2025/08/11 06:52 1/16 DOE306 - Volume Management in K8s

Version - 2025.01

Last update : 2025/01/17 15:30

DOE306 - Volume Management in K8s

Contents

e DOE306 - Volume Management in K8s
o Contents
o Qverview
= Volumes
= Persistent Volumes
= Volumes types
o LAB #1 - Using K8s Volumes
= 1.1 - Volumes and volumeMounts
= 1.2 - Sharing volumes between containers
o LAB #2 - Persistent Volumes
= 2.1 - Storage Classes
= 2.2 - Persistent Volumes
= 2.3 - Persistent Volume Claims
= 2.4 - Using a PersistentVolumeClaim in a pod
= 2.5 - Resizing a PersistentVolumeClaim

Overview

Volumes

The file system of a container in a pod is ephemeral, i.e. it exists only during the life cycle of the container. If the container is deleted or re-created, the

Printed on 2025/08/11 06:52

2025/08/11 06:52 2/16 DOE306 - Volume Management in K8s

file system is lost.

Volumes enable data to be stored outside the container's file system, while still allowing the container to access it.
Persistent Volumes

A Persistent Volume is an abstract resource that can be consumed by pods. To access the Persistent Volume, the pod needs a Persistent Volume
Claim to mount the Persistent Volume in the pod.

Volume types

Volumes and Persistent Volumes have a Volume Type (Type of Volume). The Volume Type determines the Storage Method of the data. Storage
methods include:

* NFS,

e AWS,

e Azure,

e GCP,

e ConfigMaps,
e Secrets,

Important: For more information on Storage Methods, see the K8s documentation at this
page.

LAB #1 - Using K8s Volumes

Printed on 2025/08/11 06:52

https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim

DOE306 - Volume Management in K8s

2025/08/11 06:52 3/16

1.1 - Volumes and volumeMounts
Volumes are configured in the pod specification, not the container. The two most important Volume Types are hostPath and emptyDir:

¢ hostPath,
o Data is stored locally in a static directory on the K8s node,
e emptyDir,
o Data is stored locally in a dynamic directory,
o The directory exists only while the pod exists on the node,
o K8s deletes the directory and data when the pod is deleted or moved,
o This Volume Type is mainly used to share data between two containers in a pod.

A volumeMount is configured in the container specification, not the pod.

Start by creating the volume.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi volume.yaml
root@kubemaster:~# cat volume.yaml
apiVersion: vl
kind: Pod
metadata:

name: volumepod
spec:

restartPolicy: Never

containers:

- name: busybox
image: busybox
command: ['sh',
volumeMounts:

'-c', 'echo Success! > /output/success.txt']

’

Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/jylunrftkra3csboubxvm/volume.yaml?rlkey=wz0ckbw31gbq4j8cm7lc1ny7h&dl=0

2025/08/11 06:52 4/16 DOE306 - Volume Management in K8s

- name: myvolume
mountPath: /output
volumes:
- name: myvolume
hostPath:
path: /var/data

Important: This pod will write the string Success! to the file /output/success.txt inside
the container and then stop because the value of restartPolicy is Never. The myvolume
volume will be mounted on /output in the container, thanks to the volumeMount
configuration, and on /var/data/ in the node hosting the pod.

Create the volumepod pod:

root@kubemaster:~# kubectl create -f volume.yaml
pod/volumepod created

Identify the node on which the pod runs:

root@kubemaster:~# kubectl get pod volumepod -0 wide

NAME READY STATUS RESTARTS AGE 1P NODE NOMINATED NODE
READINESS GATES

volumepod 0/1 Completed 0 3ml0s 192.168.150.41 kubenode2.ittraining.loc <none>

<none>

Connect to the identified node:

root@kubemaster:~# ssh -1 trainee kubenode2

trainee@kubenode2's password: trainee
Linux kubenode2.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

Printed on 2025/08/11 06:52

2025/08/11 06:52 5/16

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Sep 4 13:24:39 2022 from 192.168.56.2

Check for the presence and content of the file /var/data/success.txt:

trainee@kubenode2:~$ cat /var/data/success.txt
Success!

