file readonly.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi readonly.yaml
root@kubemaster:~# cat readonly.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-ro
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-ro
 securityContext:
 readOnlyRootFilesystem: true

Run kubectl :

root@kubemaster:~# kubectl create -f readonly.yaml
pod/flask-ro created

https://www.dropbox.com/scl/fi/sbzoft6ioo6gmo5n56035/readonly.yaml?rlkey=xsqnve5dvkg3l3nbuep06j0tj&dl=0

2026/02/04 12:03 21/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

Check that the pod is in READY state:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-ro 1/1 Running 0 13m
postgres-deployment-5b8bd66778-j99zz 1/1 Running 7 4d1h
redis-deployment-67d4c466c4-9wzfn 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-r84k6 1/1 Running 7 3d22h
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 7 4d1h
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-x868p 1/1 Running 7 3d22h
worker-app-deployment-559f7749b6-jh86r 1/1 Running 19 4d1h

Connect to the container:

root@kubemaster:~# kubectl exec -it flask-ro bash
root@flask-ro:/#

Note that the system is read-only:

root@flask-ro:/# mount | grep “/ ”
overlay on / type overlay
(ro,relatime,lowerdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/72/fs:/var/lib/contain
erd/io.containerd.snapshotter.v1.overlayfs/snapshots/71/fs:/var/lib/containerd/io.containerd.snapshotter.v1.
overlayfs/snapshots/70/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/69/fs,upperdir=/va
r/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/73/fs,workdir=/var/lib/containerd/io.containerd
.snapshotter.v1.overlayfs/snapshots/73/work)

root@flask-ro:/# touch test
touch: cannot touch 'test': Read-only file system

root@flask-ro:/# exit

2026/02/04 12:03 22/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

exit
command terminated with exit code 1

drop

Create the file drop.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi drop.yaml
root@kubemaster:~# cat drop.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-cap
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-cap
 securityContext:
 capabilities:
 drop:
 - NET_RAW
 - CHOWN

Run kubectl :

root@kubemaster:~# kubectl create -f drop.yaml

https://www.dropbox.com/scl/fi/enbctxxwp95s10ssw3l13/drop.yaml?rlkey=pfo8r09cv9zk2xrxohyies9ki&dl=0

2026/02/04 12:03 23/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

pod/flask-cap created

Check that the pod is in a READY state:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 4m4s
flask-ro 1/1 Running 0 13m
postgres-deployment-5b8bd66778-j99zz 1/1 Running 7 4d1h
redis-deployment-67d4c466c4-9wzfn 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 7 4d1h
result-app-deployment-b8f9dc967-r84k6 1/1 Running 7 3d22h
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 7 4d1h
voting-app-deployment-669dccccfb-ktd7d 1/1 Running 7 3d22h
voting-app-deployment-669dccccfb-x868p 1/1 Running 7 3d22h
worker-app-deployment-559f7749b6-jh86r 1/1 Running 19 4d1h

Connect to the container:

root@kubemaster:~# kubectl exec -it flask-cap -- bash
root@flask-cap:/#

Note the restrictions:

root@flask-cap:/# ping 8.8.8.8
ping: Lacking privilege for raw socket.

root@flask-cap:/# chown daemon /tmp
chown: changing ownership of '/tmp': Operation not permitted

root@flask-cap:/# exit
exit

2026/02/04 12:03 24/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

command terminated with exit code 1

2.3 - Kubernetes Network Policies

Create the file guestbook-all-in-one.yaml :

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi guestbook-all-in-one.yaml
root@kubemaster:~# cat guestbook-all-in-one.yaml
apiVersion: v1
kind: Service
metadata:
 name: redis-master
 labels:
 app: redis
 tier: backend
 role: master
spec:
 ports:
 # the port that this service should serve on
 - port: 6379
 targetPort: 6379
 selector:
 app: redis
 tier: backend
 role: master

apiVersion: v1
kind: ReplicationController

https://www.dropbox.com/scl/fi/qptbh81o3gtl8bnii91er/guestbook-all-in-one.yaml?rlkey=5g3cr8a5llggdrme0le254pip&dl=0

