2026/02/04 13:02 1/65 DOE305 - Network, Service and Microservices Architecture Management

Version - 2025.01

Last update : 2025/01/19 14:20

DOE305 - Network, Service and Microservices Architecture
Management

Curriculum

* DOE305 - Network, Service and Microservices Architecture Management
o Curriculum
o LAB #1 - Network and Service Management
»= 1.1 - Overview of Network Extensions

1.2 - DNS K8s

e Overview

¢ Implementation
1.3 - Network Policies

e Qverview

e Implementation
1.4 - Services

e Overview

¢ Implementation

o The NodePort service
o The ClusterlP service

1.5 - Services and the K8s DNS

e Overview

¢ Implementation
1.6 - K8s Ingress management

e Qverview

e Implementation

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 2/65 DOE305 - Network, Service and Microservices Architecture Management

o LAB #2 - Microservices Architecture Management
= 2.1 - Overview
= 2.2 - Creating Deployments
= 2.3 - Creating Services
= 2.4 - Deploying the Application
= 2.5 - Scaling Up

LAB #1 - Network and Service Management

1.1 - Overview of Network Extensions

Kubernetes imposes certain conditions on the implementation of a network:

e PODs on one node can communicate with all PODs on all nodes without using NAT,
e Agents on a node (e.g. kubelet) can communicate with all PODs on the node.

/. Important: A detailed technical description of the Kubernetes networking approach can
‘1 befoundat:
https://kubernetes.io/docs/concepts/cluster-administration/networking/.

When installing the cluster, we specified the use of a network extension called Calico, taken from the following list:

¢ Calico,
Cilium,
Flannel,
Kube-router,
Romana,

e WeaveNet,

¢ Antrea,

¢ kube-ovn,

www.ittraining.team - https://ittraining.team/

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://www.projectcalico.org/
https://cilium.io/
https://coreos.com/flannel/docs/latest/
https://www.kube-router.io/
https://romana.io/
https://www.weave.works/oss/net/
https://antrea.io/docs/master/getting-started/
https://github.com/alauda/kube-ovn

2026/02/04 13:02 3/65 DOE305 - Network, Service and Microservices Architecture Management

e Channel (uses Flannel for network and Calico for firewall).

Important: A comparative study of network extensions for Kubernetes can be found at :
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10g
bit-s-network-updated-august-2020-6el1b757b9e49.

1.2 - DNS K8s

Overview

DNS services for the cluster using the Calico plugin are provided by CoreDNS :

root@kubemaster:~# kubectl get deployments -n kube-system

NAME READY UP-TO-DATE AVAILABLE AGE
calico-kube-controllers 1/1 1 1 12d
coredns 2/2 2 2 12d
metrics-server 1/1 1 1 11d

root@kubemaster:~# kubectl get service -n kube-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 12d
metrics-server ClusterIP 10.98.89.81 <none> 443/TCP 11d

All pods are assigned a host name in the following format:

pod ip address formated as Xxxx-XXX-XXX-XXX.namespace.pod.cluster.local

www.ittraining.team - https://ittraining.team/

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

2026/02/04 13:02 4/65 DOE305 - Network, Service and Microservices Architecture Management

Implementation

To test the DNS, create the file dnstest.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi dnstest.yaml
root@kubemaster:~# cat dnstest.yaml
apiVersion: vl
kind: Pod
metadata:
name: busybox-dnstest
spec:
containers:
- name: busybox
image: radial/busyboxplus:curl
command: ['sh', '-c', 'while true; do sleep 3600; done']
apiVersion: vl
kind: Pod
metadata:
name: nginx-dnstest
spec:
containers:
- name: nginx
image: nginx:1.19.2
ports:
- containerPort: 80

[]
-

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/pt62nfxzi9tsa0fj8hfza/dnstest.yaml?rlkey=qob9301qplpplt6v2tm3x1l7j&dl=0

2026/02/04 13:02 5/65 DOE305 - Network, Service and Microservices Architecture Management

_. Important: Note that this file will create two pods - busybox-dnstest and nginx-
!“ dnstest.

Create the two pods using the file:

root@kubemaster:~# kubectl create -f dnstest.yaml
pod/busybox-dnstest created

pod/nginx-dnstest created

Copy the IP address of the nginx-test pod:

root@kubemaster:~# kubectl get pods nginx-dnstest -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

nginx-dnstest 1/1 Running 0 48s 192.168.150.33 kubenode2.ittraining.loc <none>

<none>

Run the curl <copied IP address> command in the busybox-dnstest container:

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192.168.150.33

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 O --f--i-- m-l--i-- a-l--r-- 0<!DOCTYPE html>
<html>
<head>

<title>Welcome to nginx!</title>
</head>

<body>

<h1l>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 6/65 DOE305 - Network, Service and Microservices Architecture Management

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

1600 612 100 612 0 © 533k O --:--t-- --1--1-- --:1--1-- 597k

| Important: Note that busybox-dnstest was able to contact nginx-dnstest using its IP
address.

Now use K8s DNS to resolve the nginx-dnstest pod hostname:

root@kubemaster:~# kubectl exec busybox-dnstest -- nslookup 192-168-150-33.default.pod.cluster.local
Server: 10.96.0.10

Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 192-168-150-33.default.pod.cluster.local
Address 1: 192.168.150.33

Important: Note that the host name has been resolved using K8s DNS.

r u
-

Now run the curl <hostname_of pod_nginx_dnstest> command in the busybox-dnstest container:

root@kubemaster:~# kubectl exec busybox-dnstest -- curl 192-168-150-33.default.pod.cluster.local
% Total % Received % Xferd Average Speed Time Time Time Current

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 7/65 DOE305 - Network, Service and Microservices Architecture Management

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 O --1--1-- --r--ie- --ie-i-- 0

<title>Welcome to nginx!</title>

160 612 100 612 0 © 355k O --:--:1-- --1--1-- --1--1-- 597k

| Important: Note that busybox-dnstest was able to contact nginx-dnstest using its
host name.

1.3 - Network Policies
Overview

A NetworkPolicy is a K8s object that controls communication to and from pods.
The components of a NetworkPolicy are :

e from and to Selectors,
o the from selector operates on Ingress traffic,
= the word Ingress indicates network traffic to a pod,
o the to selector operates on Egress traffic,
= Egress indicates traffic received from a pod.

