
2025/08/11 06:52 1/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Version - 2025.01

Last update : 2025/01/19 14:20

DOE305 - Network, Service and Microservices Architecture
Management

Curriculum

DOE305 - Network, Service and Microservices Architecture Management
Curriculum
LAB #1 - Network and Service Management

1.1 - Overview of Network Extensions
1.2 - DNS K8s

Overview
Implementation

1.3 - Network Policies
Overview
Implementation

1.4 - Services
Overview
Implementation

The NodePort service
The ClusterIP service

1.5 - Services and the K8s DNS
Overview
Implementation

1.6 - K8s Ingress management
Overview
Implementation

2025/08/11 06:52 2/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

LAB #2 - Microservices Architecture Management
2.1 - Overview
2.2 - Creating Deployments
2.3 - Creating Services
2.4 - Deploying the Application
2.5 - Scaling Up

LAB #1 - Network and Service Management

1.1 - Overview of Network Extensions

Kubernetes imposes certain conditions on the implementation of a network:

PODs on one node can communicate with all PODs on all nodes without using NAT,
Agents on a node (e.g. kubelet) can communicate with all PODs on the node.

Important: A detailed technical description of the Kubernetes networking approach can
be found at :
https://kubernetes.io/docs/concepts/cluster-administration/networking/.

When installing the cluster, we specified the use of a network extension called Calico, taken from the following list:

Calico,
Cilium,
Flannel,
Kube-router,
Romana,
WeaveNet,
Antrea,
kube-ovn,

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://www.projectcalico.org/
https://cilium.io/
https://coreos.com/flannel/docs/latest/
https://www.kube-router.io/
https://romana.io/
https://www.weave.works/oss/net/
https://antrea.io/docs/master/getting-started/
https://github.com/alauda/kube-ovn

2025/08/11 06:52 3/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Channel (uses Flannel for network and Calico for firewall).

Important: A comparative study of network extensions for Kubernetes can be found at :
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10g
bit-s-network-updated-august-2020-6e1b757b9e49.

1.2 - DNS K8s

Overview

DNS services for the cluster using the Calico plugin are provided by CoreDNS :

root@kubemaster:~# kubectl get deployments -n kube-system
NAME READY UP-TO-DATE AVAILABLE AGE
calico-kube-controllers 1/1 1 1 12d
coredns 2/2 2 2 12d
metrics-server 1/1 1 1 11d

root@kubemaster:~# kubectl get service -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 12d
metrics-server ClusterIP 10.98.89.81 <none> 443/TCP 11d

All pods are assigned a host name in the following format:

pod_ip_address_formated_as_xxx-xxx-xxx-xxx.namespace.pod.cluster.local

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

2025/08/11 06:52 4/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Implementation

To test the DNS, create the file dnstest.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi dnstest.yaml
root@kubemaster:~# cat dnstest.yaml
apiVersion: v1
kind: Pod
metadata:
 name: busybox-dnstest
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 3600; done']

apiVersion: v1
kind: Pod
metadata:
 name: nginx-dnstest
spec:
 containers:
 - name: nginx
 image: nginx:1.19.2
 ports:
 - containerPort: 80

https://www.dropbox.com/scl/fi/pt62nfxzi9tsa0fj8hfza/dnstest.yaml?rlkey=qob9301qplpplt6v2tm3x1l7j&dl=0

2025/08/11 06:52 5/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important: Note that this file will create two pods - busybox-dnstest and nginx-
dnstest.

Create the two pods using the file:

root@kubemaster:~# kubectl create -f dnstest.yaml
pod/busybox-dnstest created
pod/nginx-dnstest created

Copy the IP address of the nginx-test pod:

root@kubemaster:~# kubectl get pods nginx-dnstest -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
nginx-dnstest 1/1 Running 0 48s 192.168.150.33 kubenode2.ittraining.loc <none>
<none>

Run the curl <copied IP address> command in the busybox-dnstest container:

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192.168.150.33
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

2025/08/11 06:52 6/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
100 612 100 612 0 0 533k 0 --:--:-- --:--:-- --:--:-- 597k

Important: Note that busybox-dnstest was able to contact nginx-dnstest using its IP
address.

Now use K8s DNS to resolve the nginx-dnstest pod hostname:

root@kubemaster:~# kubectl exec busybox-dnstest -- nslookup 192-168-150-33.default.pod.cluster.local
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 192-168-150-33.default.pod.cluster.local
Address 1: 192.168.150.33

Important: Note that the host name has been resolved using K8s DNS.

Now run the curl <hostname_of_pod_nginx_dnstest> command in the busybox-dnstest container:

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192-168-150-33.default.pod.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current

2025/08/11 06:52 7/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
...
<title>Welcome to nginx!</title>
...
100 612 100 612 0 0 355k 0 --:--:-- --:--:-- --:--:-- 597k

Important: Note that busybox-dnstest was able to contact nginx-dnstest using its
host name.