2026/02/04 12:03 25/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

metadata:
 name: redis-master
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:
 app: redis
 role: master
 tier: backend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 1
 # selector can be applied automatically
 # from the labels in the pod template if not set
 # selector:
 # app: guestbook
 # role: master
 # tier: backend
 template:
 metadata:
 labels:
 app: redis
 role: master
 tier: backend
 spec:
 containers:
 - name: master
 image: gcr.io/google_containers/redis:e2e # or just image: redis
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 ports:
 - containerPort: 6379

2026/02/04 12:03 26/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

apiVersion: v1
kind: Service
metadata:
 name: redis-slave
 labels:
 app: redis
 tier: backend
 role: slave
spec:
 ports:
 # the port that this service should serve on
 - port: 6379
 selector:
 app: redis
 tier: backend
 role: slave

apiVersion: v1
kind: ReplicationController
metadata:
 name: redis-slave
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:
 app: redis
 role: slave
 tier: backend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 2
 # selector can be applied automatically
 # from the labels in the pod template if not set

2026/02/04 12:03 27/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 # selector:
 # app: guestbook
 # role: slave
 # tier: backend
 template:
 metadata:
 labels:
 app: redis
 role: slave
 tier: backend
 spec:
 containers:
 - name: slave
 image: gcr.io/google_samples/gb-redisslave:v1
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access an environment variable to find the master
 # service's host, comment out the 'value: dns' line above, and
 # uncomment the line below.
 # value: env
 ports:
 - containerPort: 6379

apiVersion: v1
kind: Service
metadata:
 name: frontend
 labels:

2026/02/04 12:03 28/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 app: guestbook
 tier: frontend
spec:
 # if your cluster supports it, uncomment the following to automatically create
 # an external load-balanced IP for the frontend service.
 # type: LoadBalancer
 ports:
 # the port that this service should serve on
 - port: 80
 selector:
 app: guestbook
 tier: frontend

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend
 # these labels can be applied automatically
 # from the labels in the pod template if not set
 labels:
 app: guestbook
 tier: frontend
spec:
 # this replicas value is default
 # modify it according to your case
 replicas: 3
 # selector can be applied automatically
 # from the labels in the pod template if not set
 # selector:
 # app: guestbook
 # tier: frontend
 template:
 metadata:
 labels:

2026/02/04 12:03 29/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 app: guestbook
 tier: frontend
 spec:
 containers:
 - name: php-redis
 image: corelab/gb-frontend:v5
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 env:
 - name: GET_HOSTS_FROM
 value: dns
 # If your cluster config does not include a dns service, then to
 # instead access environment variables to find service host
 # info, comment out the 'value: dns' line above, and uncomment the
 # line below.
 # value: env
 ports:
 - containerPort: 80

Install the Guestbook application:

root@kubemaster:~# kubectl create -f guestbook-all-in-one.yaml

Wait until all pods are in a READY state:

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES
flask-cap 1/1 Running 0 53m 192.168.239.26 kubenode1.ittraining.loc <none>
<none>
flask-ro 1/1 Running 0 59m 192.168.150.14 kubenode2.ittraining.loc <none>
<none>

2026/02/04 12:03 30/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

frontend-dhd4w 1/1 Running 0 32m 192.168.150.16 kubenode2.ittraining.loc <none>
<none>
frontend-dmbbf 1/1 Running 0 32m 192.168.150.17 kubenode2.ittraining.loc <none>
<none>
frontend-rqr6p 1/1 Running 0 32m 192.168.239.29 kubenode1.ittraining.loc <none>
<none>
redis-master-zrrr4 1/1 Running 0 32m 192.168.239.27 kubenode1.ittraining.loc <none>
<none>
redis-slave-jsrt6 1/1 Running 0 32m 192.168.150.15 kubenode2.ittraining.loc <none>
<none>
redis-slave-rrnx9 1/1 Running 0 32m 192.168.239.28 kubenode1.ittraining.loc <none>
<none>
...