1.2 - Sharing volumes between containers

Return to the kubemaster VM:

trainee@kubenode2:~$ exit
logout

Connection to kubenode2 closed.
root@kubemaster:~#

Now create the shared.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi shared.yaml

root@kubemaster:~# cat shared.yaml
apiVersion: vl

DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/mv0z7jfqtd13q78m7716l/shared.yaml?rlkey=btadejbwv7i4hb98ap7ufrv1d&dl=0

2025/08/11 06:52 6/16 DOE306 - Volume Management in K8s

kind: Pod
metadata:

name: sharedvolume

spec:

containers:

- name: busyboxl
image: busybox
command: ['sh',
volumeMounts:

- name: myvolume
mountPath: /output

- name: busybox2
image: busybox
command: ['sh', '-c', 'while true; do cat /input/output.txt; sleep 5; done']
volumeMounts:

- name: myvolume
mountPath: /input

volumes:

- name: myvolume
emptyDir: {}

'-c', 'while true; do echo Success! > /output/output.txt; sleep 5; done']

Important: This file will create two pods. The first, busybox1, will write the string
Success! to the container's /output/output.txt file every 5 seconds. The /output
directory is known as myvolume. This same volume will be available to the second pod
container, busybox2, where it will be mounted at /input. The busybox2 container will
print the contents of /input/output.txt on standard output every 5 seconds.

Create the two pods:

root@kubemaster:~# kubectl create -f shared.yaml
pod/sharedvolume created

Printed on 2025/08/11 06:52

2025/08/11 06:52

7/16

DOE306 - Volume Management in K8s

Check that both pods are running:

root@kubemaster:~# kubectl get pods sharedvolume

NAME

sharedvolume

READY STATUS RESTARTS AGE
2/2 Running 0 5m55s

Now look at the logs for the second container:

root@kubemaster:~# kubectl logs sharedvolume -c busybox2

Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!

Important: Note that busybox2 has printed the contents of the file /input/output.txt to
its standard output.

Printed on 2025/08/11 06:52

2025/08/11 06:52 8/16 DOE306 - Volume Management in K8s

LAB #2 - Persistent Volumes

2.1 - Storage Classes

» StorageClassName,
o A StorageClassName is used to specify the StorageClass.

e StorageClass,
o A StoragecClass is used to specify the type of storage service used, e.g. local disk, cloud etc,
o |If the allowVolumeExpansion value is true and the storage service type allows it, a PersistentVolumeClaim can be hot-resized.

Create the localdisk.yaml file to define the StorageClass called localdisk:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi localdisk.yaml
root@kubemaster:~# cat localdisk.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: localdisk
provisioner: kubernetes.io/no-provisioner
allowVolumeExpansion: true

Important: Note that the allowVolumeExpansion value is true.

Create the StorageClass localdisk :

Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/9c5kn7yw9q5eftw7pi1sd/localdisk.yaml?rlkey=xwtiqso78ow84ww3sssq4hp1e&dl=0

DOE306 - Volume Management in K8s

2025/08/11 06:52 9/16

root@kubemaster:~# kubectl create -f localdisk.yaml

2.2 - Persistent Volumes

Create the mypv.yaml file to define the PersistentVolume called mypv:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypv.yaml
root@kubemaster:~# cat mypv.yaml
kind: PersistentVolume
apiVersion: vl
metadata:
name: mypv
spec:
storageClassName: localdisk
persistentVolumeReclaimPolicy: Recycle
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
hostPath:
path: /var/output

Important: Note the value of accessModes.

There are four types of accessModes:
Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/fo5tfji3kxn9dtjitvek4/mypv.yaml?rlkey=cdt1g6dpwrzlihndzsrdreqsa&dl=0

2025/08/11 06:52 10/16 DOE306 - Volume Management in K8s

e ReadWriteOnce or RWO,
o the volume can only be mounted by a single node,
e ReadOnlyMany or ROX,
o the volume can be mounted read-only by several nodes,
¢ ReadWriteMany or RWX,
o the volume can be mounted as read-write by several nodes,
e ReadWriteOncePod or RWOP,
o the volume can only be mounted by a single pod.

Important: Note that the persistentVolumeReclaimPolicy value is Recycle.

Important: AccessMode availability depends on the type of storage service. The
ReadWriteOnce mode is always available. For more information on accessModes, see
this page.

There are three types of PersistentVolumeReclaimPolicy:

e Retain,
o Data is not deleted when a PersistentVolumeClaim is deleted,
e Delete,
o Automatically deletes the storage resource when a PersistentVolumeClaim is deleted. Note that Delete only works with public cloud
services such as AWS, GCP etc,
* Recycle,
o Automatically deletes data. Note that Recycle allows immediate reuse of storage resources freed up when a PersistentVolumeClaim is
deleted.

Create the PersistentVolume mypv:

root@kubemaster:~# kubectl create -f mypv.yaml

Printed on 2025/08/11 06:52

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

11/16 DOE306 - Volume Management in K8s

2025/08/11 06:52

persistentvolume/mypv created
Check the PersistentVolume status:
root@kubemaster:~# kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY
mypv 1Gi RWO Recycle

STATUS CLAIM STORAGECLASS REASON AGE
Available localdisk 5m28s

Important: Note that the STATUS value is Available.