From and to Selectors use Types:

e podSelector,
o A podSelector can select pods using Labels,
o by default, a pod is not isolated in the cluster. However, as soon as a podSelector selects a pod, it is considered isolated and can only
communicate using NetworkPolicies,

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 8/65 DOE305 - Network, Service and Microservices Architecture Management

* namespaceSelector,
o a namespaceSelector can select nameSpaces using Labels,
e ipBlock,
o an IPBlock can select pods using a range of IP addresses in CIDR format.
In addition to the above Types, it is also possible to specify :

e Ports,
o ports specify the port number and protocol,
o network traffic is only accepted if the rules specified by Type and the port/protocol are satisfied.

Implementation

To understand this better, create a NameSpace called nptest :

root@kubemaster:~# kubectl create namespace nptest
namespace/nptest created

Label this NameSpace :

root@kubemaster:~# kubectl label namespace nptest lab=nptest
namespace/nptest labeled

Important: Note the label lab=nptest.

F []
-

Now create the npnginx.yaml file:

4

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/ivq5emll325nwj9yzjuam/npnginx.yaml?rlkey=sk1rso41e3wrou5y4iy024xdq&dl=0

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 9/65

root@kubemaster:~# vi npnginx.yaml
root@kubemaster:~# cat npnginx.yaml
apiVersion: vl
kind: Pod
metadata:
name: npnginx
namespace: nptest
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx

F. []
-

Create the npnginx pod:

root@kubemaster:~# kubectl create -f npnginx.yaml
pod/npnginx created

Now create the npbusybox.yaml file:

4

root@kubemaster:~# vi npbusybox.yaml
root@kubemaster:~# cat npbusybox.yaml

apiVersion: vl

Important: Note the app: nginx tag.

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/k84yyq96t7hnigo8q66qs/npbusybox.yaml?rlkey=ehq8qowb04r26s6jfk3qkl4cz&dl=0

2026/02/04 13:02 10/65 DOE305 - Network, Service and Microservices Architecture Management

kind: Pod
metadata:
name: npbusybox
namespace: nptest
labels:
app: client
spec:
containers:
- name: busybox
image: radial/busyboxplus:curl
command: ['sh', '-c', 'while true; do sleep 5; done']

Important: Note the app: client label.

Create the npbusybox pod:

root@kubemaster:~# kubectl create -f npbusybox.yaml
pod/npbusybox created

View the information on the two pods created:

root@kubemaster:~# kubectl get pods -n nptest -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES

npbusybox 1/1 Running 0 48s 192.168.150.35 kubenode2.ittraining.loc <none>

<none>

npnginx 1/1 Running 0 4m13s 192.168.239.33 kubenodel.ittraining.loc <none>

<none>

Copy the IP address of the npnginx node and create a variable called NGINX_IP :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 11/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~# NGINX IP=192.168.239.33

root@kubemaster:~# echo $NGINX IP
192.168.239.33

Test the communication between npbusybox and npnginx :

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX IP

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
1600 615 100 615 0 0 78977 O --:t--t-- --1--1-- --1--:1-- 87857
<IDOCTYPE html>
<html>
<head>

<title>Welcome to nginx!</title>
</head>

<body>

<hl>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

1 ! Important: Remember: by default, a pod is not isolated in the cluster. The communication

-

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 12/65 DOE305 - Network, Service and Microservices Architecture Management

was therefore successful.

u
.

Now create the mynetworkpolicy.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi mynetworkpolicy.yaml
root@kubemaster:~# cat mynetworkpolicy.yaml
apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: mynetworkpolicy
namespace: nptest
spec:
podSelector:
matchLabels:
app: nginx
policyTypes:
- Ingress
- Egress

Important: Note the app: nginx tag. The policy therefore applies to the npnginx pod.

Now create the NetworkPolicy :

root@kubemaster:~# kubectl create -f mynetworkpolicy.yaml

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/nvud4cx3jcya5e5ji188u/mynetworkpolicy.yaml?rlkey=osrpfjrxietbrrcoalflhmbl5&dl=0

2026/02/04 13:02 13/65 DOE305 - Network, Service and Microservices Architecture Management

networkpolicy.networking.k8s.io/mynetworkpolicy created
Test the communication between npbusybox and npnginx again:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX IP

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- 0:00:24 --:--:-- 0"~C
| Important: Note that NetworkPolicy blocks communication. Also note the use of ~C to

terminate the process

Now edit the NetworkPolicy:

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.
#
apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
metadata:
creationTimestamp: "2022-09-16T13:24:29Z"
generation: 1
name: mynetworkpolicy
namespace: nptest
resourceVersion: "1490105"
uid: bl30f09f-2abl-4dc6-9059-95f900234be3
spec:
podSelector:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 14/65 DOE305 - Network, Service and Microservices Architecture Management

matchLabels:
app: nginx
policyTypes:
- Ingress
- Egress
ingress:
- from:
- namespaceSelector:
matchLabels:
lab: nptest
ports:
- protocol: TCP
port: 80
status: {}

:W(Q

root@kubemaster:~# kubectl edit networkpolicy -n nptest mynetworkpolicy
networkpolicy.networking.k8s.io/mynetworkpolicy edited

Important: Note the creation of the ingress rule. This rule uses a namespaceSelector to

- allow traffic from pods in a NameSpace with a lab: nptest label. The ports rule allows
traffic on port 80/tcp.

Test communication between npbusybox and npnginx again:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl $NGINX IP

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
1600 615 100 615 0 0 531k O --:t--t-- --i1--1-- --1--1-- 600k
<IDOCTYPE html>
<html>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 15/65

DOE305 - Network, Service and Microservices Architecture Management

<head>

<title>Welcome to nginx!</title>
</head>

<body>

<hl>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

! : Important: Note that the communication was successful.

