2026/02/04 09:23 1/66 DOE303 - The kubectl, krew and kustomize commands

Version - 2025.01

Last update : 2025/01/17 16:38

DOE303 - The kubectl, krew and kustomize commands

Curriculum

e DOE303 - The kubectl, krew and kustomize commands
o Curriculum
o LAB #1 - Using the kubectl command
= 1.1 - Getting help with kubectl commands
1.2 - Obtaining information about the Cluster
e The version command
e The cluster-info command
e The api-versions command
e The api-resources command
1.3 - Obtaining information about nodes
e The describe node command
e The top command
1.4 - Obtaining information about Pods
e The describe pod command
e The top command
1.5 - Working with the kubectl command
e The apply command
e The create command
e The get command
¢ Using Options
e The exec command
e Imperative commands
o LAB #2 - Managing kubectl plugins with the krew command

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 2/66 DOE303 - The kubectl, krew and kustomize commands

= 2.1 - Installing krew
= 2.2 - Viewing the list of plugins
= 2.3 - Installing and using plugins
= 2.4 - Updating and deleting plugins
o LAB #3 - Managing patches with the kustomize command

LAB #1 - Using the kubectl command

1.1 - Getting help with kubectl commands

The kubectl commands are grouped by category:

root@kubemaster:~# kubectl --help
kubectl controls the Kubernetes cluster manager.

Find more information at: https://kubernetes.io/docs/reference/kubectl/

Basic Commands (Beginner):

Create Create a resource from a file or from stdin

expose Take a replication controller, service, deployment or pod and expose it as a new Kubernetes
service

run Run a particular image on the cluster

set Set specific features on objects

Basic Commands (Intermediate):

explain Get documentation for a resource

get Display one or many resources

edit Edit a resource on the server

delete Delete resources by file names, stdin, resources and names, or by resources and label selector

Deploy Commands:
rollout Manage the rollout of a resource

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 3/66 DOE303 - The kubectl, krew and kustomize commands

scale Set a new size for a deployment, replica set, or replication controller
autoscale Auto-scale a deployment, replica set, stateful set, or replication controller

Cluster Management Commands:

certificate Modify certificate resources.
cluster-info Display cluster information

top Display resource (CPU/memory) usage
cordon Mark node as unschedulable

uncordon Mark node as schedulable

drain Drain node in preparation for maintenance
taint Update the taints on one or more nodes

Troubleshooting and Debugging Commands:

describe Show details of a specific resource or group of resources

logs Print the logs for a container in a pod

attach Attach to a running container

exec Execute a command in a container

port-forward Forward one or more local ports to a pod

proxy Run a proxy to the Kubernetes API server

cp Copy files and directories to and from containers

auth Inspect authorization

debug Create debugging sessions for troubleshooting workloads and nodes

Advanced Commands:

diff Diff the live version against a would-be applied version

apply Apply a configuration to a resource by file name or stdin

patch Update fields of a resource

replace Replace a resource by file name or stdin

wait Experimental: Wait for a specific condition on one or many resources
kustomize Build a kustomization target from a directory or URL.

Settings Commands:
label Update the labels on a resource
annotate Mettre a jour les annotations d'une ressource

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 4/66 DOE303 - The kubectl, krew and kustomize commands

completion Output shell completion code for the specified shell (bash, zsh, fish, or powershell)

Other Commands:

alpha Commands for features in alpha
api-resources Print the supported API resources on the server
api-versions Print the supported API versions on the server, in the form of "group/version"
config Modifier des fichiers kubeconfig
plugin Provides utilities for interacting with plugins
version Print the client and server version information
Usage:

kubectl [flags] [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all commands).

More information about each command can be obtained by passing the -help option, for example :

root@kubemaster:~# kubectl create --help
Create a resource from a file or from stdin.

JSON and YAML formats are accepted.

Examples:
Create a pod using the data in pod.json
kubectl create -f ./pod.json
Create a pod based on the JSON passed into stdin
cat pod.json | kubectl create -f -
Edit the data in registry.yaml in JSON then create the resource using the edited data
kubectl create -f registry.yaml --edit -o json

Available Commands:
clusterrole Create a cluster role
clusterrolebinding Create a cluster role binding for a particular cluster role

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 5/66 DOE303 - The kubectl, krew and kustomize commands

configmap Create a config map from a local file, directory or literal value
cronjob Create a cron job with the specified name
deployment Create a deployment with the specified name
ingress Create an ingress with the specified name
job Create a job with the specified name
namespace Create a namespace with the specified name
poddisruptionbudget Create a pod disruption budget with the specified name
priorityclass Create a priority class with the specified name
quota Create a quota with the specified name
role Create a role with single rule
rolebinding Create a role binding for a particular role or cluster role
secret Create a secret using specified subcommand
service Create a service using a specified subcommand
serviceaccount Create a service account with the specified name
token Request a service account token

Options:

--allow-missing-template-keys=true:
If true, ignore any errors in templates when a field or map key is missing in the template. Only applies

to
golang and jsonpath output formats.
--dry-run='none':
Must be "none", "server", or "client". If client strategy, only print the object that would be sent,
without

sending it. If server strategy, submit server-side request without persisting the resource.

--edit=false:
Edit the API resource before creating

--field-manager="'kubectl-create':
Name of the manager used to track field ownership.

-f, --filename=[]:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 6/66 DOE303 - The kubectl, krew and kustomize commands

Filename, directory, or URL to files to use to create the resource

-k, --kustomize='":
Process the kustomization directory. This flag can't be used together with -f or -R.

-0, --output='":
Qutput format. One of: (json, yaml, name, go-template, go-template-file, template, templatefile,
jsonpath,
jsonpath-as-json, jsonpath-file).

--raw="":
Raw URI to POST to the server. Uses the transport specified by the kubeconfig file.

-R, --recursive=false:

Process the directory used in -f, --filename recursively. Useful when you want to manage related
manifests

organized within the same directory.

--save-config=false:
If true, the configuration of current object will be saved in its annotation. Otherwise, the annotation

will
be unchanged. This flag is useful when you want to perform kubectl apply on this object in the future.
-1, --selector="'":
Selector (label query) to filter on, supports '=', '==', and '!='.(e.g. -1l keyl=valuel, key2=value2).
Matching
objects must satisfy all of the specified label constraints.
--show-managed-fields=false:
If true, keep the managedFields when printing objects in JSON or YAML format.
--template="'":
Template string or path to template file to use when -o=go-template, -o=go-template-file. The template
format

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 7/66 DOE303 - The kubectl, krew and kustomize commands

is golang templates [http://golang.org/pkg/text/template/#pkg-overview].

--validate='strict':

Must be one of: strict (or true), warn, ignore (or false). “true" or "strict" will use a
schema to validate

the input and fail the request if invalid. It will perform server side validation if
ServerSideFieldValidation

is enabled on the api-server, but will fall back to less reliable client-side validation if not.
"warn" will

warn about unknown or duplicate fields without blocking the request if server-side field validation is
enabled

on the API server, and behave as "ignore" otherwise. "false" or "ignore" will not perform any
schema

validation, silently dropping any unknown or duplicate fields.

--windows-line-endings=false:
Only relevant if --edit=true. Defaults to the line ending native to your platform.

Usage:
kubectl create -f FILENAME [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all commands).

Lastly, kubectl commands can be given options. To view the options that can be passed to all kubectl commands, enter the following command:

root@kubemaster:~# kubectl options
The following options can be passed to any command:

--add-dir-header=false:
If true, adds the file directory to the header of the log messages (DEPRECATED: will be removed in a
future
release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 8/66 DOE303 - The kubectl, krew and kustomize commands

s-in-k8s-components)

--alsologtostderr=false:
log to standard error as well as files (no effect when -logtostderr=true) (DEPRECATED: will be removed in

future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--as="":
Username to impersonate for the operation. User could be a regular user or a service account in a
namespace.

--as-group=[]:
Group to impersonate for the operation, this flag can be repeated to specify multiple groups.

--as-uid="":
UID to impersonate for the operation.

--cache-dir="'/root/.kube/cache':
Default cache directory

--certificate-authority="":
Path to a cert file for the certificate authority

--client-certificate="'":
Path to a client certificate file for TLS

--client-key="":
Path to a client key file for TLS

--cluster="":
The name of the kubeconfig cluster to use

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 9/66 DOE303 - The kubectl, krew and kustomize commands

--context="":
The name of the kubeconfig context to use

--insecure-skip-tls-verify=false:
If true, the server's certificate will not be checked for validity. This will make your HTTPS connections
insecure

- -kubeconfig="":
Path to the kubeconfig file to use for CLI requests.