This application creates backend and frontend pods:

root@kubemaster:~# kubectl describe pod redis-master-zrrr4 | grep tier
tier=backend

root@kubemaster:~# kubectl describe pod frontend-dhd4w | grep tier
tier=frontend

Create the guestbook-network-policy.yaml file that will prevent communication from a backend pod to a frontend pod:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi guestbook-network-policy.yaml
root@kubemaster:~# cat guestbook-network-policy.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

https://www.dropbox.com/scl/fi/664obj0d9d0y95kj3czsd/guestbook-network-policy.yaml?rlkey=u3o8yrgpgratq30jgk12rtj90&dl=0

2026/02/04 12:03 31/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

 name: deny-backend-egress
 namespace: default
spec:
 podSelector:
 matchLabels:
 tier: backend
 policyTypes:
 - Egress
 egress:
 - to:
 - podSelector:
 matchLabels:
 tier: backend

Run kubectl :

root@kubemaster:~# kubectl create -f guestbook-network-policy.yaml
networkpolicy.networking.k8s.io/deny-backend-egress created

Connect to the redis-master pod:

root@kubemaster:~# kubectl exec -it redis-master-zrrr4 -- bash
[root@redis-master-zrrr4:/data]$

Try to contact a pod of the same tier :

[root@redis-master-zrrr4:/data]$ ping -c 4 192.168.150.15
PING 192.168.150.15 (192.168.150.15) 56(84) bytes of data.
64 bytes from 192.168.150.15: icmp_seq=1 ttl=62 time=0.324 ms
64 bytes from 192.168.150.15: icmp_seq=2 ttl=62 time=0.291 ms
64 bytes from 192.168.150.15: icmp_seq=3 ttl=62 time=0.366 ms
64 bytes from 192.168.150.15: icmp_seq=4 ttl=62 time=0.379 ms

--- 192.168.150.15 ping statistics ---

2026/02/04 12:03 32/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

4 packets transmitted, 4 received, 0% packet loss, time 3070ms
rtt min/avg/max/mdev = 0.291/0.340/0.379/0.034 ms

Now try to contact a pod on a tier frontend:

[root@redis-master-zrrr4:/data]$ ping -c 4 192.168.150.16
PING 192.168.150.16 (192.168.150.16) 56(84) bytes of data.

--- 192.168.150.16 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3063ms

Disconnect from the redis-master pod and connect to a frontend pod:

[root@redis-master-zrrr4:/data]$ exit
exit
command terminated with exit code 1

root@kubemaster:~# kubectl exec -it frontend-dhd4w -- bash
root@frontend-dhd4w:/var/www/html#

Install the iputils-ping package:

root@frontend-dhd4w:/var/www/html# apt update
root@frontend-dhd4w:/var/www/html# apt install iputils-ping -y

Try to contact a pod of the same tier :

root@frontend-dhd4w:/var/www/html# ping -c 4 192.168.150.17
PING 192.168.150.17 (192.168.150.17): 56 data bytes
64 bytes from 192.168.150.17: icmp_seq=0 ttl=63 time=0.185 ms
64 bytes from 192.168.150.17: icmp_seq=1 ttl=63 time=0.112 ms
64 bytes from 192.168.150.17: icmp_seq=2 ttl=63 time=0.093 ms
64 bytes from 192.168.150.17: icmp_seq=3 ttl=63 time=0.121 ms
--- 192.168.150.17 ping statistics ---

2026/02/04 12:03 33/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.093/0.128/0.185/0.035 ms