1.4 - Services

Overview

K8s services are:

e NodePort,
o This service makes a POD accessible on a port of the node containing it,
e ClusterlP

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 16/65 DOE305 - Network, Service and Microservices Architecture Management

o This service creates a virtual IP address to enable communication between different services in the cluster, e.g. front-end servers with
back-end servers,
e LoadBalancer
o This service provides load balancing for an application in certain public Cloud providers such as Amazon Web Services and Google Cloud
Platform.
e ExternalName
o Not part of CKA certification.

Implementation

Start by creating the myapp-deployment :

root@kubemaster:~# kubectl create -f deployment-definition.yaml
deployment.apps/myapp-deployment created

Check the status of the pods:

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

busybox-dnstest 1/1 Running 0O 4h9m 192.168.150.34
kubenode2.ittraining.loc <none> <none>

myapp-deployment-7c4d4f7fc6-2km9n 1/1 Running 0 83s 192.168.239.34
kubenodel.ittraining.loc <none> <none>

myapp-deployment-7c4d4f7fc6-7pts7 1/1 Running 0 83s 192.168.239.35
kubenodel.ittraining.loc <none> <none>

myapp-deployment-7c4d4f7fc6-9pw5x 1/1 Running 0 83s 192.168.150.36
kubenode2.ittraining. loc <none> <none>

mydaemonset-hmdhp 1/1 Running 1 (7h29m ago) 23h 192.168.239.32
kubenodel.ittraining.loc <none> <none>

mydaemonset-kmf4z 1/1 Running 1 23h 192.168.150.31
kubenode2.ittraining.loc <none> <none>

nginx-dnstest 1/1 Running 0 4h9m 192.168.150.33

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 17/65 DOE305 - Network, Service and Microservices Architecture Management

kubenode2.ittraining.loc <none> <none>

Important: Note that the 192.168.239.x addresses are associated with PODs on

) kubenodel, while the 192.168.150.x addresses are associated with PODs on kubenode2.
& . These addresses come from the 192.168.0.0/16 network stipulated by the -pod-
network-cidr option during controller initialization.

Knowing that a Nginx container exists in each POD, test whether you can display the Nginx home page by connecting to kubenodel and kubenode?2
from your Gateway:

trainee@kubemaster:~$ exit

déconnexion

Connection to 10.0.2.65 closed.

trainee@gateway:~$ curl 192.168.56.3

curl: (7) Failed to connect to 192.168.56.3 port 80: Connection refused
trainee@gateway:~$ curl 192.168.56.4

curl: (7) Failed to connect to 192.168.56.4 port 80: Connection refused

Important: Note the connection failure.

F]
_—)

Now test whether you can display the Nginx home page by connecting to one of the PODs from your Gateway :

trainee@gateway:~$ curl 192.168.239.34
~C

Connect to kubemaster :

trainee@gateway:~$ ssh -1 trainee 192.168.56.2

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 18/65 DOE305 - Network, Service and Microservices Architecture Management

trainee@l92.168.56.2's password: trainee
Linux kubemaster.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86 64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Wed Jul 13 15:45:46 2022 from 10.0.2.40
trainee@kubemaster:~$ su -

Password: fenestros

root@kubemaster:~#

Of course, it is possible to display the page by connecting to one of the PODs inside the cluster:

root@kubemaster:~# curl 192.168.239.34
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 19/65 DOE305 - Network, Service and Microservices Architecture Management

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

| Important: Note that at this stage, it is not possible to display the Nginx home page when

£°% % connecting from outside the cluster.

The NodePort Service

The NodePort Service defines three ports:

e TargetPort: the port on the POD,
e Port: the port on the Service linked to a Cluster IP,
e NodePort : the port on the Node from the range 30000-32767.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 20/65 DOE305 - Network, Service and Microservices Architecture Management

MNodePort SERVICE 80 Port
30000-32 767 10.109.119.46 TargetPort
152.168.56.3 80
POD
192.168.1.30

If several PODs in the same node have labels that match the Service's selector, the Service identifies the PODs and automatically expands to include
all PODs. PODs are called End-Points:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 21/65 DOE305 - Network, Service and Microservices Architecture Management

selector ©
app . myapp
SERVICE
POD POD POD
labels: labels: labels:
app : myapp app : myapp app : myapp

El*: Important: Note that in this case, load balancing is automatic and uses the Random
- algorithm with a session affinity...

Similarly, when PODs are distributed across several nodes, the Service extends to encompass all of them:

SERVICE
PoD POD PO POD PODO POOD
lab=is: lakwets laheis: labeais: labeds labeis:
app : myapp app myapp app - myapp app : myapp app : myapp app : myapp

Create the YAML file service-definition.yaml :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 22/65 DOE305 - Network, Service and Microservices Architecture Management

" : To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi service-definition.yaml
root@kubemaster:~# cat service-definition.yaml
apiVersion: vl
kind: Service
metadata:

name: myapp-service

spec:
type: NodePort
ports:

- targetPort: 80
port: 80
nodePort: 30008

selector:

app: myapp

type: front-end

Important: Note that if the type: field is missing, its default value is ClusterlP. Also note
that in ports, only the port field is mandatory. If the targetPort field is missing, its
! default value is that of the port field. If the nodePort field is missing, its default value is
" the first available port in the range 30,000 to 32,767. Finally, it is possible to specify

multiple port definitions in the service.

The selector field contains the labels of the PODs concerned by the Service setup:

root@kubemaster:~# cat pod-definition.yaml

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/3cp23paw353zplllsily8/service-definition.yaml?rlkey=oe5sfo9soa6q25a8mjqw7ax59&dl=0

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 23/65

apiVersion: vl
kind: Pod
metadata:
name: myapp-pod
labels:
app: myapp
type: front-end
spec:
containers:
- name: nginx-container
image: nginx

Create the Service using the service-definition.yaml file:

root@kubemaster:~# kubectl create -f service-definition.yaml
service/myapp-service created

Note that the service has been created:

root@kubemaster:~# kubectl get services
CLUSTER-IP

10.96.0.1
10.97.228.14

NAME TYPE
kubernetes ClusterIP
myapp-service NodePort

F u
-

EXTERNAL-IP

80:30008/TCP

AGE
26h
13s

Important: Note that the Service has a cluster IP address and has exposed port 30,008.