--log-backtrace-at=:0:
when logging hits line file:N, emit a stack trace (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--log-dir="":
If non-empty, write log files in this directory (no effect when -logtostderr=true) (DEPRECATED: will be
removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--log-file="":
If non-empty, use this log file (no effect when -logtostderr=true) (DEPRECATED: will be removed in a
future
release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--log-file-max-size=1800:
Defines the maximum size a log file can grow to (no effect when -logtostderr=true). Unit is megabytes. If
the
value is 0, the maximum file size is unlimited. (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 10/66 DOE303 - The kubectl, krew and kustomize commands

--log-flush-frequency=5s:
Maximum number of seconds between log flushes

--logtostderr=true:
log to standard error instead of files (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--match-server-version=false:
Require server version to match client version

-n, --namespace="'":
If present, the namespace scope for this CLI request

--one-output=false:
If true, only write logs to their native severity level (vs also writing to each lower severity level; no
effect when -logtostderr=true) (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--password="":
Password for basic authentication to the API server

--profile='none"':
Name of profile to capture. One of (none|cpu|heap|goroutine|threadcreate|block|mutex)

--profile-output='profile.pprof':
Name of the file to write the profile to

--request-timeout='0":
The length of time to wait before giving up on a single server request. Non-zero values should contain a

corresponding time unit (e.g. 1s, 2m, 3h). A value of zero means don't timeout requests.

-S, --server='":

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 11/66 DOE303 - The kubectl, krew and kustomize commands

The address and port of the Kubernetes API server

--skip-headers=false:
If true, avoid header prefixes in the log messages (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--skip-log-headers=false:
If true, avoid headers when opening log files (no effect when -logtostderr=true) (DEPRECATED: will be
removed
in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--stderrthreshold=2:
logs at or above this threshold go to stderr when writing to files and stderr (no effect when
-logtostderr=true or -alsologtostderr=false) (DEPRECATED: will be removed in a future release, see
https://github.com/kubernetes/enhancements/tree/master/keps/sig-instrumentation/2845-deprecate-klog-specific-flag
s-in-k8s-components)

--tls-server-name="'":
Server name to use for server certificate validation. If it is not provided, the hostname used to contact
the
server is used

--token="":
Bearer token for authentication to the API server

--user="'":
The name of the kubeconfig user to use

--username="":
Username for basic authentication to the API server

www.ittraining.team - https://ittraining.team/

12/66 DOE303 - The kubectl, krew and kustomize commands

2026/02/04 09:23

-v, --v=0:
number for the log level verbosity

--vmodule=:
comma-separated list of pattern=N settings for file-filtered logging

--warnings-as-errors=false:
Treat warnings received from the server as errors and exit with a non-zero exit code

1.2 - Obtaining information about the Cluster

The version Command

Start by obtaining the client and server version information:

root@kubemaster:~# kubectl version --short
Flag --short has been deprecated, and will be removed in the future. The --short output will become the default.

Client Version: v1.25.0
Kustomize Version: v4.5.7
Server Version: v1.25.0

The cluster-info command

Then view the cluster information:

root@kubemaster:~# kubectl cluster-info

Kubernetes control plane is running at https://192.168.56.2:6443
CoreDNS is running at https://192.168.56.2:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 13/66

DOE303 - The kubectl, krew and kustomize commands

The api-versions command

To find out which API versions are compatible with the Kubernetes version you have installed, run the api-versions command:

root@kubemaster:~# kubectl api-versions

admissionregistration.k8s.io/v1l
apiextensions.k8s.io/v1l
apiregistration.k8s.io/vl
apps/vl
authentication.k8s.io/v1l
authorization.k8s.io/v1
autoscaling/vl

autoscaling/v2
autoscaling/v2beta2

batch/vl

certificates.k8s.io/v1l
coordination.k8s.io/v1
crd.projectcalico.org/vl
discovery.k8s.io/v1l
events.k8s.io/v1l
flowcontrol.apiserver.k8s.io/vlbetal
flowcontrol.apiserver.k8s.io/vlbeta?2
networking.k8s.io/v1l
node.k8s.io/v1l

policy/vl
rbac.authorization.k8s.io/v1l
scheduling.k8s.io/v1
storage.k8s.io/vl
storage.k8s.io/vlbetal

vl

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

14/66

DOE303 - The kubectl, krew and kustomize commands

The api-resources command

The api-resources command displays the list of cluster resources, including :

¢ the resource name - NAME,

e the short name to be used with kubectl - SHORTNAMES,
e the API group to which the resource belongs - APIVERSION,
e whether or not the resource is linked to a namespace - NAMESPACED,

e the resource's KIND type - KIND.

root@kubemaster:~# kubectl api-resources

NAME

bindings
componentstatuses
ComponentStatus
configmaps

endpoints

events

limitranges
namespaces

nodes
persistentvolumeclaims
PersistentVolumeClaim
persistentvolumes
PersistentVolume

pods

podtemplates
replicationcontrollers
ReplicationController
resourcequotas
secrets
serviceaccounts
services

SHORTNAMES
Ccs

cm

ep

ev

limits

ns

no
pvc

pv
po
rc
quota

Sa
SvC

mutatingwebhookconfigurations

APIVERSION
vl
vl

vl
vl
vl
vl
vl
vl
vl

vl

vl
vl
vl

vl
vl
vl
vl
admissionregistration.k8s.io/v1l

NAMESPACED
true
false

true
true
true
true
false
false
true

false

true
true
true

true
true
true
true
false

KIND
Binding

ConfigMap
Endpoints
Event
LimitRange
Namespace
Node

Pod
PodTemplate

ResourceQuota
Secret
ServiceAccount
Service

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 15/66

DOE303 - The kubectl, krew and kustomize commands

MutatingWebhookConfiguration
validatingwebhookconfigurations
ValidatingWebhookConfiguration
customresourcedefinitions
CustomResourceDefinition
apiservices
controllerrevisions
ControllerRevision
daemonsets

deployments

replicasets

statefulsets

tokenreviews
localsubjectaccessreviews
LocalSubjectAccessReview
selfsubjectaccessreviews
SelfSubjectAccessReview
selfsubjectrulesreviews
SelfSubjectRulesReview
subjectaccessreviews
SubjectAccessReview
horizontalpodautoscalers
HorizontalPodAutoscaler
cronjobs

jobs
certificatesigningrequests
CertificateSigningRequest
leases

bgpconfigurations
BGPConfiguration

bgppeers

blockaffinities
caliconodestatuses
CalicoNodeStatus

crd, crds

ds
deploy
rs

sts

hpa
cj

Ccsr

admissionregistration.k8s.io/v1l
apiextensions.k8s.io/v1

apiregistration.k8s.io/vl
apps/vl

apps/vl

apps/vl

apps/vl

apps/vl
authentication.k8s.io/vl
authorization.k8s.io/v1

authorization.k8s.io/v1l
authorization.k8s.io/v1l
authorization.k8s.1io0/v1
autoscaling/v2

batch/vl

batch/v1l

certificates.k8s.io/v1l

coordination.k8s.io/vl
crd.projectcalico.org/vl

crd.projectcalico.org/vl
crd.projectcalico.org/vl
crd.projectcalico.org/vl

false

false

false
true

true
true
true
true
false
true

false
false
false
true
true
true

false

true
false

false
false
false

APIService

DaemonSet
Deployment
ReplicaSet
StatefulSet
TokenReview

CronJob
Job

Lease

BGPPeer
BlockAffinity

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 16/66

DOE303 - The kubectl, krew and kustomize commands

clusterinformations
ClusterInformation
felixconfigurations
FelixConfiguration
globalnetworkpolicies
GlobalNetworkPolicy
globalnetworksets
GlobalNetworkSet
hostendpoints

ipamblocks

ipamconfigs

ipamhandles

ippools

ipreservations
kubecontrollersconfigurations
KubeControllersConfiguration
networkpolicies
networksets

endpointslices

events

flowschemas
prioritylevelconfigurations
PriorityLevelConfiguration
ingressclasses

ingresses

networkpolicies
runtimeclasses
poddisruptionbudgets
PodDisruptionBudget
clusterrolebindings
ClusterRoleBinding
clusterroles

rolebindings

roles

ev

ing
netpol

pdb

crd.

crd.

crd.

crd.

crd.
crd
crd.
crd.
crd.
crd.
crd.

crd.
crd.

projectcalico.
projectcalico.
projectcalico.
projectcalico.

projectcalico.

