
2025/08/11 06:52 1/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

Version - 2025.01

Last update : 2025/01/17 15:30

DOE306 - Volume Management in K8s

Contents

DOE306 - Volume Management in K8s
Contents
Overview

Volumes
Persistent Volumes
Volumes types

LAB #1 - Using K8s Volumes
1.1 - Volumes and volumeMounts
1.2 - Sharing volumes between containers

LAB #2 - Persistent Volumes
2.1 - Storage Classes
2.2 - Persistent Volumes
2.3 - Persistent Volume Claims
2.4 - Using a PersistentVolumeClaim in a pod
2.5 - Resizing a PersistentVolumeClaim

Overview

Volumes

The file system of a container in a pod is ephemeral, i.e. it exists only during the life cycle of the container. If the container is deleted or re-created, the

2025/08/11 06:52 2/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

file system is lost.

Volumes enable data to be stored outside the container's file system, while still allowing the container to access it.

Persistent Volumes

A Persistent Volume is an abstract resource that can be consumed by pods. To access the Persistent Volume, the pod needs a Persistent Volume
Claim to mount the Persistent Volume in the pod.

Volume types

Volumes and Persistent Volumes have a Volume Type (Type of Volume). The Volume Type determines the Storage Method of the data. Storage
methods include:

NFS,
AWS,
Azure,
GCP,
ConfigMaps,
Secrets,

Important: For more information on Storage Methods, see the K8s documentation at this
page.

LAB #1 - Using K8s Volumes

https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim
https://kubernetes.io/fr/docs/concepts/storage/volumes/#persistentvolumeclaim

2025/08/11 06:52 3/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

1.1 - Volumes and volumeMounts

Volumes are configured in the pod specification, not the container. The two most important Volume Types are hostPath and emptyDir:

hostPath,
Data is stored locally in a static directory on the K8s node,

emptyDir,
Data is stored locally in a dynamic directory,
The directory exists only while the pod exists on the node,
K8s deletes the directory and data when the pod is deleted or moved,
This Volume Type is mainly used to share data between two containers in a pod.

A volumeMount is configured in the container specification, not the pod.

Start by creating the volume.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi volume.yaml
root@kubemaster:~# cat volume.yaml
apiVersion: v1
kind: Pod
metadata:
 name: volumepod
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'echo Success! > /output/success.txt']
 volumeMounts:

https://www.dropbox.com/scl/fi/jylunrftkra3csboubxvm/volume.yaml?rlkey=wz0ckbw31gbq4j8cm7lc1ny7h&dl=0

2025/08/11 06:52 4/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

 - name: myvolume
 mountPath: /output
 volumes:
 - name: myvolume
 hostPath:
 path: /var/data

Important: This pod will write the string Success! to the file /output/success.txt inside
the container and then stop because the value of restartPolicy is Never. The myvolume
volume will be mounted on /output in the container, thanks to the volumeMount
configuration, and on /var/data/ in the node hosting the pod.

Create the volumepod pod:

root@kubemaster:~# kubectl create -f volume.yaml
pod/volumepod created

Identify the node on which the pod runs:

root@kubemaster:~# kubectl get pod volumepod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
volumepod 0/1 Completed 0 3m10s 192.168.150.41 kubenode2.ittraining.loc <none>
<none>

Connect to the identified node:

root@kubemaster:~# ssh -l trainee kubenode2
trainee@kubenode2's password: trainee
Linux kubenode2.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

2025/08/11 06:52 5/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sun Sep 4 13:24:39 2022 from 192.168.56.2

Check for the presence and content of the file /var/data/success.txt:

trainee@kubenode2:~$ cat /var/data/success.txt
Success!