1.3 - Network Policies

Overview

A NetworkPolicy is a K8s object that controls communication to and from pods.

The components of a NetworkPolicy are :

from and to Selectors,
the from selector operates on Ingress traffic,

the word Ingress indicates network traffic to a pod,
the to selector operates on Egress traffic,

Egress indicates traffic received from a pod.

From and to Selectors use Types:

podSelector,
A podSelector can select pods using Labels,
by default, a pod is not isolated in the cluster. However, as soon as a podSelector selects a pod, it is considered isolated and can only
communicate using NetworkPolicies,

2025/08/11 06:52 8/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

namespaceSelector,
a namespaceSelector can select nameSpaces using Labels,

ipBlock,
an IPBlock can select pods using a range of IP addresses in CIDR format.

In addition to the above Types, it is also possible to specify :

Ports,
ports specify the port number and protocol,
network traffic is only accepted if the rules specified by Type and the port/protocol are satisfied.

Implementation

To understand this better, create a NameSpace called nptest :

root@kubemaster:~# kubectl create namespace nptest
namespace/nptest created

Label this NameSpace :

root@kubemaster:~# kubectl label namespace nptest lab=nptest
namespace/nptest labeled

Important: Note the label lab=nptest.

Now create the npnginx.yaml file:

To do: Copy the content from here and paste it into your file.

https://www.dropbox.com/scl/fi/ivq5emll325nwj9yzjuam/npnginx.yaml?rlkey=sk1rso41e3wrou5y4iy024xdq&dl=0

2025/08/11 06:52 9/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# vi npnginx.yaml
root@kubemaster:~# cat npnginx.yaml
apiVersion: v1
kind: Pod
metadata:
 name: npnginx
 namespace: nptest
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: nginx

Important: Note the app: nginx tag.

Create the npnginx pod:

root@kubemaster:~# kubectl create -f npnginx.yaml
pod/npnginx created

Now create the npbusybox.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi npbusybox.yaml
root@kubemaster:~# cat npbusybox.yaml
apiVersion: v1

https://www.dropbox.com/scl/fi/k84yyq96t7hnigo8q66qs/npbusybox.yaml?rlkey=ehq8qowb04r26s6jfk3qkl4cz&dl=0

2025/08/11 06:52 10/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

kind: Pod
metadata:
 name: npbusybox
 namespace: nptest
 labels:
 app: client
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 5; done']

Important: Note the app: client label.

Create the npbusybox pod:

root@kubemaster:~# kubectl create -f npbusybox.yaml
pod/npbusybox created

View the information on the two pods created:

root@kubemaster:~# kubectl get pods -n nptest -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
npbusybox 1/1 Running 0 48s 192.168.150.35 kubenode2.ittraining.loc <none>
<none>
npnginx 1/1 Running 0 4m13s 192.168.239.33 kubenode1.ittraining.loc <none>
<none>

Copy the IP address of the npnginx node and create a variable called NGINX_IP :

2025/08/11 06:52 11/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# NGINX_IP=192.168.239.33

root@kubemaster:~# echo $NGINX_IP
192.168.239.33

Test the communication between npbusybox and npnginx :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 615 100 615 0 0 78977 0 --:--:-- --:--:-- --:--:-- 87857
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important: Remember: by default, a pod is not isolated in the cluster. The communication

2025/08/11 06:52 12/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

was therefore successful.

Now create the mynetworkpolicy.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mynetworkpolicy.yaml
root@kubemaster:~# cat mynetworkpolicy.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: mynetworkpolicy
 namespace: nptest
spec:
 podSelector:
 matchLabels:
 app: nginx
 policyTypes:
 - Ingress
 - Egress

Important: Note the app: nginx tag. The policy therefore applies to the npnginx pod.

Now create the NetworkPolicy :

root@kubemaster:~# kubectl create -f mynetworkpolicy.yaml

https://www.dropbox.com/scl/fi/nvud4cx3jcya5e5ji188u/mynetworkpolicy.yaml?rlkey=osrpfjrxietbrrcoalflhmbl5&dl=0

2025/08/11 06:52 13/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

networkpolicy.networking.k8s.io/mynetworkpolicy created

Test the communication between npbusybox and npnginx again:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- 0:00:24 --:--:-- 0^C

Important: Note that NetworkPolicy blocks communication. Also note the use of ^C to
terminate the process.