.projectcalico.

projectcalico.
projectcalico.
projectcalico.
projectcalico.
projectcalico.

projectcalico.
projectcalico.

org/vl
org/vl
org/vl
org/vl

org/vl
org/vl
org/vl
org/vl
org/vl
org/vl
org/vl

org/vl
org/vl

discovery.k8s.io/vl

even

flowcontrol.apiserver.k8s.io/vlbeta2
flowcontrol.apiserver.k8s.io/vlbeta2

ts.k8s.io/v1l

networking.k8s.io/

vl

networking.k8s.io/vl
networking.k8s.io/v1l

node.k8s.io/vl
policy/vl

rbac.

rbac

rbac.
rbac.

.authorization
authorization
authorization

authorization.

k8s.1io0/vl

.k8s.1i0/v1
.k8s.1i0/v1
.k8s.io/v1

false

false

false

false

false
false
false
false
false
false
false

true
true
true
true
false
false

false
true
true
false
true

false
false

true
true

HostEndpoint
IPAMBlock
IPAMConfig
IPAMHandle
IPPool
IPReservation

NetworkPolicy
NetworkSet
EndpointSlice
Event
FlowSchema

IngressClass
Ingress
NetworkPolicy
RuntimeClass

ClusterRole
RoleBinding
Role

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 17/66 DOE303 - The kubectl, krew and kustomize commands
priorityclasses pc scheduling.k8s.io/v1l false PriorityClass
csidrivers storage.k8s.io/vl false CSIDriver
csinodes storage.k8s.io/vl false CSINode
csistoragecapacities storage.k8s.io/vl true

CSIStorageCapacity

storageclasses sC storage.k8s.io/vl false StorageClass
volumeattachments storage.k8s.io/vl false

VolumeAttachment

1.3 - Obtaining information about nodes

The describe node command

Node information can be obtained with the describe node command. In the first part of the command output, you can see:

e the Labels: section. Labels can be used to manage the affinity of a pod, i.e. on which node a pod can be scheduled according to the labels

associated with the pod,

¢ the Unschedulable: false line, which indicates that the node accepts pods.

root@kubemaster:~# kubectl describe node kubemaster.ittraining. loc

Name: kubemaster.ittraining.loc
Roles: control-plane
Labels: beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=1linux
kubernetes.io/arch=amd64

kubernetes.io/hostname=kubemaster.ittraining. loc

kubernetes.io/os=1linux

node-role.kubernetes.io/control-plane=
node. kubernetes.io/exclude-from-external-load-balancers=
Annotations: kubeadm.alpha.kubernetes.io/cri-socket: unix:///var/run/containerd/containerd.sock
node.alpha.kubernetes.io/ttl: 0
projectcalico.org/IPv4Address: 192.168.56.2/24

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

18/66 DOE303 - The kubectl, krew and kustomize commands

CreationTimestamp:

Taints:
Unschedulable:
Lease:
HolderIdentity:
AcquireTime:
RenewTime:
Conditions:
Type
Message

projectcalico.org/IPv4IPIPTunnelAddr: 192.168.55.192
volumes.kubernetes.io/controller-managed-attach-detach: true
Sun, 04 Sep 2022 09:36:00 +0200
node-role.kubernetes.io/control-plane:NoSchedule

false

kubemaster.ittraining.loc
<unset>
Sun, 04 Sep 2022 16:56:54 +0200

Status LastHeartbeatTime LastTransitionTime Reason

NetworkUnavailable False Sun, 04 Sep 2022 09:44:21 +0200 Sun, 04 Sep 2022 09:44:21 +0200 CalicoIsUp
Calico is running on this node

MemoryPressure

False Sun, 04 Sep 2022 16:52:48 +0200 Sun, 04 Sep 2022 09:35:59 +0200

KubeletHasSufficientMemory kubelet has sufficient memory available

DiskPressure False Sun, 04 Sep 2022 16:52:48 +0200 Sun, 04 Sep 2022 09:35:59 +0200
KubeletHasNoDiskPressure kubelet has no disk pressure

PIDPressure False Sun, 04 Sep 2022 16:52:48 +0200 Sun, 04 Sep 2022 09:35:59 +0200
KubeletHasSufficientPID kubelet has sufficient PID available

Ready True Sun, 04 Sep 2022 16:52:48 +0200 Sun, 04 Sep 2022 12:15:32 +0200 KubeletReady

kubelet is posting ready status

In the second part of the output, we can see :

» the Addresses: section containing the node's IP address and host name.

Addresses:

InternalIP: 10.0.2.65
Hostname: kubemaster.ittraining.loc

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 19/66 DOE303 - The kubectl, krew and kustomize commands

Capacity:
cpu: 4
ephemeral-storage: 18400976Ki
hugepages-2Mi: 0
memory: 8181164Ki
pods: 110
Allocatable:
cpu: 4
ephemeral-storage: 16958339454
hugepages-2Mi: 0
memory: 8078764K1
pods: 110

In the third part of the output, we can see:

e the System Info: section, containing information on the operating system, Docker and Kubernetes versions,
* the Non-terminated Pods section, containing information on the CPU and memory limits of each running POD.

System Info:

Machine ID: 243c6f9d604ed4abaB852a482a1936be23
System UUID: 68639C3A-D77A-4C61-B7E8-4F4F70419B8A
Boot ID: 9bd56aa5-b94c-40d3-804a-a54bd8daf305
Kernel Version: 4.9.0-19-amd64
0S Image: Debian GNU/Linux 9 (stretch)
Operating System: linux
Architecture: amd64
Container Runtime Version: containerd://1.4.3
Kubelet Version: v1.25.0
Kube-Proxy Version: v1.25.0

PodCIDR: 192.168.0.0/24

PodCIDRs: 192.168.0.0/24

Non-terminated Pods: (7 in total)

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 20/66 DOE303 - The kubectl, krew and kustomize commands

Namespace Name CPU Requests CPU Limits
Memory Requests Memory Limits Age

kube-system calico-node-dc7hd 250m (6%) 0 (0%) 0
(0%) 0 (0%) 7h18m

kube-system coredns-565d847f94-tqd8z 100m (2%) 0 (0%) 70M1i
(0%) 176Mi (2%) 3h56m

kube-system etcd-kubemaster.ittraining. loc 100m (2%) 0 (0%)
100Mi (1%) 0 (0%) 4h19m

kube-system kube-apiserver-kubemaster.ittraining.loc 250m (6%) 0 (0%) 0
(0%) 0 (0%) 4h19m

kube-system kube-controller-manager-kubemaster.ittraining. loc 200m (5%) 0 (0%) 0
(0%) 0 (0%) 4h19m

kube-system kube-proxy-x7fpc 0 (0%) 0 (0%) 0
(0%) 0 (0%) 4h25m

kube-system kube-scheduler-kubemaster.ittraining.loc 100m (2%) 0 (0%) 0
(0%) 0 (0%) 4h19m

In the last part of the output, we can see :
o the Allocated resources: section, which indicates the resources allocated to the node.

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)

Resource Requests Limits
cpu 1 (25%) 0 (0%)
memory 170Mi (2%) 170Mi (2%)
ephemeral-storage 0 (0%) 0 (0%)
hugepages-2Mi 0 (0%) 0 (0%)
Events:
Type Reason Age From Message

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 21/66 DOE303 - The kubectl, krew and kustomize commands

Normal RegisteredNode 37m node-controller Node kubemaster.ittraining.loc event: Registered Node
kubemaster.ittraining.loc in Controller

The top command

The top command requires the Metrics API to be available in the cluster. To deploy the Metrics server, download the file components.yaml :

root@kubemaster:~# wget
https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.4.1/components.yaml

| Important: If the above URL does not work, click here. Copy the contents of the file and
&% . create it in the current directory.