Now test whether you can display the Nginx home page by connecting to one of the PODs from your Gateway using the exposed port:

root@kubemaster:~# exit
déconnexion

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 24/65 DOE305 - Network, Service and Microservices Architecture Management

trainee@kubemaster:~$ exit
déconnexion
Connection to 192.168.56.2 closed.

trainee@gateway:~$ curl 192.168.56.3:30008
<!DOCTYPE html>

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

trainee@gateway:~$ curl 192.168.56.4:30008
<!DOCTYPE html>
<html>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 25/65 DOE305 - Network, Service and Microservices Architecture Management

<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>
</html>

The ClusterlIP Service

The ClusterlP service groups together PODs offering the same service to facilitate communication between pods within the cluster.

To create a ClusterIP Service, create the file clusterip-example.yamil:

4

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/rqxq22c6fxgr2zivf02au/clusterip-example.yaml?rlkey=q79w12mcfj5jaj48j7kl4gv3p&dl=0

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 26/65

root@kubemaster:~# vi clusterip-example.yaml
root@kubemaster:~# cat clusterip-example.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: deploymentclusterip
spec:
replicas: 3
selector:
matchLabels:
app: clusteripexample
template:
metadata:
labels:
app: clusteripexample
spec:
containers:
- name: nginx
image: nginx:1.19.1
ports:
- containerPort: 80

Create a deployment using the clusterip-example.yaml file:

root@kubemaster:~# kubectl create -f clusterip-example.yaml

deployment.apps/deploymentclusterip created

Now create a ClusterlIP service to expose the pods in the deploymentclusterip deplyment:

4

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/d105k0mjg4guwn1gg2sr6/clusterip-service.yaml?rlkey=bvvdhihx85p5n6bct0cdy5jlg&dl=0

2026/02/04 13:02 27/65

DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: vl
kind: Service
metadata:
name: clusteripservice
spec:
type: ClusterIP
selector:
app: clusteripexample
ports:
- protocol: TCP
port: 80
targetPort: 80

Create a service using the clusterip-service.yaml file:

root@kubemaster:~# kubectl create -f clusterip-service.yaml

service/clusteripservice created

root@kubemaster:~# kubectl get services

NAME TYPE CLUSTER-IP
clusteripservice ClusterIP 10.109.80.217
kubernetes ClusterIP 10.96.0.1

View the service's EndPoints using the following command:

EXTERNAL-IP PORT(S) AGE
<none> 80/TCP 5s
<none> 443/TCP 12d

root@kubemaster:~# kubectl get endpoints clusteripservice

NAME ENDPOINTS

AGE

clusteripservice 192.168.150.39:80,192.168.150.40:80,192.168.239.38:80 114s

Now create a pod that will use the clusteripservice service:

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 28/65

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi clusterippod.yaml
root@kubemaster:~# cat clusterippod.yaml
apiVersion: vl
kind: Pod
metadata:
name: clusterippod
spec:
containers:
- name: busybox
image: radial/busyboxplus:curl
command: ['sh', '-c', 'while true; do sleep 10; done']

Create the pod using the clusterippod.yaml file:

root@kubemaster:~# kubectl create -f clusterippod.yaml
pod/clusterippod created

Check that the clusterippod pod is running:

root@kubemaster:~# kubectl get pod clusterippod
NAME READY STATUS RESTARTS AGE

clusterippod 1/1 Running 0 2m28s
Check the clusteripservice inside the clusterippod pod:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/9zgm5sgh8l8f5jhde9e3z/clusterippod.yaml?rlkey=crh5jpt5om0ekcibjrd8ec64y&dl=0

2026/02/04 13:02 29/65 DOE305 - Network, Service and Microservices Architecture Management

0 0 0 0 0 0 0 O --1--1-- m-i--i-- m-n--n-- 0<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<hl>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>

</html>
100 612 100 612 0 0 6224 O --1--1-- --1--1-- --1--1-- 06652

1.5 - Services and the k8s DNS

Before continuing, clean up the cluster:

root@kubemaster:~# kubectl delete service myapp-service
service “myapp-service” deleted

root@kubemaster:~# kubectl delete deployment myapp-deployment
deployment.extensions “myapp-deployment” deleted

root@kubemaster:~# kubectl delete daemonset mydaemonset
daemonset.apps “mydaemonset” deleted

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 30/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~# kubectl delete pods busybox-dnstest nginx-dnstest
pod “busybox-dnstest” deleted
pod “nginx-dnstest” deleted

Overview

Each K8s service is assigned a FQDN in the form :
service-name.namespace.svc.cluster-name-domain.example

Note that :

e The default cluster-domain-name.example is cluster.local.
e The FQDN can be used to reach a service from any NameSpace.
e Pods in the same NameSpace as the service can reach it using its short name, i.e. service-name.

Implementation

View the clusteripservice service created earlier:

root@kubemaster:~# kubectl get service clusteripservice

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusteripservice ClusterIP 10.109.80.217 <none> 80/TCP 12m

as well as the pods present in the cluster:

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
clusterippod 1/1 Running 0 11m
deploymentclusterip-7776dc8d55-bmfjl 1/1 Running 0 15m
deploymentclusterip-7776dc8d55-pgmcg 1/1 Running 0 15m

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 31/65 DOE305 - Network, Service and Microservices Architecture Management

deploymentclusterip-7776dc8d55-qvphh 1/1 Running

0 15m

View the FQDN of the clusteripservice using the clusterippod pod:
root@kubemaster:~# kubectl exec clusterippod -- nslookup 10.109.80.217

Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: 10.109.80.217
Address 1: 10.109.80.217 clusteripservice.default.svc.cluster.local

| Important: Note that the FQDN of the service is
&% clusteripservice.default.svc.cluster.local.

Check communication with the service using its IP address:

root@kubemaster:~# kubectl exec clusterippod -- curl 10.109.80.217

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 612 100 612 0 0 35322 O --:--:--<!DOCTYPE html>:-- 0
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {

width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

}
</style>
</head>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 32/65 DOE305 - Network, Service and Microservices Architecture Management

<body>

<hl>Welcome to nginx!</hl>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

--l--1-- --1--1-- 30000

Check the communication with the service using its short name:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 612 100 612 0 0 81404 O --1--1-- --1--1-- --:1--:1-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;

margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 33/65 DOE305 - Network, Service and Microservices Architecture Management

<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>
</html>

| Important: Note that the communication was successful because the clusterippod pod
£.% . and the clusteripservice service are in the same namespace.