Now edit the NetworkPolicy:

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.
#
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 creationTimestamp: "2022-09-16T13:24:29Z"
 generation: 1
 name: mynetworkpolicy
 namespace: nptest
 resourceVersion: "1490105"
 uid: b130f09f-2ab1-4dc6-9059-95f900234be3
spec:
 podSelector:

2025/08/11 06:52 14/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 matchLabels:
 app: nginx
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 lab: nptest
 ports:
 - protocol: TCP
 port: 80
status: {}
:wq

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy
networkpolicy.networking.k8s.io/mynetworkpolicy edited

Important: Note the creation of the ingress rule. This rule uses a namespaceSelector to
allow traffic from pods in a NameSpace with a lab: nptest label. The ports rule allows
traffic on port 80/tcp.

Test communication between npbusybox and npnginx again:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX_IP
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 615 100 615 0 0 531k 0 --:--:-- --:--:-- --:--:-- 600k
<!DOCTYPE html>
<html>

2025/08/11 06:52 15/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important: Note that the communication was successful.

1.4 - Services

Overview

K8s services are:

NodePort,
This service makes a POD accessible on a port of the node containing it,

ClusterIP

2025/08/11 06:52 16/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

This service creates a virtual IP address to enable communication between different services in the cluster, e.g. front-end servers with
back-end servers,

LoadBalancer
This service provides load balancing for an application in certain public Cloud providers such as Amazon Web Services and Google Cloud
Platform.

ExternalName
Not part of CKA certification.

Implementation

Start by creating the myapp-deployment :

root@kubemaster:~# kubectl create -f deployment-definition.yaml
deployment.apps/myapp-deployment created

Check the status of the pods:

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
busybox-dnstest 1/1 Running 0 4h9m 192.168.150.34
kubenode2.ittraining.loc <none> <none>
myapp-deployment-7c4d4f7fc6-2km9n 1/1 Running 0 83s 192.168.239.34
kubenode1.ittraining.loc <none> <none>
myapp-deployment-7c4d4f7fc6-7pts7 1/1 Running 0 83s 192.168.239.35
kubenode1.ittraining.loc <none> <none>
myapp-deployment-7c4d4f7fc6-9pw5x 1/1 Running 0 83s 192.168.150.36
kubenode2.ittraining.loc <none> <none>
mydaemonset-hmdhp 1/1 Running 1 (7h29m ago) 23h 192.168.239.32
kubenode1.ittraining.loc <none> <none>
mydaemonset-kmf4z 1/1 Running 1 23h 192.168.150.31
kubenode2.ittraining.loc <none> <none>
nginx-dnstest 1/1 Running 0 4h9m 192.168.150.33

2025/08/11 06:52 17/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

kubenode2.ittraining.loc <none> <none>

Important: Note that the 192.168.239.x addresses are associated with PODs on
kubenode1, while the 192.168.150.x addresses are associated with PODs on kubenode2.
These addresses come from the 192.168.0.0/16 network stipulated by the –pod-
network-cidr option during controller initialization.

Knowing that a Nginx container exists in each POD, test whether you can display the Nginx home page by connecting to kubenode1 and kubenode2
from your Gateway:

trainee@kubemaster:~$ exit
déconnexion
Connection to 10.0.2.65 closed.
trainee@gateway:~$ curl 192.168.56.3
curl: (7) Failed to connect to 192.168.56.3 port 80: Connection refused
trainee@gateway:~$ curl 192.168.56.4
curl: (7) Failed to connect to 192.168.56.4 port 80: Connection refused

Important: Note the connection failure.

Now test whether you can display the Nginx home page by connecting to one of the PODs from your Gateway :

trainee@gateway:~$ curl 192.168.239.34
^C

Connect to kubemaster :

trainee@gateway:~$ ssh -l trainee 192.168.56.2

2025/08/11 06:52 18/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

trainee@192.168.56.2's password: trainee
Linux kubemaster.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 13 15:45:46 2022 from 10.0.2.40
trainee@kubemaster:~$ su -
Password: fenestros
root@kubemaster:~#

Of course, it is possible to display the page by connecting to one of the PODs inside the cluster:

root@kubemaster:~# curl 192.168.239.34
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

2025/08/11 06:52 19/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important: Note that at this stage, it is not possible to display the Nginx home page when
connecting from outside the cluster.

The NodePort Service

The NodePort Service defines three ports:

TargetPort: the port on the POD,
Port: the port on the Service linked to a Cluster IP,
NodePort : the port on the Node from the range 30000-32767.

2025/08/11 06:52 20/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

}

If several PODs in the same node have labels that match the Service's selector, the Service identifies the PODs and automatically expands to include
all PODs. PODs are called End-Points:

2025/08/11 06:52 21/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important: Note that in this case, load balancing is automatic and uses the Random
algorithm with a session affinity…

Similarly, when PODs are distributed across several nodes, the Service extends to encompass all of them:

Create the YAML file service-definition.yaml :

2025/08/11 06:52 22/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi service-definition.yaml
root@kubemaster:~# cat service-definition.yaml
apiVersion: v1
kind: Service
metadata:
 name: myapp-service

spec:
 type: NodePort
 ports:
 - targetPort: 80
 port: 80
 nodePort: 30008
 selector:
 app: myapp
 type: front-end

Important: Note that if the type: field is missing, its default value is ClusterIP. Also note
that in ports, only the port field is mandatory. If the targetPort field is missing, its
default value is that of the port field. If the nodePort field is missing, its default value is
the first available port in the range 30,000 to 32,767. Finally, it is possible to specify
multiple port definitions in the service.