Now try to contact a pod on a backend tier:

root@frontend-dhd4w:/var/www/html# ping -c 4 192.168.239.27
PING 192.168.239.27 (192.168.239.27): 56 data bytes
64 bytes from 192.168.239.27: icmp_seq=0 ttl=62 time=0.371 ms
64 bytes from 192.168.239.27: icmp_seq=1 ttl=62 time=0.469 ms
64 bytes from 192.168.239.27: icmp_seq=2 ttl=62 time=0.349 ms
64 bytes from 192.168.239.27: icmp_seq=3 ttl=62 time=0.358 ms
--- 192.168.239.27 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.349/0.387/0.469/0.048 ms

Exit the frontend pod:

root@frontend-dhd4w:/var/www/html# exit
exit
root@kubemaster:~#

2.4 - Kubernetes Resource Allocation Management

The resources that can be limited at the pod level are :

CPU
Memory
Local storage

Create the file flask-resources.yaml:

2026/02/04 12:03 34/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi flask-resources.yaml
root@kubemaster:~# cat flask-resources.yaml
apiVersion: v1
kind: Pod
metadata:
 name: flask-resources
 namespace: default
spec:
 containers:
 - image: mateobur/flask
 name: flask-resources
 resources:
 requests:
 memory: 512Mi
 limits:
 memory: 700Mi

This file contains two resource allocations:

requests,
The amount of memory that must be free at the time of pod scheduling,

limits,
The memory limit for the pod concerned.

Run kubectl :

root@kubemaster:~# kubectl create -f flask-resources.yaml
pod/flask-resources created

Wait until the pod status is READY :

https://www.dropbox.com/scl/fi/f4f3mb8epcy7xr9cgmj1m/flask-resources.yaml?rlkey=l9gptrnet3mh4x5p2v09xvu06&dl=0

2026/02/04 12:03 35/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
flask-cap 1/1 Running 0 67m
flask-resources 1/1 Running 0 53s
flask-ro 1/1 Running 0 74m
...

Connect to the pod :

root@kubemaster:~# kubectl exec -it flask-resources -- bash
root@flask-resources:/#

Install the stress package:

root@flask-resources:/# echo “deb http://archive.debian.org/debian/ jessie main contrib non-free” >
/etc/apt/sources.list

root@flask-resources:/# echo “deb http://archive.debian.org/debian-security jessie/updates main contrib non-free”
>> /etc/apt/sources.list

root@flask-resources:/# cat /etc/apt/sources.list
deb http://archive.debian.org/debian/ jessie main contrib non-free
deb http://archive.debian.org/debian-security jessie/updates main contrib non-free

root@flask-resources:/# apt update

root@flask-resources:/# apt install stress -y

Test the limit:

root@flask-resources:/# stress --cpu 1 --io 1 --vm 2 --vm-bytes 800M
stress: info: [41] dispatching hogs: 1 cpu, 1 io, 2 vm, 0 hdd
stress: FAIL: [41] (416) <-- worker 45 got signal 9

2026/02/04 12:03 36/36 DOE308 - Introduction to Securing K8s

www.ittraining.team - https://ittraining.team/

stress: WARN: [41] (418) now reaping child worker processes
stress: FAIL: [41] (452) failed run completed in 1s

Exit the flask-resources pod:

root@flask-resources:/# exit
exit
root@kubemaster:~#

Copyright © 2025 Hugh Norris

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s07

Last update: 2025/01/17 16:09

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s07

	DOE308 - Introduction to Securing K8s
	Contents
	LAB #1 - Role Based Access Control and TLS Certificates
	1.1 - Overview
	1.2 - The /etc/kubernetes/manifests/kube-apiserver.yaml File
	1.3 - Creating a serviceAccount
	1.4 - Creating a User
	1.5 - TLS Certificates

	LAB #2 - Pod Security Implementation
	2.1 - Overview
	2.2 - Kubernetes Security Context
	ReadOnlyRootFilesystem
	drop

	2.3 - Kubernetes Network Policies
	2.4 - Kubernetes Resource Allocation Management