1.2 - Sharing volumes between containers

Return to the kubemaster VM:

trainee@kubenode2:~$ exit
logout
Connection to kubenode2 closed.
root@kubemaster:~#

Now create the shared.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi shared.yaml
root@kubemaster:~# cat shared.yaml
apiVersion: v1

https://www.dropbox.com/scl/fi/mv0z7jfqtd13q78m7716l/shared.yaml?rlkey=btadejbwv7i4hb98ap7ufrv1d&dl=0

2025/08/11 06:52 6/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

kind: Pod
metadata:
 name: sharedvolume
spec:
 containers:
 - name: busybox1
 image: busybox
 command: ['sh', '-c', 'while true; do echo Success! > /output/output.txt; sleep 5; done']
 volumeMounts:
 - name: myvolume
 mountPath: /output
 - name: busybox2
 image: busybox
 command: ['sh', '-c', 'while true; do cat /input/output.txt; sleep 5; done']
 volumeMounts:
 - name: myvolume
 mountPath: /input
 volumes:
 - name: myvolume
 emptyDir: {}

Important: This file will create two pods. The first, busybox1, will write the string
Success! to the container's /output/output.txt file every 5 seconds. The /output
directory is known as myvolume. This same volume will be available to the second pod
container, busybox2, where it will be mounted at /input. The busybox2 container will
print the contents of /input/output.txt on standard output every 5 seconds.

Create the two pods:

root@kubemaster:~# kubectl create -f shared.yaml
pod/sharedvolume created

2025/08/11 06:52 7/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

Check that both pods are running:

root@kubemaster:~# kubectl get pods sharedvolume
NAME READY STATUS RESTARTS AGE
sharedvolume 2/2 Running 0 5m55s

Now look at the logs for the second container:

root@kubemaster:~# kubectl logs sharedvolume -c busybox2
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!
Success!

Important: Note that busybox2 has printed the contents of the file /input/output.txt to
its standard output.

2025/08/11 06:52 8/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

LAB #2 - Persistent Volumes

2.1 - Storage Classes

StorageClassName,
A StorageClassName is used to specify the StorageClass.

StorageClass,
A StorageClass is used to specify the type of storage service used, e.g. local disk, cloud etc,
If the allowVolumeExpansion value is true and the storage service type allows it, a PersistentVolumeClaim can be hot-resized.

Create the localdisk.yaml file to define the StorageClass called localdisk:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi localdisk.yaml
root@kubemaster:~# cat localdisk.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: localdisk
provisioner: kubernetes.io/no-provisioner
allowVolumeExpansion: true

Important: Note that the allowVolumeExpansion value is true.

Create the StorageClass localdisk :

https://www.dropbox.com/scl/fi/9c5kn7yw9q5eftw7pi1sd/localdisk.yaml?rlkey=xwtiqso78ow84ww3sssq4hp1e&dl=0

2025/08/11 06:52 9/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl create -f localdisk.yaml

2.2 - Persistent Volumes

Create the mypv.yaml file to define the PersistentVolume called mypv:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypv.yaml
root@kubemaster:~# cat mypv.yaml
kind: PersistentVolume
apiVersion: v1
metadata:
 name: mypv
spec:
 storageClassName: localdisk
 persistentVolumeReclaimPolicy: Recycle
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: /var/output

Important: Note the value of accessModes.

There are four types of accessModes:

https://www.dropbox.com/scl/fi/fo5tfji3kxn9dtjitvek4/mypv.yaml?rlkey=cdt1g6dpwrzlihndzsrdreqsa&dl=0

2025/08/11 06:52 10/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

ReadWriteOnce or RWO,
the volume can only be mounted by a single node,

ReadOnlyMany or ROX,
the volume can be mounted read-only by several nodes,

ReadWriteMany or RWX,
the volume can be mounted as read-write by several nodes,

ReadWriteOncePod or RWOP,
the volume can only be mounted by a single pod.

Important: Note that the persistentVolumeReclaimPolicy value is Recycle.

Important: AccessMode availability depends on the type of storage service. The
ReadWriteOnce mode is always available. For more information on accessModes, see
this page.

There are three types of PersistentVolumeReclaimPolicy:

Retain,
Data is not deleted when a PersistentVolumeClaim is deleted,

Delete,
Automatically deletes the storage resource when a PersistentVolumeClaim is deleted. Note that Delete only works with public cloud
services such as AWS, GCP etc,

Recycle,
Automatically deletes data. Note that Recycle allows immediate reuse of storage resources freed up when a PersistentVolumeClaim is
deleted.

Create the PersistentVolume mypv:

root@kubemaster:~# kubectl create -f mypv.yaml

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

2025/08/11 06:52 11/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

persistentvolume/mypv created

Check the PersistentVolume status:

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Available localdisk 5m28s

Important: Note that the STATUS value is Available.