The selector field contains the labels of the PODs concerned by the Service setup:

root@kubemaster:~# cat pod-definition.yaml

https://www.dropbox.com/scl/fi/3cp23paw353zplllsily8/service-definition.yaml?rlkey=oe5sfo9soa6q25a8mjqw7ax59&dl=0

2025/08/11 06:52 23/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

Create the Service using the service-definition.yaml file:

root@kubemaster:~# kubectl create -f service-definition.yaml
service/myapp-service created

Note that the service has been created:

root@kubemaster:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 26h
myapp-service NodePort 10.97.228.14 <none> 80:30008/TCP 13s

Important: Note that the Service has a cluster IP address and has exposed port 30,008.

Now test whether you can display the Nginx home page by connecting to one of the PODs from your Gateway using the exposed port:

root@kubemaster:~# exit
déconnexion

2025/08/11 06:52 24/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

trainee@kubemaster:~$ exit
déconnexion
Connection to 192.168.56.2 closed.

trainee@gateway:~$ curl 192.168.56.3:30008
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

trainee@gateway:~$ curl 192.168.56.4:30008
<!DOCTYPE html>
<html>

2025/08/11 06:52 25/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

The ClusterIP Service

The ClusterIP service groups together PODs offering the same service to facilitate communication between pods within the cluster.

To create a ClusterIP Service, create the file clusterip-example.yaml:

To do: Copy the content from here and paste it into your file.

https://www.dropbox.com/scl/fi/rqxq22c6fxgr2zivf02au/clusterip-example.yaml?rlkey=q79w12mcfj5jaj48j7kl4gv3p&dl=0

2025/08/11 06:52 26/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# vi clusterip-example.yaml
root@kubemaster:~# cat clusterip-example.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: deploymentclusterip
spec:
 replicas: 3
 selector:
 matchLabels:
 app: clusteripexample
 template:
 metadata:
 labels:
 app: clusteripexample
 spec:
 containers:
 - name: nginx
 image: nginx:1.19.1
 ports:
 - containerPort: 80

Create a deployment using the clusterip-example.yaml file:

root@kubemaster:~# kubectl create -f clusterip-example.yaml
deployment.apps/deploymentclusterip created

Now create a ClusterIP service to expose the pods in the deploymentclusterip deplyment:

To do: Copy the content from here and paste it into your file.

https://www.dropbox.com/scl/fi/d105k0mjg4guwn1gg2sr6/clusterip-service.yaml?rlkey=bvvdhihx85p5n6bct0cdy5jlg&dl=0

2025/08/11 06:52 27/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: clusteripservice
spec:
 type: ClusterIP
 selector:
 app: clusteripexample
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Create a service using the clusterip-service.yaml file:

root@kubemaster:~# kubectl create -f clusterip-service.yaml
service/clusteripservice created

root@kubemaster:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteripservice ClusterIP 10.109.80.217 <none> 80/TCP 5s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 12d

View the service's EndPoints using the following command:

root@kubemaster:~# kubectl get endpoints clusteripservice
NAME ENDPOINTS AGE
clusteripservice 192.168.150.39:80,192.168.150.40:80,192.168.239.38:80 114s

Now create a pod that will use the clusteripservice service:

2025/08/11 06:52 28/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi clusterippod.yaml
root@kubemaster:~# cat clusterippod.yaml
apiVersion: v1
kind: Pod
metadata:
 name: clusterippod
spec:
 containers:
 - name: busybox
 image: radial/busyboxplus:curl
 command: ['sh', '-c', 'while true; do sleep 10; done']

Create the pod using the clusterippod.yaml file:

root@kubemaster:~# kubectl create -f clusterippod.yaml
pod/clusterippod created

Check that the clusterippod pod is running:

root@kubemaster:~# kubectl get pod clusterippod
NAME READY STATUS RESTARTS AGE
clusterippod 1/1 Running 0 2m28s

Check the clusteripservice inside the clusterippod pod:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

https://www.dropbox.com/scl/fi/9zgm5sgh8l8f5jhde9e3z/clusterippod.yaml?rlkey=crh5jpt5om0ekcibjrd8ec64y&dl=0

2025/08/11 06:52 29/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
100 612 100 612 0 0 6224 0 --:--:-- --:--:-- --:--:-- 6652