Verify the communication with the service using its FQDN:

root@kubemaster:~# kubectl exec clusterippod -- curl clusteripservice.default.svc.cluster.local

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 612 100 612 0 0 269k O --1--1-- --1--1-- --:1--:1-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;

margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 34/65 DOE305 - Network, Service and Microservices Architecture Management

}
</style>
</head>
<body>
<h1l>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Now check the communication with the service using its short name from the npbusybox pod in the nptest namespace:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice
curl: (6) Couldn't resolve host 'clusteripservice'
command terminated with exit code 6

| Important: Note that the communication was unsuccessful because the npbusybox pod

£.® . and the clusteripservice service are not in the same namespace.

Now check the communication with the service using its FQDN from the npbusybox pod in the nptest namespace:

root@kubemaster:~# kubectl exec -n nptest npbusybox -- curl clusteripservice.default.svc.cluster.local
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 35/65 DOE305 - Network, Service and Microservices Architecture Management

100 612 100 612 0 0 291k O --1--1-- --1--1-- --:1--:1-- 597k
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>

body {

width: 35em;

margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}

</style>
</head>
<body>
<h1l>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

| Important: Note that the communication was successful thanks to the use of the service's
&= FQDN.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 36/65 DOE305 - Network, Service and Microservices Architecture Management

1.6 - K8s Ingress management

Overview

An Ingress is a K8s object that manages access to services from outside the cluster. An Ingress is capable of more functionality than a simple NodePort

service, for example:

e SSL,
* |load balancing,
e name-based virtual hosts.

Ingress doesn't do anything on its own. It needs an Ingress Controller to function. Setting up and configuring an Ingress Controller is not part of the
CKA certification.

Implementation

Start by creating the myingress.yaml file:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi myingress.yaml
root@kubemaster:~# cat myingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: my-ingress
spec:

rules:

- http:

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/wtx04mm4um741dlj9wmj7/myingress.yaml?rlkey=mqeggcq8ccms9nv1zunk43kuh&dl=0

2026/02/04 13:02 37/65 DOE305 - Network, Service and Microservices Architecture Management

paths:
- path: /somepath
pathType: Prefix

backend:
service:
name: clusteripservice
port:
number: 80

Important: Note that in this Ingress file we have a rule that defines a path. Requests that
reference the path, for example http://<endpoint>/somepath, will be routed to the
backend. In this example, the backend is a service, clusteripservice, listening on port
80.

Now create the Ingress :

root@kubemaster:~# kubectl create -f myingress.yaml
ingress.networking.k8s.io/my-ingress created

Now consult Ingress:

root@kubemaster:~# kubectl describe ingress my-ingress

Name: my-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:

Host Path Backends

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 38/65 DOE305 - Network, Service and Microservices Architecture Management

*

clusteripservice:80 (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)

/somepath
Annotations: <none>
Events: <none>
| Important: Note that the endpoints of the clusteripservice are displayed in the
= command output.

Now edit the clusterip-service.yaml file and add a name line in the ports section:

root@kubemaster:~# vi clusterip-service.yaml
root@kubemaster:~# cat clusterip-service.yaml
apiVersion: vl
kind: Service
metadata:
name: clusteripservice
spec:
type: ClusterIP
selector:
app: clusteripexample
ports:
- name: myingress
protocol: TCP
port: 80
targetPort: 80

Important: Note that the name can be any string.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 39/65 DOE305 - Network, Service and Microservices Architecture Management

Apply the clusteripservice modification:

root@kubemaster:~# kubectl apply -f clusterip-service.yaml
Warning: resource services/clusteripservice is missing the kubectl.kubernetes.io/last-applied-configuration

annotation which is required by kubectl apply. kubectl apply should only be used on resources created
declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched

automatically.
service/clusteripservice configured

Important: Note that the error is unimportant.

. u
-

Now edit the myingress.yaml file and add a name line in the ports section, deleting the number: 80 line:

root@kubemaster:~# cat myingress.yaml
apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: my-ingress
spec:
rules:
- http:
paths:
- path: /somepath
pathType: Prefix
backend:
service:
name: clusteripservice
port:
name: myingress

Apply the Ingress modification:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 40/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~# kubectl apply -f myingress.yaml

Warning: resource ingresses/my-ingress is missing the kubectl.kubernetes.io/last-applied-configuration annotation
which is required by kubectl apply. kubectl apply should only be used on resources created declaratively by
either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
ingress.networking.k8s.io/my-ingress configured

Important: Note that the error is unimportant.

u
-

Now check the Ingress :

root@kubemaster:~# kubectl describe ingress my-ingress

Name: my-ingress
Labels: <none>
Namespace: default
Address:
Ingress Class: <none>
Default backend: <default>
Rules:

Host Path Backends

*

/somepath clusteripservice:myingress (192.168.150.39:80,192.168.150.40:80,192.168.239.38:80)
Annotations: <none>
Events: <none>

/1 Important: Note that Ingress can still find the backend by using the name myingress.

. -

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 41/65

DOE305 - Network, Service and Microservices Architecture Management

LAB #2 - Managing a Microservices Architecture

Before continuing, clean up the cluster:

root@kubemaster:~# kubectl delete service clusteripservice
service “clusteripservice” deleted

root@kubemaster:~# kubectl delete deployment deploymentclusterip
deployment.apps “deploymentclusterip” deleted

root@kubemaster:~# kubectl delete ingress my-ingress
ingress.networking.k8s.io “my-ingress” deleted

root@kubemaster:~# kubectl delete pod clusterippod
pod “clusterippod” deleted

Check that only the default kubernetes service remains:
root@kubemaster:~# kubectl get all

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

2.1 - Overview

AGE
13d

You're going to set up a simple application in the form of microservices, developed by Docker, and called demo-voting-app:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 42/65

DOE305 - Network, Service and Microservices Architecture Management

voting-app
Python

n-memaory DB
Redis

Worker

result-app
NodedS

db
PostgressQL

]

In this application, the voting-app container lets you vote for cats or dogs. This application runs under Python and provides an HTML interface:

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 43/65
[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -
“ C O @ Nonsécurisé) “« pwBa~ . @ ﬂ
! applications [HowtoCreate an & Telafriend W izchEurope (B S Mes ressources ENI 2 Suggested Namir B Ssimple-HelpSerw & WirbualEoxes - Fre & \irtualBoo Virtual L

Cats vs Dogs!