Modify the containers section of the components.yaml file:
root@kubemaster:~# vi components.yaml

spec:
containers:
- args:
- --cert-dir=/tmp
- --secure-port=4443
- --kubelet-insecure-tls

- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP
- --kubelet-use-node-status-port

Deploy the Metrics server :

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/a5ki48szu8q5159177opv/components.yaml?rlkey=354a4ybivgbmu97gyoduadm61&dl=0

2026/02/04 09:23 22/66

DOE303 - The kubectl, krew and kustomize commands

root@kubemaster:~# kubectl apply -f components.yaml

serviceaccount/metrics-server created

clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created

rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created

clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created

service/metrics-server created
deployment.apps/metrics-server created

apiservice.apiregistration.k8s.io/vlbetal.metrics.k8s.io created

Check the status of deployment :

root@kubemaster:~# kubectl get deployments --all-namespaces

NAMESPACE NAME READY
default myapp-deployment 3/3
kube-system calico-kube-controllers 1/1
kube-system coredns 2/2
kube-system metrics-server 1/1

UP-TO-DATE
3

1
2
1

To find out the node's resource usage, use the top nodes command:

root@kubemaster:~# kubectl top nodes

NAME CPU(cores) CPU%
kubemaster.ittraining. loc 182m 4%
kubenodel.ittraining. loc 68m 1%
kubenode2.ittraining. loc 104m 2%

MEMORY (bytes)
1901Mi
898M1i
819Mi

AVAILABLE
3
1
2
1
MEMORY%s
24%
23%
21%

To see the evolution of the resources used by the node, use the watch command.

root@kubemaster:~# watch kubectl top nodes
Every 2,0s: kubectl top nodes

kubemaster.ittraining.loc: Sun Sep 4 17:02:45 2022

AGE
6h50m
7h22m
7h25m
28s

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 23/66 DOE303 - The kubectl, krew and kustomize commands
NAME CPU(cores) CPU% MEMORY (bytes) MEMORY%

kubemaster.ittraining.loc 142m 3% 1951Mi 24%

kubenodel.ittraining. loc 71m 1% 899Mi 23%

kubenode2.ittraining. loc 52m 1% 742M1 19%

~C
root@kubemaster:~#

u
-

The output can be sorted in descending order of the CPU usage:

root@kubemaster:~# kubectl top nodes --sort-by cpu
CPUS

NAME
kubemaster.ittraining.loc
kubenodel.ittraining. loc
kubenode2.ittraining. loc

CPU(cores)

132m

65m
50m

3%
1%

1%

MEMORY (bytes)
1916Mi
952Mi
887M1i

Finally, it is possible to sort the output in descending order of the memory usage:

root@kubemaster:~# kubectl top nodes --sort-by memory
CPUS

NAME
kubemaster.ittraining.loc
kubenodel.ittraining. loc
kubenode2.ittraining. loc

1.4 - Obtaining information about Pods

CPU(cores)
139m

70m

52m

3%
1
1

o®

o®

MEMORY (bytes)
1909Mi
951Mi
885Mi

Important: Note the use of ~C to exit the watch command.

MEMORY*%s
24%
24%
23%

MEMORY*%s
24%
24%
23%

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

24/66

DOE303 - The kubectl, krew and kustomize commands

The describe pod command

As with nodes, information about a specific pod can be obtained using the kubectl describe command:

root@kubemaster:~# kubectl describe pod myapp-deployment-689f9d59-c25f9

Name:

Namespace:
Priority:
Service Account:
Node:

Start Time:
Labels:

Annotations:

myapp-deployment-689f9d59-c25f9
default

0

default
kubenodel.ittraining.loc/192.168.56.3
Sun, 04 Sep 2022 13:23:12 +0200
app=myapp

pod-template-hash=689f9d59
type=front-end
cni.projectcalico.org/containerID:

0d234054b43a4bd5c8a3c8f0a9%9e0b8594a8dlabdccdad8b656c311ad31731a54

cni.projectcalico.org/podIP: 192.168.239.9/32
cni.projectcalico.org/podIPs: 192.168.239.9/32

Status: Running
IP: 192.168.239.9
IPs:

IP: 192.168.239.9

Controlled By: ReplicaSet/myapp-deployment-689f9d59

Containers:
nginx-container:
Container ID:
Image:
Image ID:

containerd://b0367fed494bed44f98facd069f5a6e48fadce9236ad5albaasfeb31d2a08760a

nginx

docker.io/library/nginx@sha256:b95a99feebf7797479e0c5eb5ecObdfa5d9f504bc94da550c2f58e839ea6914f

Port:

Host Port:

State:
Started:

<none>
<none>
Running
Sun, 04 Sep 2022 13:23:21 +0200

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 25/66 DOE303 - The kubectl, krew and kustomize commands

Ready: True
Restart Count: O
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-fjdsw (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
kube-api-access-fjdsw:
Type: Projected (a volume that contains injected data from multiple sources)
TokenExpirationSeconds: 3607
ConfigMapName: kube-root-ca.crt
ConfigMapOptional: <nil>
DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events: <none>

The top command

It is possible to view the resource usage by pod:

root@kubemaster:~# kubectl top pods

NAME CPU(cores) MEMORY (bytes)
myapp-deployment-689f9d59-c25f9 Om 3Mi
myapp-deployment-689f9d59-nn9sw Om 4Mi

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 26/66

DOE303 - The kubectl, krew and kustomize commands

myapp-deployment-689f9d59-rnc4r Om 4Mi
Now sort the output in descending order of processor usage:

root@kubemaster:~# kubectl top pods

NAME CPU(cores) MEMORY (bytes)
myapp-deployment-689f9d59-c25f9 Om 3Mi
myapp-deployment-689f9d59-nn9sw Om 4M1i
myapp-deployment-689f9d59-rnc4r Om 4Mi

Now sort the output in descending order of memory usage:

root@kubemaster:~# kubectl top pods --sort-by memory

NAME CPU(cores) MEMORY (bytes)
myapp-deployment-689f9d59-nn9sw Om 4M1i
myapp-deployment-689f9d59-rnc4r Om 4M1i
myapp-deployment-689f9d59-c25f9 Om 3Mi

1.5 - Working with the kubectl command

Create the file pod.yaml :

4

root@kubemaster:~# vi pod.yaml
root@kubemaster:~# cat pod.yaml
apiVersion: vl

kind: Pod

metadata:

- To do: Copy the content from here and paste it into your file.

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/weivllvybgtxtf2psq1ko/pod.yaml?rlkey=x1spvh9v0hy8p8m86rv8oqd60&dl=0

2026/02/04 09:23 27/66 DOE303 - The kubectl, krew and kustomize commands

name: my-pod
spec:
containers:
- name: busybox
image: radial/busyboxplus:curl
command: ['sh', '-c', 'while true; do sleep 3600; done']

The apply command

Now create the pod using the pod.yaml file:

root@kubemaster:~# kubectl apply -f pod.yaml
pod/my-pod created

The create command

The create command can only be used if an object with the same name does not already exist in the cluster:

root@kubemaster:~# kubectl create -f pod.yaml
Error from server (AlreadyExists): error when creating “pod.yaml”: pods “my-pod” already exists

To view the list of objects that can be created, use the kubectl create command:

root@kubemaster:~# kubectl create
Error: must specify one of -f and -k

Create a resource from a file or from stdin.
JSON and YAML formats are accepted.

Examples:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 28/66 DOE303 - The kubectl, krew and kustomize commands

Create a pod using the data in pod.json

kubectl create -f ./pod.json

Create a pod based on the JSON passed into stdin

cat pod.json | kubectl create -f -

Edit the data in registry.yaml in JSON then create the resource using the edited data
kubectl create -f registry.yaml --edit -o json

Available Commands:

clusterrole Create a cluster role
clusterrolebinding Create a cluster role binding for a particular cluster role
configmap Create a config map from a local file, directory or literal value
cronjob Create a cron job with the specified name
deployment Create a deployment with the specified name
ingress Create an ingress with the specified name
job Create a job with the specified name
namespace Create a namespace with the specified name
poddisruptionbudget Create a pod disruption budget with the specified name
priorityclass Create a priority class with the specified name
quota Create a quota with the specified name
role Create a role with single rule
rolebinding Create a role binding for a particular role or cluster role
secret Create a secret using specified subcommand
service Create a service using a specified subcommand
serviceaccount Create a service account with the specified name
token Request a service account token

Options:

--allow-missing-template-keys=true:
If true, ignore any errors in templates when a field or map key is missing in the template. Only applies
to
golang and jsonpath output formats.

--dry-run='none':
Must be "none", "server", or "client". If client strategy, only print the object that would be sent,

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 29/66 DOE303 - The kubectl, krew and kustomize commands

without
sending it. If server strategy, submit server-side request without persisting the resource.

--edit=false:
Edit the API resource before creating

--field-manager="'kubectl-create':
Name of the manager used to track field ownership.

-f, --filename=[]:
Filename, directory, or URL to files to use to create the resource

-k, --kustomize='":
Process the kustomization directory. This flag can't be used together with -f or -R.

-0, --output='":

Qutput format. One of: (json, yaml, name, go-template, go-template-file, template, templatefile,
jsonpath,

jsonpath-as-json, jsonpath-file).

--raw="":
Raw URI to POST to the server. Uses the transport specified by the kubeconfig file.

-R, --recursive=false:

Process the directory used in -f, --filename recursively. Useful when you want to manage related
manifests

organized within the same directory.

--save-config=false:

If true, the configuration of current object will be saved in its annotation. Otherwise, the annotation
will

be unchanged. This flag is useful when you want to perform kubectl apply on this object in the future.

-1, --selector="'":

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 30/66 DOE303 - The kubectl, krew and kustomize commands

Selector (label query) to filter on, supports '=', '==', and '!='.(e.g. -1 keyl=valuel, key2=value2).
Matching
objects must satisfy all of the specified label constraints.