1.5 - Services and the k8s DNS

Before continuing, clean up the cluster:

root@kubemaster:~# kubectl delete service myapp-service
service “myapp-service” deleted

root@kubemaster:~# kubectl delete deployment myapp-deployment
deployment.extensions “myapp-deployment” deleted

root@kubemaster:~# kubectl delete daemonset mydaemonset
daemonset.apps “mydaemonset” deleted

2025/08/11 06:52 30/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl delete pods busybox-dnstest nginx-dnstest
pod “busybox-dnstest” deleted
pod “nginx-dnstest” deleted

Overview

Each K8s service is assigned a FQDN in the form :

service-name.namespace.svc.cluster-name-domain.example

Note that :

The default cluster-domain-name.example is cluster.local.
The FQDN can be used to reach a service from any NameSpace.
Pods in the same NameSpace as the service can reach it using its short name, i.e. service-name.

Implementation

View the clusteripservice service created earlier:

root@kubemaster:~# kubectl get service clusteripservice
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteripservice ClusterIP 10.109.80.217 <none> 80/TCP 12m

as well as the pods present in the cluster:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
clusterippod 1/1 Running 0 11m
deploymentclusterip-7776dc8d55-bmfjl 1/1 Running 0 15m
deploymentclusterip-7776dc8d55-pgmcg 1/1 Running 0 15m

2025/08/11 06:52 31/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

deploymentclusterip-7776dc8d55-qvphh 1/1 Running 0 15m

View the FQDN of the clusteripservice using the clusterippod pod:

root@kubemaster:~# kubectl exec clusterippod -- nslookup 10.109.80.217
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 10.109.80.217
Address 1: 10.109.80.217 clusteripservice.default.svc.cluster.local

Important: Note that the FQDN of the service is
clusteripservice.default.svc.cluster.local.

Check communication with the service using its IP address:

root@kubemaster:~# kubectl exec clusterippod -- curl 10.109.80.217
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 35322 0 --:--:--<!DOCTYPE html>:-- 0
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>

2025/08/11 06:52 32/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
 --:--:-- --:--:-- 36000

Check the communication with the service using its short name:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 81404 0 --:--:-- --:--:-- --:--:-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>

2025/08/11 06:52 33/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important: Note that the communication was successful because the clusterippod pod
and the clusteripservice service are in the same namespace.

Verify the communication with the service using its FQDN:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice.default.svc.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 612 100 612 0 0 269k 0 --:--:-- --:--:-- --:--:-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;

2025/08/11 06:52 34/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Now check the communication with the service using its short name from the npbusybox pod in the nptest namespace:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice
curl: (6) Couldn't resolve host 'clusteripservice'
command terminated with exit code 6

Important: Note that the communication was unsuccessful because the npbusybox pod
and the clusteripservice service are not in the same namespace.

Now check the communication with the service using its FQDN from the npbusybox pod in the nptest namespace:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice.default.svc.cluster.local
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

2025/08/11 06:52 35/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

100 612 100 612 0 0 291k 0 --:--:-- --:--:-- --:--:-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Important: Note that the communication was successful thanks to the use of the service's
FQDN.

2025/08/11 06:52 36/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

1.6 - K8s Ingress management

Overview

An Ingress is a K8s object that manages access to services from outside the cluster. An Ingress is capable of more functionality than a simple NodePort
service, for example:

SSL,
load balancing,
name-based virtual hosts.

Ingress doesn't do anything on its own. It needs an Ingress Controller to function. Setting up and configuring an Ingress Controller is not part of the
CKA certification.

Implementation

Start by creating the myingress.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi myingress.yaml
root@kubemaster:~# cat myingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-ingress
spec:
 rules:
 - http:

https://www.dropbox.com/scl/fi/wtx04mm4um741dlj9wmj7/myingress.yaml?rlkey=mqeggcq8ccms9nv1zunk43kuh&dl=0

2025/08/11 06:52 37/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 paths:
 - path: /somepath
 pathType: Prefix
 backend:
 service:
 name: clusteripservice
 port:
 number: 80

Important: Note that in this Ingress file we have a rule that defines a path. Requests that
reference the path, for example http://<endpoint>/somepath, will be routed to the
backend. In this example, the backend is a service, clusteripservice, listening on port
80.

Now create the Ingress :

root@kubemaster:~# kubectl create -f myingress.yaml
ingress.networking.k8s.io/my-ingress created

Now consult Ingress:

root@kubemaster:~# kubectl describe ingress my-ingress
Name: my-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------

2025/08/11 06:52 38/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 *
 /somepath clusteripservice:80 (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)
Annotations: <none>
Events: <none>

Important: Note that the endpoints of the clusteripservice are displayed in the
command output.