When voting, the result is stored in Redis in an in-memory database. The result is then passed to the Worker container running under .NET, which
updates the persistent database in the db container running under PostgreSQL.

The result-app application running under NodeJS then reads the table from the PostgreSQL database and displays the result in HTML form:

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 44/65
[4 Cats w5 Dogs! ® [0 Cats vs Dogs - Result W [4 Cats ws Dogs! *® [0 Cats vs Dogs - Result ® o+ - ¢ D
€ 2 C ft @ Honsécurisé i &« pEmBEBDO M
it applcations [HowtoCreate an & Tellafriend W iwchEwope (@2 [f§ Mesressources ENI 2 Suggested Naomins § simple-Help Serve 4 WirtualBoees - Free . @ VirtualBoo Vircual & =

CATS DOGS

100.0% 0.0%

}
2.2 - Creating Deployments

Create the myapp directory. Go to this directory and create the file voting-app-deployment.yaml:

u To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/uinl9q5h1uqkkva9txad3/voting-app-deployment.yaml?rlkey=9os74agx9tljxcg44hwas917f&dl=0

2026/02/04 13:02 45/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~# mkdir myapp

root@kubemaster:~# cd myapp

root@kubemaster:~/app# vi voting-app-deployment.yaml
root@kubemaster:~/app# cat voting-app-deployment.yaml

apiVersion: apps/vl
kind: Deployment

metadata:
name: voting-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

name: voting-app-pod
app: demo-voting-app
template:
metadata:
name: voting-app-pod
labels:
name: voting-app-pod
app: demo-voting-app

spec:
containers:
- name: voting-app
image: dockersamples/examplevotingapp vote
ports:
- containerPort: 80

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 46/65 DOE305 - Network, Service and Microservices Architecture Management

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named voting-app which uses
port 80 and is created from the image dockersamples/examplevotingapp_vote.

Now create the redis-deployment.yaml file:

“ : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi redis-deployment.yaml
root@kubemaster:~/app# cat redis-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: redis-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

name: redis-pod
app: demo-voting-app
template:
metadata:
name: redis pod
labels:
name: redis-pod

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/o00mmelwwhx0ytkjq7kvl/redis-deployment.yaml?rlkey=2ne90svzrmzne619mtxswwi3e&dl=0

2026/02/04 13:02 47/65 DOE305 - Network, Service and Microservices Architecture Management

app: demo-voting-app

spec:
containers:
- name: redis
image: redis
ports:
- containerPort: 6379

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named redis which uses port
6379 and is created from the redis image.

Create the file worker-deployment.yaml:

'. : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi worker-deployment.yaml
root@kubemaster:~/app# cat worker-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: worker-app-deployment
labels:
app: demo-voting-app
spec:

replicas: 1

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/3cwnbhext63brqqit7pzx/worker-deployment.yaml?rlkey=6u8elahie7ah3hqgj2cksnx75&dl=0

2026/02/04 13:02 48/65 DOE305 - Network, Service and Microservices Architecture Management

selector:
matchLabels:
name: worker-app-pod
app: demo-voting-app
template:
metadata:
name: worker-app-pod
labels:
name: worker-app-pod
app: demo-voting-app

spec:
containers:
- name: worker-app
image: dockersamples/examplevotingapp worker

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container called worker-app which is
created from the dockersamples/examplevotingapp_worker image.

Next, create the file postgres-deployment.yamil:

“ : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi postgres-deployment.yaml
root@kubemaster:~/app# cat postgres-deployment.yaml

apiVersion: apps/vl

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/c87nyp8f2o9vh64pifcmy/postgres-deployment.yaml?rlkey=bu3n6i0372131q9qzonry6kal&dl=0

2026/02/04 13:02 49/65

DOE305 - Network, Service and Microservices Architecture Management

kind: Deployment
metadata:
name: postgres-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:
name: postgres-pod
app: demo-voting-app
template:
metadata:
name: postgres pod
labels:
name: postgres-pod
app: demo-voting-app

spec:
containers:
- name: postgres
image: postgres:9.4
env:

- name: POSTGRES USER

value: postgres

- name: POSTGRES PASSWORD

value: postgres
ports:

- containerPort: 5432

Important : This file describes a Deployment. Note that the Deployment creates a replica
£ . of the POD specified by template containing a container named postgres which uses

port 5432 and is created from the postgres:9.4 image.

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 50/65

Finally, create the file result-app-deployment.yamil:

'. : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: result-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 1
selector:
matchLabels:

name: result-app-pod
app: demo-voting-app
template:
metadata:
name: result-app-pod
labels:
name: result-app-pod
app: demo-voting-app

spec:
containers:
- name: result-app
image: dockersamples/examplevotingapp result

ports:

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/ap63boqbt0mot16sx3fva/result-app-deployment.yaml?rlkey=5epq45fioqdkecueo5fcwn2h8&dl=0

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 51/65

- containerPort: 80

2.3 - Creating Services

Important : This file describes a Deployment. Note that the Deployment creates a replica
of the POD specified by template containing a container named result-app which uses
port 80 and is created from the dockersamples/examplevotingapp_result image.

Now create the redis-service.yaml file:

4

|

To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi redis-service.yaml
root@kubemaster:~/app# cat redis-service.yaml

apiVersion: vl
kind: Service
metadata:
name: redis
labels:
name: redis-service
app: demo-voting-app

spec:
ports:
- port: 6379
targetPort: 6379

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/l0j16x1ais5686u8qaesf/redis-service.yaml?rlkey=t3sezo8is3pu34vmjoq1zw4ug&dl=0

2026/02/04 13:02 52/65 DOE305 - Network, Service and Microservices Architecture Management

selector:
name: redis-pod
app: demo-voting-app

| Important : This file describes a ClusterlP Service. Note that the Service exposes port
£25% 6379 on any POD with the name redis-pod.