--show-managed-fields=false:
If true, keep the managedFields when printing objects in JSON or YAML format.

--template="":
Template string or path to template file to use when -o=go-template, -o=go-template-file. The template
format
is golang templates [http://golang.org/pkg/text/template/#pkg-overview].

--validate='strict':

Must be one of: strict (or true), warn, ignore (or false). “true" or "strict" will use a
schema to validate

the input and fail the request if invalid. It will perform server side validation if
ServerSideFieldValidation

is enabled on the api-server, but will fall back to less reliable client-side validation if not.
"warn" will

warn about unknown or duplicate fields without blocking the request if server-side field validation 1is
enabled

on the API server, and behave as "ignore" otherwise. "false" or "ignore" will not perform any
schema

validation, silently dropping any unknown or duplicate fields.

--windows-line-endings=false:
Only relevant if --edit=true. Defaults to the line ending native to your platform.

Usage:
kubectl create -f FILENAME [options]

Use "kubectl <command> --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all commands).

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 31/66

DOE303 - The kubectl, krew and kustomize commands

The apply command is then used to apply changes made to the yaml file:

root@kubemaster:~# kubectl apply -f pod.yaml
pod/my-pod unchanged

The get command

Check pod status:

root@kubemaster:~# kubectl get pods

NAME READY STATUS RESTARTS
my - pod 1/1 Running 0
myapp-deployment-689f9d59-c25f9 1/1 Running 0
myapp-deployment-689f9d59-nn9sw 1/1 Running 0
myapp-deployment-689f9d59-rnc4r 1/1 Running 0

Remember that you can use a short code for the word pods:

root@kubemaster:~# kubectl get po

NAME READY STATUS RESTARTS
my - pod 1/1 Running 0
myapp-deployment-689f9d59-c25f9 1/1 Running 0
myapp-deployment-689f9d59-nn9sw 1/1 Running 0
myapp-deployment-689f9d59-rnc4r 1/1 Running 0

To see the status of only one particular pod, specify its name as an argument:

root@kubemaster:~# kubectl get po my-pod
NAME READY STATUS RESTARTS AGE
my -pod 1/1 Running 0 109s

AGE
10s
6d1lh
6d1lh
6d1lh

AGE
54s
6d1lh
6d1lh
6d1lh

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 32/66 DOE303 - The kubectl, krew and kustomize commands

Using Options

Remember that the wide option lets you view pod IP addresses and the nodes hosting them:

root@kubemaster:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

my - pod 1/1 Running 0 115s 192.168.150.9 kubenode2.ittraining. loc
<none> <none>

myapp-deployment-689f9d59-c25f9 1/1 Running 0 6d1h 192.168.239.9 kubenodel.ittraining.loc
<none> <none>

myapp-deployment-689f9d59-nn9sw 1/1 Running 0 6d1lh 192.168.239.13 kubenodel.ittraining.loc
<none> <none>

myapp-deployment-689f9d59-rnc4dr 1/1 Running 0 6d1lh 192.168.239.12 kubenodel.ittraining.loc
<none> <none>

Using the json option displays the same information in json format:

root@kubemaster:~# kubectl get pods -o json | more

{
"apiVersion": "v1",
"items": [
{
"apiVersion": "v1",
"kind": "Pod",

"metadata": {
"annotations": {

"cni.projectcalico.org/containerID":
"584cf2663957e8a6d5628c71316e5858629€a646ec890bd5d619d1e217963b52",

"cni.projectcalico.org/podIP": "192.168.150.9/32",

"cni.projectcalico.org/podIPs": "192.168.150.9/32",

"kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"v1\",\"kind\":\"Pod\",\"metadata\

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 33/66 DOE303 - The kubectl, krew and kustomize commands

"“:{\"annotations\":{},\"name\":\"my-
pod\",\"namespace\":\"default\"},\"spec\":{\"containers\": [{\"command\": [\"sh\",\"-c\",\
"while true; do sleep 3600; done\"],\"image\":\"radial/busyboxplus:curl\",\"name\":\"busybox\"}]1}}\n"

},
"creationTimestamp": "2022-09-10T13:03:20Z",
"name": "my-pod",
"namespace": "default",
"resourceVersion": "755938",
"uid": "628ca9e4-2fbe-4fc9-b0fa-9a05ef942a07"
},
"spec": {
"containers": [
{
“command": [
"sh",
"oen

"while true; do sleep 3600; done"
1,
“image": "radial/busyboxplus:curl",
“"imagePullPolicy": "IfNotPresent",
"name": "busybox",
"resources": {},
"terminationMessagePath": "/dev/termination-log",
“terminationMessagePolicy": "File",
"volumeMounts": [
{
"mountPath": "/var/run/secrets/kubernetes.io/serviceaccount",
"name": "kube-api-access-qwzzv",
--More- -

Use the yaml option to view the same information in yaml format:

root@kubemaster:~# kubectl get pods -o yaml | more
apiVersion: vl

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 34/66

DOE303 - The kubectl, krew and kustomize commands

items:

- apiVersion: vl
kind: Pod
metadata:

annotations:

cni.projectcalico.org/containerID: 584cf2663957e8a6d5628c7f316e5858629ea646ec890bd5d6f9d1e217963b52

cni.projectcalico.org/podIP: 192.168.150.9/32
cni.projectcalico.org/podIPs: 192.168.150.9/32
kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"v1l",6"kind":"Pod", "metadata":{"annotations":{}, "name":"my-

pod", "namespace": "default"}, "spec":{"contain
ers":[{"command":["sh","-c","while true; do sleep 3600;
done"],"image" :"radial/busyboxplus:curl”, "name":"busybox"}1}}
creationTimestamp: "2022-09-10T13:03:20Z"
name: my-pod
namespace: default
resourceVersion: "755938"
uid: 628ca9e4-2fbe-4fc9-bbfa-9a05ef942a07
spec:
containers:
- command:
- sh
- -C
- while true; do sleep 3600; done
image: radial/busyboxplus:curl
imagePullPolicy: IfNotPresent
name: busybox
resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: kube-api-access-qwzzv
readOnly: true

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 35/66 DOE303 - The kubectl, krew and kustomize commands

dnsPolicy: ClusterFirst
enableServicelLinks: true

nodeName: kubenode2.ittraining.loc
preemptionPolicy: PreemptLowerPriority

priority: 0
restartPolicy: Always
--More- -

The -sort-by option is used to sort the output according to a yaml key:

root@kubemaster:~# kubectl get pods -o wide --sort-by .spec.nodeName

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

myapp-deployment-689f9d59-c25f9 1/1 Running 0 6d1lh 192.168.239.9 kubenodel.ittraining. loc
<none> <none>

myapp-deployment-689f9d59-nn9sw 1/1 Running 0 6d1h 192.168.239.13 kubenodel.ittraining. loc
<none> <none>

myapp-deployment-689f9d59-rnc4r 1/1 Running 0 6d1lh 192.168.239.12 kubenodel.ittraining. loc
<none> <none>

my - pod 1/1 Running 0 3m22s 192.168.150.9 kubenode2.ittraining. loc
<none> <none>

The -selector option allows you to see only those pods that match the specified label, for example, k8s-app :

root@kubemaster:~# kubectl get pods -n kube-system --selector k8s-app=calico-node

NAME READY STATUS RESTARTS AGE
calico-node-5htrc 1/1 Running 0 6d5h
calico-node-dc7hd 1/1 Running 0 6d5h
calico-node-gk5kt 1/1 Running 0 6d5h

The exec command

www.ittraining.team - https://ittraining.team/

DOE303 - The kubectl, krew and kustomize commands

2026/02/04 09:23 36/66
The exec command is used to execute a command in the container. The command is preceded by the characters - - :

root@kubemaster:~# kubectl exec my-pod -c busybox -- echo “Hello, world!”
Hello, world!

Important: Note the use of -c¢ to indicate the container name.