Now edit the clusterip-service.yaml file and add a name line in the ports section:

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: clusteripservice
spec:
 type: ClusterIP
 selector:
 app: clusteripexample
 ports:
 - name: myingress
 protocol: TCP
 port: 80
 targetPort: 80

Important: Note that the name can be any string.

2025/08/11 06:52 39/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Apply the clusteripservice modification:

root@kubemaster:~# kubectl apply -f clusterip-service.yaml
Warning: resource services/clusteripservice is missing the kubectl.kubernetes.io/last-applied-configuration
annotation which is required by kubectl apply. kubectl apply should only be used on resources created
declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched
automatically.
service/clusteripservice configured

Important: Note that the error is unimportant.

Now edit the myingress.yaml file and add a name line in the ports section, deleting the number: 80 line:

root@kubemaster:~# cat myingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-ingress
spec:
 rules:
 - http:
 paths:
 - path: /somepath
 pathType: Prefix
 backend:
 service:
 name: clusteripservice
 port:
 name: myingress

Apply the Ingress modification:

2025/08/11 06:52 40/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl apply -f myingress.yaml
Warning: resource ingresses/my-ingress is missing the kubectl.kubernetes.io/last-applied-configuration annotation
which is required by kubectl apply. kubectl apply should only be used on resources created declaratively by
either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
ingress.networking.k8s.io/my-ingress configured

Important: Note that the error is unimportant.

Now check the Ingress :

root@kubemaster:~# kubectl describe ingress my-ingress
Name: my-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /somepath clusteripservice:myingress (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)
Annotations: <none>
Events: <none>

Important: Note that Ingress can still find the backend by using the name myingress.

2025/08/11 06:52 41/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

LAB #2 - Managing a Microservices Architecture

Before continuing, clean up the cluster:

root@kubemaster:~# kubectl delete service clusteripservice
service “clusteripservice” deleted

root@kubemaster:~# kubectl delete deployment deploymentclusterip
deployment.apps “deploymentclusterip” deleted

root@kubemaster:~# kubectl delete ingress my-ingress
ingress.networking.k8s.io “my-ingress” deleted

root@kubemaster:~# kubectl delete pod clusterippod
pod “clusterippod” deleted

Check that only the default kubernetes service remains:

root@kubemaster:~# kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 13d

2.1 - Overview

You're going to set up a simple application in the form of microservices, developed by Docker, and called demo-voting-app:

In this application, the voting-app container lets you vote for cats or dogs. This application runs under Python and provides an HTML interface:

2025/08/11 06:52 42/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

}

When voting, the result is stored in Redis in an in-memory database. The result is then passed to the Worker container running under .NET, which
updates the persistent database in the db container running under PostgreSQL.

The result-app application running under NodeJS then reads the table from the PostgreSQL database and displays the result in HTML form:

2025/08/11 06:52 43/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

}

2.2 - Creating Deployments

Create the myapp directory. Go to this directory and create the file voting-app-deployment.yaml:

To do: Copy the content from here and paste it into your file.

https://www.dropbox.com/scl/fi/uinl9q5h1uqkkva9txad3/voting-app-deployment.yaml?rlkey=9os74agx9tljxcg44hwas917f&dl=0

2025/08/11 06:52 44/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~# mkdir myapp

root@kubemaster:~# cd myapp

root@kubemaster:~/app# vi voting-app-deployment.yaml

root@kubemaster:~/app# cat voting-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

2025/08/11 06:52 45/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named voting-app which uses
port 80 and is created from the image dockersamples/examplevotingapp_vote.

Now create the redis-deployment.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi redis-deployment.yaml
root@kubemaster:~/app# cat redis-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: redis-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: redis-pod
 app: demo-voting-app
 template:
 metadata:
 name: redis pod
 labels:
 name: redis-pod

https://www.dropbox.com/scl/fi/o00mmelwwhx0ytkjq7kvl/redis-deployment.yaml?rlkey=2ne90svzrmzne619mtxswwi3e&dl=0

2025/08/11 06:52 46/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 app: demo-voting-app

 spec:
 containers:
 - name: redis
 image: redis
 ports:
 - containerPort: 6379

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named redis which uses port
6379 and is created from the redis image.

Create the file worker-deployment.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi worker-deployment.yaml
root@kubemaster:~/app# cat worker-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: worker-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1

https://www.dropbox.com/scl/fi/3cwnbhext63brqqit7pzx/worker-deployment.yaml?rlkey=6u8elahie7ah3hqgj2cksnx75&dl=0

2025/08/11 06:52 47/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 selector:
 matchLabels:
 name: worker-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: worker-app-pod
 labels:
 name: worker-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: worker-app
 image: dockersamples/examplevotingapp_worker

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container called worker-app which is
created from the dockersamples/examplevotingapp_worker image.