Next, create the file postgres-service.yaml:

" : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi postgres-service.yaml
root@kubemaster:~/app# cat postgres-service.yaml
apiVersion: vl
kind: Service
metadata:
name: db
labels:
name: db-service
app: demo-voting-app

spec:
ports:
- port: 5432
targetPort: 5432
selector:
name: postgres-pod

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/qionkk9d5lj5cqbkqpg9x/postgres-service.yaml?rlkey=h4smnpd1afkyscx8eg9sanh7h&dl=0

2026/02/04 13:02 53/65 DOE305 - Network, Service and Microservices Architecture Management

app: demo-voting-app

| Important : This file describes a ClusterlP Service. Note that the Service exposes port
4"\ 5432 on any POD with the name postgres-pod.

Create the file voting-app-service.yaml:

“ : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi voting-app-service.yaml
root@kubemaster:~/app# cat voting-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: voting-service
labels:
name: voting-service
app: demo-voting-app

spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:
name: voting-app-pod
app: demo-voting-app

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/yo29xrt2h4414tl0z9pk9/voting-app-service.yaml?rlkey=h36b4xocyhjvkjosntmpu3bha&dl=0

2026/02/04 13:02 54/65 DOE305 - Network, Service and Microservices Architecture Management

| Important : This file describes a NodePort Service. Note that the Service exposes port
&% 80 on any POD with the name voting-app-pod.

Finally, create the file result-app-service.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: result-service
labels:
name: result-service
app: demo-voting-app

spec:
type: NodePort
ports:
- port: 80
targetPort: 80
selector:
name: result-app-pod
app: demo-voting-app

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/qxo4g3bim0bc1v537tnse/result-app-service.yaml?rlkey=u7ryslr2lf25m9ibl4t7yujux&dl=0

2026/02/04 13:02 55/65 DOE305 - Network, Service and Microservices Architecture Management

| Important : This file describes a NodePort Service. Note that the Service exposes port

&5 80 on any POD with the name result-app-pod.

2.4 - Deploying the Application

Check that you have created all the necessary YAML files:

root@kubemaster:~/myapp# 1ls

postgres-deployment.yaml redis-deployment.yaml result-app-deployment.yaml voting-app-deployment.yaml worker-
deployment.yaml

postgres-service.yaml redis-service.yaml result-app-service.yaml voting-app-service.yaml

Then use the kubectl create command:

root@kubemaster:~/myapp# kubectl create -f .
deployment.apps/postgres-deployment created
service/db created
deployment.apps/redis-deployment created
service/redis created
deployment.apps/result-app-deployment created
service/result-service created
deployment.apps/voting-app-deployment created
service/voting-service created
deployment.apps/worker-app-deployment created

Important: Note the use of the . character to indicate any file in the current directory.

r u
-

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 56/65

DOE305 - Network, Service and Microservices Architecture Management

Wait until all Deployments are READY (7 to 10 minutes):

root@kubemaster:~/myapp# kubectl get deployments

NAME READY UP-TO-DATE A
postgres-deployment 1/1 1 1
redis-deployment 1/1 1 1
result-app-deployment 1/1 1 1
voting-app-deployment 1/1 1 1
worker-app-deployment 1/1 1 1

Next, check the status of the PODs:

root@kubemaster:~/myapp# kubectl get pods
NAME

postgres-deployment-5b8bd66778-j99zz
redis-deployment-67d4c466c4-9wzfn
result-app-deployment-b8f9dc967-nzbgd
voting-app-deployment-669dccccfb-jpn6h
worker-app-deployment-559f7749b6-jh86r

and the list of Services :

root@kubemaster:~/myapp# kubectl get serv
NAME TYPE CLUSTER-IP
db ClusterIP 10.107.90.45
kubernetes ClusterIP 10.96.0.1
redis ClusterIP 10.102.154.1

result-service NodePort 10.103.192.1
voting-service NodePort 10.96.42.244

READY
1/1
1/1
1/1
1/1
1/1

ices

05
07

VAILABLE

STATUS

Running
Running
Running
Running
Running

EXTERNAL-IP
<none>
<none>
<none>
<none>
<none>

AGE
51m
51m
51m
51m
51m

RESTARTS AGE

[cNoNoNONO]

51m
51m
51m
51m
51m

PORT (S)
5432/TCP
443/TCP
6379/TCP
80:31526/TCP
80:32413/TCP

In the case of the example in this course, the application now looks like the following diagram:

AGE
24h
4d9h
24h
24h
24h

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 57/65
voting-app resull-app
on NodeJs
Port B0:32413 Port B0:31526
10.96.42.244 10.103.192.107
n-memory DB db
Redis PostgresSQL
Port 6379 Port 5432
10.107.90.45

10.102.154.105

]

Worker
NET

2.5 - Scaling Up
Edit the voting-app-deployment.yaml file and change the value of the replicas field from 1 to 3:

root@kubemaster:~/app# vi voting-app-deployment.yaml
root@kubemaster:~/app# cat voting-app-deployment.yaml
apiVersion: apps/vl

kind: Deployment

metadata:
name: voting-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 3
selector:
matchLabels:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 58/65

DOE305 - Network, Service and Microservices Architecture Management

name: voting-app-pod
app: demo-voting-app
template:
metadata:
name: voting-app-pod
labels:
name: voting-app-pod
app: demo-voting-app

spec:
containers:
- name: voting-app

image: dockersamples/examplevotingapp vote

ports:
- containerPort: 80

Edit the result-app-deployment.yaml file and change the value of the replicas field from 1 to 3 :

root@kubemaster:~/app# vi result-app-deployment.yaml
root@kubemaster:~/app# cat result-app-deployment.yaml

apiVersion: apps/vl
kind: Deployment

metadata:
name: result-app-deployment
labels:
app: demo-voting-app
spec:
replicas: 3
selector:
matchLabels:

name: result-app-pod
app: demo-voting-app
template:

www.ittraining.team - https://ittraining.team/

DOE305 - Network, Service and Microservices Architecture Management

2026/02/04 13:02 59/65
metadata:

name: result-app-pod
labels:

name: result-app-pod
app: demo-voting-app

spec:
containers:
- name: result-app

image: dockersamples/examplevotingapp result

ports:
- containerPort: 80

Apply the changes using the kubectl apply command:

root@kubemaster:~/myapp# kubectl apply -f voting-app-deployment.yaml

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/voting-app-deployment configured

root@kubemaster:~/myapp# kubectl apply -f result-app-deployment.yaml

Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/result-app-deployment configured