F.]
[

1.6 - Imperative commands

Before continuing, delete the my-pod pod:

root@kubemaster:~# kubectl delete pod my-pod
pod “my-pod” deleted

Next, create a deployment with the following imperative command :

root@kubemaster:~# kubectl create deployment my-deployment --image=nginx
deployment.apps/my-deployment created

By executing the same imperative command, it is possible to create instructions in yaml format using the -dry-run option:

root@kubemaster:~# kubectl create deployment my-deployment --image=nginx --dry-run -o yaml
W0910 15:28:49.797172 17135 helpers.go:639] --dry-run is deprecated and can be replaced with --dry-run=client.

apiVersion: apps/vl
kind: Deployment
metadata:
creationTimestamp: null
labels:
app: my-deployment

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 37/66

DOE303 - The kubectl, krew and kustomize commands

name: my-deployment

spec:
replicas: 1
selector:
matchLabels:

app: my-deployment
strategy: {}
template:
metadata:
creationTimestamp: null
labels:
app: my-deployment
spec:
containers:
- image: nginx
name: nginx
resources: {}
status: {}

These instructions can then be injected into a file in order to use it to create an identical deployment:

root@kubemaster:~# kubectl create deployment my-deployment --image=nginx --dry-run -o yaml > deployment.yml

W0910 15:29:05.006256 17242 helpers.go:639]

root@kubemaster:~# cat deployment.yml

apiVersion: apps/vl
kind: Deployment
metadata:
creationTimestamp: null
labels:
app: my-deployment
name: my-deployment
spec:
replicas: 1

--dry-run is deprecated and can be replaced with --dry-run=client.

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 38/66

DOE303 - The kubectl, krew and kustomize commands

selector:
matchLabels:
app: my-deployment
strategy: {}
template:
metadata:
creationTimestamp: null
labels:
app: my-deployment
spec:
containers:
- image: nginx
name: nginx
resources: {}
status: {}

LAB #2 - Managing kubectl plugins with the krew command

kubectl plugins extend its functionality. The krew plugin manager is available for macOS™, Windows™ and Linux. A plugin is a simple executable

written, for example, in bash or Go.

2.1 - Installing krew

To install the krew command, you must first install git :
root@kubemaster:~# apt install git-all

Then install krew with the following command:

(
set -x; cd “$(mktemp -d)” &&

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 39/66 DOE303 - The kubectl, krew and kustomize commands

curl -fsSLO “https://github.com/kubernetes-sigs/krew/releases/download/v0.4.3/krew-1linux amd64.tar.gz” &&

tar zxvf krew-linux amd64.tar.gz &&

KREW=. /krew-"$(uname | tr ‘[:upper:]’ ‘[:lower:]’) $(uname -m | sed -e ‘s/x86 64/amd64/’' -e ‘s/arm.*$/arm/’)" &&
“$KREW” install krew

)

You will see this output:

root@kubemaster:~# (

> set -x; cd “$(mktemp -d)” &&

> curl -fsSLO “https://github.com/kubernetes-sigs/krew/releases/download/v0.4.3/krew-linux_amd64.tar.gz” &&
> tar zxvf krew-linux amd64.tar.gz &&

> KREW=./krew-"$(uname | tr ‘[:upper:]’ ‘[:lower:]’) $(uname -m | sed -e ‘s/x86 64/amd64/’ -e ‘s/arm.*$/arm/’')"
&&

> “$KREW” install krew

>)

++ mktemp -d

+ cd /tmp/tmp.eA3ZH8tKRg

+ curl -fsSLO https://github.com/kubernetes-sigs/krew/releases/download/v0.4.3/krew-linux amd64.tar.gz
+ tar zxvf krew-linux amd64.tar.gz

./LICENSE

./krew-linux_amd64

++ uname

++ tr '[:upper:]' '[:lower:]'

++ uname -m

++ sed -e s/x86 64/amd64/ -e 's/arm.*$/arm/’

+ KREW=./krew-linux amd64

+ ./krew-linux amd64 install krew

Adding “default” plugin index from https://github.com/kubernetes-sigs/krew-index.git.

Updated the local copy of plugin index.

Installing plugin: krew

Installed plugin: krew

\

| Use this plugin:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 40/66 DOE303 - The kubectl, krew and kustomize commands

kubectl krew

Documentation:

https://krew.sigs.k8s.io/

Caveats:

\

krew is now installed! To start using kubectl plugins, you need to add
krew's installation directory to your PATH:

I

| * mac0S/Linux:

- Add the following to your ~/.bashrc or ~/.zshrc:
export PATH="${KREW ROOT: -$HOME/.krew}/bin:$PATH"”
- Restart your shell.

I
I
I
|
I
I
I
I
|
I
I
I
| |

| * Windows: Add %USERPROFILES\.krew\bin to your PATH environment variable
|

I

I

I

I

|

I

I

I

/

|

To list krew commands and to get help, run:

$ kubectl krew

For a full list of available plugins, run:

$ kubectl krew search

I

You can find documentation at
https://krew.sigs.k8s.io/docs/user-guide/quickstart/.
/

Important: If your cannot download the file, download it from here and then use the
following code:

(

set -x; cd “$(mktemp -d)” &&

tar zxvf krew-linux amd64.tar.gz &&

KREW=. /krew-"$(uname | tr ‘[:upper:]’ ‘[:lower:]’) $(uname -m | sed
-e ‘s/x86_64/amd64/’ -e ‘s/arm.*$/arm/’')" &&

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/qhpr75m74mrho0c2k7ky9/krew-linux_amd64.tar.gz?rlkey=bigm37fy2c3rzqgziszq71tb8&dl=0

2026/02/04 09:23 41/66 DOE303 - The kubectl, krew and kustomize commands

“SKREW” install krew
|)

Now add $HOME/.krew/bin to your PATH:
root@kubemaster:~# export PATH="${KREW ROOT:-$HOME/.krew}/bin:$PATH"
To avoid having to redefine the PATH after each login, add the line at the end of your .bashrc file:

root@kubemaster:~# echo 'export PATH=“${KREW ROOT:-$HOME/.krew}/bin:$PATH”' >> .bashrc

2.2 - Viewing the list of plugins

Update the list of plugins with the following command:

root@kubemaster:~# kubectl krew update
Updated the local copy of plugin index.

To view the list of plugins, use the search command:

root@kubemaster:~# kubectl krew search

NAME DESCRIPTION INSTALLED
access-matrix Show an RBAC access matrix for server resources no
accurate Manage Accurate, a multi-tenancy controller no
advise-policy Suggests PodSecurityPolicies and OPA Policies f... no
advise-psp Suggests PodSecurityPolicies for cluster. no
allctx Run commands on contexts in your kubeconfig no
apparmor-manager Manage AppArmor profiles for cluster. no
assert Assert Kubernetes resources no
auth-proxy Authentication proxy to a pod or service no
aws-auth Manage aws-auth ConfigMap no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

42/66

DOE303 - The kubectl, krew and kustomize commands

azad-proxy
bd-xray
blame
bulk-action
ca-cert
capture
cert-manager
change-ns
cilium
cluster-group
clusternet
cm

cnpg
config-cleanup
config-registry
cost

creyaml

ctx
custom-cols
cyclonus
datadog
datree

dds
debug-shell
deprecations
df-pv
direct-csi
directpv
doctor
dtlogin

duck
edit-status
eds
eksporter

Generate and handle authentication for azad-kub...
Run Black Duck Image Scans

Show who edited resource fields.

Do bulk actions on Kubernetes resources.

Print the PEM CA certificate of the current clu...
Triggers a Sysdig capture to troubleshoot the r...
Manage cert-manager resources inside your cluster
View or change the current namespace via kubectl.
Easily interact with Cilium agents.

Exec commands across a group of contexts.

Wrap multiple kubectl calls to Clusternet

Provides commands for OCM/MCE/ACM.

Manage your CloudNativePG clusters

Automatically clean up your kubeconfig

Switch between registered kubeconfigs

View cluster cost information

Generate custom resource YAML manifest

Switch between contexts in your kubeconfig

A "kubectl get" replacement with customizable c...
NetworkPolicy analysis tool suite

Manage the Datadog Operator

Scan your cluster resources for misconfigurations
Detect if workloads are mounting the docker socket
Create pod with interactive kube-shell.

Checks for deprecated objects in a cluster

Show disk usage (like unix df) for persistent v...
CSI driver to manage drives in k8s cluster as v...
Deploys and manages the lifecycle of DirectPV C...
Scans your cluster and reports anomalies.

Login to a cluster via openid-connect

List custom resources with ducktype support

Edit /status subresources of CRs

Interact and manage ExtendedDaemonset resources
Export resources and removes a pre-defined set

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

43/66

DOE303 - The kubectl, krew and kustomize commands

emit-event
evict-pod
example
exec-as
exec-cronjob
explore
fields

flame

fleet

flyte

fuzzy

gadget
get-all
gke-credentials
gopass

graph

grep

gs

hlf

hns

htpasswd

ice

iexec

images
ingress-nginx
ingress-rule
ipick
istiolog
janitor
kadalu
karbon
karmada
konfig

krew

Emit Kubernetes Events for the requested object
Evicts the given pod

Prints out example manifest YAMLs

Like kubectl exec, but offers a "user flag to
Run a CronJob immediately as Job

A better kubectl explain with the fuzzy finder
Grep resources hierarchy by field name

Generate CPU flame graphs from pods

Shows config and resources of a fleet of clusters
Monitor, launch and manage flyte executions

Fuzzy and partial string search for kubectl
Gadgets for debugging and introspecting apps

Like “kubectl get all® but really everything
Fetch credentials for GKE clusters

Imports secrets from gopass

Visualize Kubernetes resources and relationships.
Filter Kubernetes resources by matching their n...
Handle custom resources with Giant Swarm

Deploy and manage Hyperledger Fabric components
Manage hierarchical namespaces (part of HNC)
Create nginx-ingress compatible basic-auth secrets
View configuration settings of containers insid...
Interactive selection tool for "kubectl exec’

Show container images used in the cluster.
Interact with ingress-nginx

Update Ingress rules via command line

A kubectl wrapper for interactive resource sele...
Manipulate istio-proxy logging level without is...
Lists objects in a problematic state

Manage Kadalu Operator, CSI and Storage pods
Connect to Nutanix Karbon cluster

Manage clusters with Karmada federation.