2.3 - Persistent Volume Claims

¢ A PersistentVolumeClaim represents a user's request for a storage resource,
o The PersistentVolumeClaim specifies a StorageClassName, an AccessMode and a size,
e When created, the PersistentVolumeClaim searches for a PersistentVolume capable of satisfying the request,
o If the result of the search is positive, the PersistentVolumeClaim is automatically linked to the PersistentVolume,
o Otherwise, the PersistentVolumeClaim remains on hold until a PersistentVolume capable of satisfying the request is created,
o To resize a PersistentVolumeClaim without interrupting service, change the value of spec.resources.requests.storage in the yaml file

Create the mypvc.yaml file to define the PersistentVolumeClaim called my-pvc:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypvc.yaml
root@kubemaster:~# cat mypvc.yaml
apiVersion: vl

kind: PersistentVolumeClaim
Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/ja2ddchsgunwdswc4cc92/mypvc.yaml?rlkey=80mmqg90y7ikdz8ifqpvb49pt&dl=0

2025/08/11 06:52 12/16 DOE306 - Volume Management in K8s

metadata:
name: my-pvc
spec:
storageClassName: localdisk
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Mi

Important: Note that the value of storageClassName is localdisk.

Create the PersistentVolumeClaim my-pvc:

root@kubemaster:~# kubectl create -f mypvc.yaml
persistentvolumeclaim/my-pvc created

Check the PersistentVolume status:
root@kubemaster:~# kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
mypv 1Gi RWO Recycle Bound default/my-pvc localdisk

Important: Note that the STATUS value is Bound. Also note that a PersistentVolume can
only be associated with one PersistentVolumeClaim at a time.

Check the PersistentVolumeClaim status:

AGE
9m33s

Printed on 2025/08/11 06:52

2025/08/11 06:52 13/16

DOE306 - Volume Management in K8s

root@kubemaster:~# kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

my - pvc Bound mypv 1Gi RWO localdisk

Important: Note that the STATUS value is Bound.

2.4 - Using a PersistentVolumeClaim in a pod

Create the mypvcpod.yaml file to define the pod called pv-pod:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypvcpod.yaml
root@kubemaster:~# cat mypvcpod.yaml
apiVersion: vl
kind: Pod
metadata:

name: pv-pod
spec:

restartPolicy: Never

containers:

- name: busybox
image: busybox
command: ['sh',
volumeMounts:

- name: pv-storage
mountPath: /output

‘-c', 'echo Success! > /output/success.txt']

’

AGE
72s

Printed on 2025/08/11 06:52

https://www.dropbox.com/scl/fi/lgwfi8tjbg5sq32zrqkpw/mypvcpod.yaml?rlkey=2v74mq9p8o63hiviwu595waj7&dl=0

2025/08/11 06:52 14/16 DOE306 - Volume Management in K8s

volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: my-pvc

Create the pv-pod pod:

root@kubemaster:~# kubectl create -f mypvcpod.yaml
pod/pv-pod created

Important: Note that the pod uses the persistentVolumeClaim my-pvc which is mounted
on /output in the busybox container.

2.5 - Resizing a PersistentVolumeClaim

Modify the storage: value of the PersistentVolumeClaim:
root@kubemaster:~# kubectl edit pvc my-pvc --record
spec:

accessModes:
- ReadWriteOnce
resources:
requests:
storage: 200Mi
storageClassName: localdisk

volumeMode: Filesystem
volumeName: mypv

Printed on 2025/08/11 06:52

15/16 DOE306 - Volume Management in K8s

2025/08/11 06:52

Save the modification:

root@kubemaster:~# kubectl edit pvc my-pvc --record
Flag --record has been deprecated, --record will be removed in the future

persistentvolumeclaim/my-pvc edited

Important: Note the edit confirmation message.

Delete the pv-pod pod and the my-pvc PersistentVolumeClaim:

root@kubemaster:~# kubectl delete pod pv-pod
pod “pv-pod” deleted

root@kubemaster:~# kubectl delete pvc my-pvc
persistentvolumeclaim “my-pvc” deleted

Check the PersistentVolume status:

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RwWO Recycle Available localdisk 23m

Important: Note that the STATUS value is Available again.

Copyright © 2025 Hugh Norris

Printed on 2025/08/11 06:52

2025/08/11 06:52 16/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

	DOE306 - Volume Management in K8s
	Contents
	Overview
	Volumes
	Persistent Volumes
	Volume types

	LAB #1 - Using K8s Volumes
	1.1 - Volumes and volumeMounts
	1.2 - Sharing volumes between containers

	LAB #2 - Persistent Volumes
	2.1 - Storage Classes
	2.2 - Persistent Volumes
	2.3 - Persistent Volume Claims
	2.4 - Using a PersistentVolumeClaim in a pod
	2.5 - Resizing a PersistentVolumeClaim