Then check the Deployments :

root@kubemaster:~/myapp# kubectl get deployments

NAME READY
postgres-deployment 1/1
redis-deployment 1/1

result-app-deployment 3/3
voting-app-deployment 3/3
worker-app-deployment 1/1

as well as the PODs :

UP-TO-DATE

P W WP -

AVAILABLE

H W WR e

AGE
23h
23h
23h
23h
23h

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 60/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~/myapp# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

postgres-deployment-5b8bd66778-j99zz 1/1 Running 1 169m 192.168.35.83 kubenode?2
<none> <none>

redis-deployment-67d4c466c4-9wzfn 1/1 Running 1 169m 192.168.205.217 kubenodel
<none> <none>

result-app-deployment-b8f9dc967-nzbgd 1/1 Running 1 169m 192.168.205.218 kubenodel
<none> <none>

result-app-deployment-b8f9dc967-r84k6 1/1 Running 0 2m36s 192.168.35.86 kubenode2
<none> <none>

result-app-deployment-b8f9dc967-zbsk2 1/1 Running 0 2m36s 192.168.35.85 kubenode2
<none> <none>

voting-app-deployment-669dccccfb-jpn6h 1/1 Running 1 169m 192.168.35.82 kubenode?2
<none> <none>

voting-app-deployment-669dccccfb-ktd7d 1/1 Running 0 2m50s 192.168.35.84 kubenode2
<none> <none>

voting-app-deployment-669dccccfb-x868p 1/1 Running 0O 2m50s 192.168.205.219 kubenodel
<none> <none>

worker-app-deployment-559f7749b6-jh86r 1/1 Running 2 169m 192.168.205.216 kubenodel
<none> <none>

In the case of the example in this course, the application now looks like the following diagram:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 61/65 DOE305 - Network, Service and Microservices Architecture Management

wioling-app wvoling-app waoting-app result-app result-app resull-app
on Python Python NodeJ5 Nodel5 MNodelS
Part 80:32413 Port BO:32413 Port B0:32413 Port B0:31526 Part 80:31528 Port BO:31526
10.96.42. 244 10.96.42.244 10.96.42.244 10.103.192.107 10.103.182.107 10.103.192.107

in-memaory D8 dh
Redis PostgresSQL
Port 6379 Port 5432
10.102.154.105 10.107.90.45

I

Waorker

Return to the browser on your host machine and refresh the voting-app page:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 62/65 DOE305 - Network, Service and Microservices Architecture Management

[Catsws Dogs! ® + - ¢ 0
€ =+ C % @ Monsécurisé | 192.166.56.432413 * « pmeamscHEHBO A
it applcations [HowtoCreate an & Telafriend W ifach Europe (B3 m Mes ressources ENI 2 Suggested Momin: = simple-Help Serve 4 virtualBowes - Fre: e WirtualBoo Virtual & *
Cats vs Dogs!

Processed by container ID
voting-app-deployment

584d87d974-lwép

& Important: Note the POD that served the page.

Refresh the page again:

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 63/65 DOE305 - Network, Service and Microservices Architecture Management

[4 Cats s Dogs! ® + - ¢ D
€ 2 C 0t @ Nonsécurisé | 192.15B.56.4:32413 & pE 6 B o M
it applications [4 HowtoCreate an & Tellafriend W iwchEwope (@ [f§ Mes ressources ENI 2 Suggested amin E simple-Help Serve 4 virtualBowes - Fre & \irtualBoo Virtual
Cats vs Dogs!

CATS

v containet

voting-app-deployment

A Important: Note that the POD that served the page has changed.

Note that this POD change does not indicate load balancing. You'd have to set up another virtual machine under, say, HAProxy to achieve load
balancing.

On the other hand, in the case of an application on GCP, for example, you need to modify the following two files by changing the type field value from
NodePort to LoadBalancer and then configure an instance of GCP's native Load Balancer:

root@kubemaster:~/app# vi voting-app-service.yaml

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 64/65 DOE305 - Network, Service and Microservices Architecture Management

root@kubemaster:~/app# cat voting-app-service.yaml
apiVersion: vl
kind: Service
metadata:
name: voting-service
labels:
name: voting-service
app: demo-voting-app

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 80
selector:

name: voting-app-pod
app: demo-voting-app

| Important: This file describes a LoadBalancer Service. Note that the Service exposes
&% port 80 on any POD with the name voting-app-pod.

Finally, create the file result-app-service.yaml :

root@kubemaster:~/app# vi result-app-service.yaml
root@kubemaster:~/app# cat result-app-service.yaml
apiVersion: vl
kind: Service
metadata:

name: result-service

www.ittraining.team - https://ittraining.team/

2026/02/04 13:02 65/65 DOE305 - Network, Service and Microservices Architecture Management

labels:
name: result-service
app: demo-voting-app

spec:
type: LoadBalancer
ports:
- port: 80
targetPort: 80
selector:

name: result-app-pod
app: demo-voting-app

Copyright © 2025 Hugh Norris

From:
https://ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s04

Last update: 2025/01/19 14:20

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s04

	DOE305 - Network, Service and Microservices Architecture Management
	Curriculum
	LAB #1 - Network and Service Management
	1.1 - Overview of Network Extensions
	1.2 - DNS K8s
	Overview
	Implementation

	1.3 - Network Policies
	Overview
	Implementation

	1.4 - Services
	Overview
	Implementation
	The NodePort Service
	The ClusterIP Service

	1.5 - Services and the k8s DNS
	Overview
	Implementation

	1.6 - K8s Ingress management
	Overview
	Implementation

	LAB #2 - Managing a Microservices Architecture
	2.1 - Overview
	2.2 - Creating Deployments
	2.3 - Creating Services
	2.4 - Deploying the Application
	2.5 - Scaling Up