Merge, split or import kubeconfig files

Package manager for kubectl plugins.

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
yes

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

44/66

DOE303 - The kubectl, krew and kustomize commands

kruise

ks

ktop
kubesec-scan
kudo
kuota-calc
kurt

kuttl
kyverno
lineage
linstor

liqo
log2rbac
match-name
mc

minio

moco
modify-secret
mtail
multiforward
multinet
neat
net-forward
node-admin
node-restart
node-shell
np-viewer

ns

nsenter
oidc-login
open-svc
openebs
operator
oulogin

Easily handle OpenKruise workloads

Simple management of KubeSphere components
A top tool to display workload metrics
Scan Kubernetes resources with kubesec.io.

Declaratively build, install, and run operators...
Calculate needed quota to perform rolling updates.

Find what's restarting and why
Declaratively run and test operators
Kyverno is a policy engine for kubernetes

Display all dependent resources or resource dep...

View and manage LINSTOR storage resources
Install and manage Ligo on your clusters
Fine-tune your RBAC using log2rbac operator
Match names of pods and other API objects

Run kubectl commands against multiple clusters
Deploy and manage MinIO Operator and Tenant(s)
Interact with MySQL operator MOCO.

modify secret with implicit base64 translations

Tail logs from multiple pods matching label sel...

Port Forward to multiple Kubernetes Services
Shows pods' network-status of multi-net-spec

Remove clutter from Kubernetes manifests to mak...
Proxy to arbitrary TCP services on a cluster ne...

List nodes and run privileged pod with chroot
Restart cluster nodes sequentially and gracefully
Spawn a root shell on a node via kubectl

Network Policies rules viewer

Switch between Kubernetes namespaces

Run shell command in Pod's namespace on the nod...

Log in to the OpenID Connect provider

Open the Kubernetes URL(s) for the specified se...

View and debug OpenEBS storage resources
Manage operators with Operator Lifecycle Manager
Login to a cluster via OpenUnison

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

45/66

DOE303 - The kubectl, krew and kustomize commands

outdated

passman

pexec

pod-dive
pod-inspect
pod-lens

pod-1logs
pod-shell
podevents

popeye

preflight
print-env

profefe

promdump

prompt
prune-unused
psp-util
pv-migrate
pvmigrate
rabbitmq
rbac-lookup
rbac-tool
rbac-view
realname-diff
reap

relay

reliably
rename-pvc
resource-capacity
resource-snapshot
resource-versions
restart
rm-standalone-pods
rolesum

Finds outdated container images running in a cl...
Store kubeconfig credentials in keychains or pa...
Execute process with privileges in a pod

Shows a pod's workload tree and info inside a node
Get all of a pod's details at a glance

Show pod-related resources

Display a list of pods to get logs from

Display a list of pods to execute a shell in

Show events for pods

Scans your clusters for potential resource issues
Executes application preflight tests in a cluster
Build config files from k8s environments.

Gather and manage pprof profiles from running pods
Dumps the head and persistent blocks of Prometh...
Prompts for user confirmation when executing co...
Prune unused resources

Manage Pod Security Policy(PSP) and the related...
Migrate data across persistent volumes

Migrates PVs between StorageClasses

Manage RabbitMQ clusters

Reverse lookup for RBAC

Plugin to analyze RBAC permissions and generate...
A tool to visualize your RBAC permissions.

Diffs live and local resources ignoring Kustomi...
Delete unused Kubernetes resources.

Drop-in "port-forward" replacement with UDP and...
Surfaces reliability issues in Kubernetes

Rename a PersistentVolumeClaim (PVC)

Provides an overview of resource requests, limi...
Prints a snapshot of nodes, pods and HPAs resou...
Print supported API resource versions

Restarts a pod with the given name

Remove all pods without owner references
Summarize RBAC roles for subjects

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23

46/66

DOE303 - The kubectl, krew and kustomize commands

roll
rook-ceph
safe
schemahero
score
secretdata
service-tree
shovel
sick-pods
skew

slice

snap

sniff
socks5-proxy
sort-manifests
split-yaml
spy

sql

ssh-jump
sshd
ssm-secret
starboard
status

stern

strace

sudo
support-bundle
switch-config
tail

tap
tmux-exec
topology
trace

tree

Rolling restart of all persistent pods in a nam...
Rook plugin for Ceph management

Prompts before running edit commands

Declarative database schema migrations via YAML
Kubernetes static code analysis.

Viewing decoded Secret data with search flags
Status for ingresses, services, and their backends
Gather diagnostics for .NET Core applications

Find and debug Pods that are "Not Ready"

Find if your cluster/kubectl version is skewed
Split a multi-YAML file into individual files.
Delete half of the pods in a namespace or cluster
Start a remote packet capture on pods using tcp...
SOCKS5 proxy to Services or Pods in the cluster
Sort manifest files in a proper order by Kind
Split YAML output into one file per resource.

pod debugging tool for kubernetes clusters with...
Query the cluster via pseudo-SQL

Access nodes or services using SSH jump Pod

Run SSH server in a Pod

Import/export secrets from/to AWS SSM param store
Toolkit for finding risks in kubernetes resources
Show status details of a given resource.

Multi pod and container log tailing

Capture strace logs from a running workload

Run Kubernetes commands impersonated as group s...
Creates support bundles for off-cluster analysis
Switches between kubeconfig files

Stream logs from multiple pods and containers u...
Interactively proxy Kubernetes Services with ease
An exec multiplexer using Tmux

Explore region topology for nodes or pods

Trace Kubernetes pods and nodes with system tools
Show a tree of object hierarchies through owner...

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 47/66

DOE303 - The kubectl, krew and kustomize commands

tunnel
unused-volumes
vela
view-allocations
view-cert
view-secret
view-serviceaccount-kubeconfig
view-utilization
view-webhook
viewnode

virt

volsync
vpa-recommendation
warp
whisper-secret
who-can

whoami

2.3 - Installing and using plugins

Reverse tunneling between cluster and your machine

List unused PVCs

Easily interact with KubeVela

List allocations per resources, nodes, pods.
View certificate information stored in secrets
Decode Kubernetes secrets

Show a kubeconfig setting to access the apiserv...

Shows cluster cpu and memory utilization
Visualize your webhook configurations

Displays nodes with their pods and containers a...

Control KubeVirt virtual machines using virtctl
Manage replication with the VolSync operator

Compare VPA recommendations to actual resources...

Sync and execute local files in Pod
Create secrets with improved privacy

Shows who has RBAC permissions to access Kubern...
Show the subject that's currently authenticated...

Install the ctx, ns, view-allocations and pod-logs plugins:

root@kubemaster:~# kubectl krew

install ctx ns view-allocations pod-1logs

Updated the local copy of plugin index.

Installing plugin: ctx
Installed plugin: ctx
\
| Use this plugin:
| kubectl ctx
| Documentation:
| https://github.com/ahmet
| Caveats:
| \

b/kubectx

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 48/66

DOE303 - The kubectl, krew and kustomize commands

| | If fzf is installed on your machine, you can interactively choose
| | between the entries using the arrow keys, or by fuzzy searching

| | as you type.
|

|

See https://github.com/ahmetb/kubectx for customization and details.

/
/

WARNING: You installed plugin "ctx" from the krew-index plugin repository.

These plugins are not audited for security by the Krew maintainers.
Run them at your own risk.

Installing plugin: ns

Installed plugin: ns

\
| Use this plugin:
| kubectl ns
| Documentation:
| https://github.com/ahmetb/kubectx
| Caveats:
| \
| | If fzf is installed on your machine, you can interactively choose
| | between the entries using the arrow keys, or by fuzzy searching
| | as you type.
| /
/

WARNING: You installed plugin "ns" from the krew-index plugin repository.
These plugins are not audited for security by the Krew maintainers.
Run them at your own risk.