Next, create the file postgres-deployment.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi postgres-deployment.yaml
root@kubemaster:~/app# cat postgres-deployment.yaml

apiVersion: apps/v1

https://www.dropbox.com/scl/fi/c87nyp8f2o9vh64pifcmy/postgres-deployment.yaml?rlkey=bu3n6i0372131q9qzonry6kal&dl=0

2025/08/11 06:52 48/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

kind: Deployment
metadata:
 name: postgres-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: postgres-pod
 app: demo-voting-app
 template:
 metadata:
 name: postgres pod
 labels:
 name: postgres-pod
 app: demo-voting-app

 spec:
 containers:
 - name: postgres
 image: postgres:9.4
 env:
 - name: POSTGRES_USER
 value: postgres
 - name: POSTGRES_PASSWORD
 value: postgres
 ports:
 - containerPort: 5432

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named postgres which uses
port 5432 and is created from the postgres:9.4 image.

2025/08/11 06:52 49/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Finally, create the file result-app-deployment.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:

https://www.dropbox.com/scl/fi/ap63boqbt0mot16sx3fva/result-app-deployment.yaml?rlkey=5epq45fioqdkecueo5fcwn2h8&dl=0

2025/08/11 06:52 50/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 - containerPort: 80

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named result-app which uses
port 80 and is created from the dockersamples/examplevotingapp_result image.

2.3 - Creating Services

Now create the redis-service.yaml file:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi redis-service.yaml
root@kubemaster:~/app# cat redis-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: redis
 labels:
 name: redis-service
 app: demo-voting-app

spec:
 ports:
 - port: 6379
 targetPort: 6379

https://www.dropbox.com/scl/fi/l0j16x1ais5686u8qaesf/redis-service.yaml?rlkey=t3sezo8is3pu34vmjoq1zw4ug&dl=0

2025/08/11 06:52 51/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 selector:
 name: redis-pod
 app: demo-voting-app

Important : This file describes a ClusterIP Service. Note that the Service exposes port
6379 on any POD with the name redis-pod.

Next, create the file postgres-service.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi postgres-service.yaml
root@kubemaster:~/app# cat postgres-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: db
 labels:
 name: db-service
 app: demo-voting-app

spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 name: postgres-pod

https://www.dropbox.com/scl/fi/qionkk9d5lj5cqbkqpg9x/postgres-service.yaml?rlkey=h4smnpd1afkyscx8eg9sanh7h&dl=0

2025/08/11 06:52 52/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 app: demo-voting-app

Important : This file describes a ClusterIP Service. Note that the Service exposes port
5432 on any POD with the name postgres-pod.

Create the file voting-app-service.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi voting-app-service.yaml
root@kubemaster:~/app# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: voting-app-pod
 app: demo-voting-app

https://www.dropbox.com/scl/fi/yo29xrt2h4414tl0z9pk9/voting-app-service.yaml?rlkey=h36b4xocyhjvkjosntmpu3bha&dl=0

2025/08/11 06:52 53/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important : This file describes a NodePort Service. Note that the Service exposes port
80 on any POD with the name voting-app-pod.

Finally, create the file result-app-service.yaml:

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: result-service
 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

https://www.dropbox.com/scl/fi/qxo4g3bim0bc1v537tnse/result-app-service.yaml?rlkey=u7ryslr2lf25m9ibl4t7yujux&dl=0

2025/08/11 06:52 54/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important : This file describes a NodePort Service. Note that the Service exposes port
80 on any POD with the name result-app-pod.

2.4 - Deploying the Application

Check that you have created all the necessary YAML files:

root@kubemaster:~/myapp# ls
postgres-deployment.yaml redis-deployment.yaml result-app-deployment.yaml voting-app-deployment.yaml worker-
deployment.yaml
postgres-service.yaml redis-service.yaml result-app-service.yaml voting-app-service.yaml

Then use the kubectl create command:

root@kubemaster:~/myapp# kubectl create -f .
deployment.apps/postgres-deployment created
service/db created
deployment.apps/redis-deployment created
service/redis created
deployment.apps/result-app-deployment created
service/result-service created
deployment.apps/voting-app-deployment created
service/voting-service created
deployment.apps/worker-app-deployment created

Important: Note the use of the . character to indicate any file in the current directory.