2.3 - Persistent Volume Claims

A PersistentVolumeClaim represents a user's request for a storage resource,
The PersistentVolumeClaim specifies a StorageClassName, an AccessMode and a size,

When created, the PersistentVolumeClaim searches for a PersistentVolume capable of satisfying the request,
If the result of the search is positive, the PersistentVolumeClaim is automatically linked to the PersistentVolume,
Otherwise, the PersistentVolumeClaim remains on hold until a PersistentVolume capable of satisfying the request is created,
To resize a PersistentVolumeClaim without interrupting service, change the value of spec.resources.requests.storage in the yaml file.

Create the mypvc.yaml file to define the PersistentVolumeClaim called my-pvc:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypvc.yaml
root@kubemaster:~# cat mypvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim

https://www.dropbox.com/scl/fi/ja2ddchsgunwdswc4cc92/mypvc.yaml?rlkey=80mmqg90y7ikdz8ifqpvb49pt&dl=0

2025/08/11 06:52 12/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

metadata:
 name: my-pvc
spec:
 storageClassName: localdisk
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Important: Note that the value of storageClassName is localdisk.

Create the PersistentVolumeClaim my-pvc:

root@kubemaster:~# kubectl create -f mypvc.yaml
persistentvolumeclaim/my-pvc created

Check the PersistentVolume status:

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Bound default/my-pvc localdisk 9m33s

Important: Note that the STATUS value is Bound. Also note that a PersistentVolume can
only be associated with one PersistentVolumeClaim at a time.

Check the PersistentVolumeClaim status:

2025/08/11 06:52 13/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
my-pvc Bound mypv 1Gi RWO localdisk 72s

Important: Note that the STATUS value is Bound.

2.4 - Using a PersistentVolumeClaim in a pod

Create the mypvcpod.yaml file to define the pod called pv-pod:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mypvcpod.yaml
root@kubemaster:~# cat mypvcpod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pv-pod
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'echo Success! > /output/success.txt']
 volumeMounts:
 - name: pv-storage
 mountPath: /output

https://www.dropbox.com/scl/fi/lgwfi8tjbg5sq32zrqkpw/mypvcpod.yaml?rlkey=2v74mq9p8o63hiviwu595waj7&dl=0

2025/08/11 06:52 14/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: my-pvc

Create the pv-pod pod:

root@kubemaster:~# kubectl create -f mypvcpod.yaml
pod/pv-pod created

Important: Note that the pod uses the persistentVolumeClaim my-pvc which is mounted
on /output in the busybox container.

2.5 - Resizing a PersistentVolumeClaim

Modify the storage: value of the PersistentVolumeClaim:

root@kubemaster:~# kubectl edit pvc my-pvc --record
...
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 200Mi
 storageClassName: localdisk
 volumeMode: Filesystem
 volumeName: mypv
...

2025/08/11 06:52 15/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

Save the modification:

root@kubemaster:~# kubectl edit pvc my-pvc --record
Flag --record has been deprecated, --record will be removed in the future
persistentvolumeclaim/my-pvc edited

Important: Note the edit confirmation message.

Delete the pv-pod pod and the my-pvc PersistentVolumeClaim:

root@kubemaster:~# kubectl delete pod pv-pod
pod “pv-pod” deleted

root@kubemaster:~# kubectl delete pvc my-pvc
persistentvolumeclaim “my-pvc” deleted

Check the PersistentVolume status:

root@kubemaster:~# kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
mypv 1Gi RWO Recycle Available localdisk 23m

Important: Note that the STATUS value is Available again.

Copyright © 2025 Hugh Norris

2025/08/11 06:52 16/16 DOE306 - Volume Management in K8s

Printed on 2025/08/11 06:52

	DOE306 - Volume Management in K8s
	Contents
	Overview
	Volumes
	Persistent Volumes
	Volume types

	LAB #1 - Using K8s Volumes
	1.1 - Volumes and volumeMounts
	1.2 - Sharing volumes between containers

	LAB #2 - Persistent Volumes
	2.1 - Storage Classes
	2.2 - Persistent Volumes
	2.3 - Persistent Volume Claims
	2.4 - Using a PersistentVolumeClaim in a pod
	2.5 - Resizing a PersistentVolumeClaim