2025/08/11 06:52 55/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Wait until all Deployments are READY (7 to 10 minutes):

root@kubemaster:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 51m
redis-deployment 1/1 1 1 51m
result-app-deployment 1/1 1 1 51m
voting-app-deployment 1/1 1 1 51m
worker-app-deployment 1/1 1 1 51m

Next, check the status of the PODs:

root@kubemaster:~/myapp# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-deployment-5b8bd66778-j99zz 1/1 Running 0 51m
redis-deployment-67d4c466c4-9wzfn 1/1 Running 0 51m
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 0 51m
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 0 51m
worker-app-deployment-559f7749b6-jh86r 1/1 Running 0 51m

and the list of Services :

root@kubemaster:~/myapp# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
db ClusterIP 10.107.90.45 <none> 5432/TCP 24h
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 4d9h
redis ClusterIP 10.102.154.105 <none> 6379/TCP 24h
result-service NodePort 10.103.192.107 <none> 80:31526/TCP 24h
voting-service NodePort 10.96.42.244 <none> 80:32413/TCP 24h

In the case of the example in this course, the application now looks like the following diagram:

2025/08/11 06:52 56/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

2.5 - Scaling Up

Edit the voting-app-deployment.yaml file and change the value of the replicas field from 1 to 3 :

root@kubemaster:~/app# vi voting-app-deployment.yaml
root@kubemaster:~/app# cat voting-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

2025/08/11 06:52 57/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Edit the result-app-deployment.yaml file and change the value of the replicas field from 1 to 3 :

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:
 - containerPort: 80

Apply the changes using the kubectl apply command:

root@kubemaster:~/myapp# kubectl apply -f voting-app-deployment.yaml

2025/08/11 06:52 58/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/voting-app-deployment configured

root@kubemaster:~/myapp# kubectl apply -f result-app-deployment.yaml
Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/result-app-deployment configured

Then check the Deployments :

root@kubemaster:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 23h
redis-deployment 1/1 1 1 23h
result-app-deployment 3/3 3 3 23h
voting-app-deployment 3/3 3 3 23h
worker-app-deployment 1/1 1 1 23h

as well as the PODs :

root@kubemaster:~/myapp# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
postgres-deployment-5b8bd66778-j99zz 1/1 Running 1 169m 192.168.35.83 kubenode2
<none> <none>
redis-deployment-67d4c466c4-9wzfn 1/1 Running 1 169m 192.168.205.217 kubenode1
<none> <none>
result-app-deployment-b8f9dc967-nzbgd 1/1 Running 1 169m 192.168.205.218 kubenode1
<none> <none>
result-app-deployment-b8f9dc967-r84k6 1/1 Running 0 2m36s 192.168.35.86 kubenode2
<none> <none>
result-app-deployment-b8f9dc967-zbsk2 1/1 Running 0 2m36s 192.168.35.85 kubenode2
<none> <none>
voting-app-deployment-669dccccfb-jpn6h 1/1 Running 1 169m 192.168.35.82 kubenode2
<none> <none>

2025/08/11 06:52 59/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

voting-app-deployment-669dccccfb-ktd7d 1/1 Running 0 2m50s 192.168.35.84 kubenode2
<none> <none>
voting-app-deployment-669dccccfb-x868p 1/1 Running 0 2m50s 192.168.205.219 kubenode1
<none> <none>
worker-app-deployment-559f7749b6-jh86r 1/1 Running 2 169m 192.168.205.216 kubenode1
<none> <none>

In the case of the example in this course, the application now looks like the following diagram:

Return to the browser on your host machine and refresh the voting-app page:

2025/08/11 06:52 60/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important: Note the POD that served the page.

Refresh the page again:

2025/08/11 06:52 61/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

Important: Note that the POD that served the page has changed.

Note that this POD change does not indicate load balancing. You'd have to set up another virtual machine under, say, HAProxy to achieve load
balancing.

On the other hand, in the case of an application on GCP, for example, you need to modify the following two files by changing the type field value from
NodePort to LoadBalancer and then configure an instance of GCP's native Load Balancer:

root@kubemaster:~/app# vi voting-app-service.yaml

2025/08/11 06:52 62/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

root@kubemaster:~/app# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: voting-app-pod
 app: demo-voting-app

Important: This file describes a LoadBalancer Service. Note that the Service exposes
port 80 on any POD with the name voting-app-pod.

Finally, create the file result-app-service.yaml :

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: result-service

2025/08/11 06:52 63/63 DOE305 - Network, Service and Microservices Architecture Management

Printed on 2025/08/11 06:52

 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

Copyright © 2025 Hugh Norris

	DOE305 - Network, Service and Microservices Architecture Management
	Curriculum
	LAB #1 - Network and Service Management
	1.1 - Overview of Network Extensions
	1.2 - DNS K8s
	Overview
	Implementation

	1.3 - Network Policies
	Overview
	Implementation

	1.4 - Services
	Overview
	Implementation
	The NodePort Service
	The ClusterIP Service

	1.5 - Services and the k8s DNS
	Overview
	Implementation

	1.6 - K8s Ingress management
	Overview
	Implementation

	LAB #2 - Managing a Microservices Architecture
	2.1 - Overview
	2.2 - Creating Deployments
	2.3 - Creating Services
	2.4 - Deploying the Application
	2.5 - Scaling Up