Installing plugin: view-allocations

Installed plugin: view-allocations

\

| Use this plugin:

| kubectl view-allocations

| Documentation:

| https://github.com/davidB/kubectl-view-allocations
/

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 49/66 DOE303 - The kubectl, krew and kustomize commands

WARNING: You installed plugin "view-allocations" from the krew-index plugin repository.
These plugins are not audited for security by the Krew maintainers.
Run them at your own risk.

Installing plugin: pod-logs

Installed plugin: pod-logs

\

| Use this plugin:

| kubectl pod-logs

| Documentation:

| https://github.com/danisla/kubefunc
/

WARNING: You installed plugin "pod-logs" from the krew-index plugin repository.
These plugins are not audited for security by the Krew maintainers.
Run them at your own risk.

The ctx plugin makes it easy to switch between contexts. A context is an element that groups access parameters under a name. There are three
access parameters: cluster, namespace and user. The kubectl command uses the parameters of the current context to communicate with the cluster.

List the contexts in the cluster:

root@kubemaster:~# kubectl ctx
kubernetes-admin@kubernetes

The ns plugin makes it easy to switch between namespaces.
Namespaces :

e can be considered as virtual clusters,

* allow isolation and logical segmentation,

e allow users, roles and resources to be grouped together,
e are used with applications, customers, projects or teams.

List the namespaces in the cluster:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 50/66

DOE303 - The kubectl, krew and kustomize commands

root@kubemaster:~# kubectl ns
default

kube-node-lease

kube-public

kube-system

The view-allocations plugin allows you to view resource allocations such as CPU, memory, storage etc :

root@kubemaster:~# kubectl view-allocations
Resource
cpu
— kubemaster.ittraining. loc
— calico-node-6881lw
— coredns-6d4b75cb6d-dw4ph
— coredns-6d4b75cb6d-ms2jm
— etcd-kubemaster.ittraining. loc
— kube-apiserver-kubemaster.ittraining.loc

— kube-scheduler-kubemaster.ittraining.loc
— kubenodel.ittraining. loc
L calico-node-5mrjl
— kubenode2.ittraining. loc
L calico-node-j25xd
ephemeral-storage
— kubemaster.ittraining.loc
— kubenodel.ittraining. loc
— kubenode2.ittraining. loc
memory
— kubemaster.ittraining. loc
|- coredns-6d4b75cb6d-dw4ph
|- coredns-6d4b75ch6d-ms2jm
L etcd-kubemaster.ittraining.loc
— kubenodel.ittraining. loc
— kubenode2.ittraining. loc

— kube-controller-manager-kubemaster.ittraining. loc

Requested
(13%) 1.6
(28%) 1.1
250.0m
100.0m
100.0m
100.0m
250.0m
200.0m
100.0m
250.0m
250.0m
250.0m
250.0m

()]
o°

(@)]
o®

(1%) 240.6Mi
(2%) 240.0M1i
70.0M1
70.0M1
100.0M1

(1%) 340.0Mi
(2%) 340.0Mi
170.0Mi
170.0Mi

Allocatable
12.0
4.0

Free
10.4

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 51/66 DOE303 - The kubectl, krew and kustomize commands

pods (5%) 17.0 (5%) 17.0 330.0 313.0
|- kubemaster.ittraining.loc (7%) 8.0 (7%) 8.0 110.0 102.0
- kubenodel.ittraining.loc (4%) 4.0 (4%) 4.0 110.0 106.0
L kubenode2.ittraining.loc (5%) 5.0 (5%) 5.0 110.0 105.0

The pod-logs plugin provides you with a list of running pods and asks you to choose one:

root@kubemaster:~# kubectl pod-logs

1) myapp-deployment-57c6cb89d9-dh4ch default Running

2) myapp-deployment-57c6cb89d9-f69nk default Running

3) myapp-deployment-57c6cb89d9-q7d4p default Running

4) calico-kube-controllers-6766647d54-v4hrm kube-system Running

5) calico-node-5mrjl kube-system Running

6) calico-node-6881w kube-system Running

7) calico-node-j25xd kube-system Running

8) coredns-6d4b75cb6d-dw4ph kube-system Running

9) coredns-6d4b75cb6d-ms2jm kube-system Running

10) etcd-kubemaster.ittraining.loc kube-system Running

11) kube-apiserver-kubemaster.ittraining.loc kube-system Running

12) Kkube-controller-manager-kubemaster.ittraining.loc kube-system Running

13) Kkube-proxy-bwctz kube-system Running

14) kube-proxy-j89vg kube-system Running

15) Kkube-proxy-jx76x kube-system Running

16) Kkube-scheduler-kubemaster.ittraining. loc kube-system Running

17) metrics-server-7cb867d5dc-g55k5 kube-system Running

Select a Pod:
Select pod 17. You will see the output of the logs command:

Select a Pod: 17

I0713 03:28:27.452157
10713 03:28:28.433807
10713 03:28:28.433876
I0713 03:28:28.433901

serving.go:325] Generated self-signed cert (/tmp/apiserver.crt, /tmp/apiserver.key)
secure serving.go:197] Serving securely on [::]:4443

requestheader controller.go:169] Starting RequestHeaderAuthRequestController
shared informer.go:240] Waiting for caches to sync for

R -

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 52/66 DOE303 - The kubectl, krew and kustomize commands

RequestHeaderAuthRequestController

T0713 03:28:28.433938 1 dynamic_serving content.go:130] Starting serving-
cert::/tmp/apiserver.crt::/tmp/apiserver.key

T0713 03:28:28.433984 1 tlsconfig.go:240] Starting DynamicServingCertificateController

10713 03:28:28.435681 1 configmap cafile content.go:202] Starting client-ca::kube-system::extension-
apiserver-authentication::client-ca-file

I0713 03:28:28.435702 1 shared informer.go:240] Waiting for caches to sync for client-ca::kube-

system: :extension-apiserver-authentication::client-ca-file

10713 03:28:28.435727 1 configmap cafile content.go:202] Starting client-ca::kube-system::extension-
apiserver-authentication::requestheader-client-ca-file

10713 03:28:28.435735 1 shared informer.go:240] Waiting for caches to sync for client-ca::kube-

system: :extension-apiserver-authentication: :requestheader-client-ca-file

10713 03:28:28.534094 1 shared informer.go:247] Caches are synced for RequestHeaderAuthRequestController
10713 03:28:28.535893 1 shared informer.go:247] Caches are synced for client-ca::kube-system::extension-
apiserver-authentication: :requestheader-client-ca-file

10713 03:28:28.535937 1 shared informer.go:247] Caches are synced for client-ca::kube-system::extension-

apiserver-authentication::client-ca-file
To list installed plugins, use the list command:

root@kubemaster:~# kubectl krew list

PLUGIN VERSION
ctx v0.9.4
krew v0.4.3
ns v0.9.4
pod-1logs v1.0.1

view-allocations v0.14.8

2.4 - Updating and deleting plugins

To update installed plugins, use the upgrade command:

root@kubemaster:~# kubectl krew upgrade

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 53/66 DOE303 - The kubectl, krew and kustomize commands

Updated the local copy of plugin index.

Upgrading plugin: ctx

Skipping plugin ctx, it is already on the newest version
Upgrading plugin: krew

Skipping plugin krew, it is already on the newest version
Upgrading plugin: ns

Skipping plugin ns, it is already on the newest version
Upgrading plugin: pod-logs

Skipping plugin pod-logs, it is already on the newest version
Upgrading plugin: view-allocations

Skipping plugin view-allocations, it is already on the newest version

To delete a plugin, use the remove command:

root@kubemaster:~# kubectl krew remove pod-1logs
Uninstalled plugin: pod-logs

root@kubemaster:~# kubectl krew list

PLUGIN VERSION
ctx v0.9.4
krew v0.4.3
ns v0.9.4

view-allocations v0.14.8

LAB #3 - Managing patches with the kustomize command

Start by installing the tree executable, which you'll use later to view the directory and file tree you are about to create:
root@kubemaster:~# apt install tree

Next, create the kustomize directory containing the base directory and move into it:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 54/66 DOE303 - The kubectl, krew and kustomize commands

root@kubemaster:~# mkdir -p kustomize/base
root@kubemaster:~# cd kustomize/base/
root@kubemaster:~/kustomize/base#

Create the deployment.yaml manifest:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~/kustomize/base# vi deployment.yaml
root@kubemaster:~/kustomize/base# cat deployment.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/0af2lqns1q26u63lotu7x/deployment.yaml?rlkey=ese25kacg2ibagpio9bky3cv9&dl=0

DOE303 - The kubectl, krew and kustomize commands

2026/02/04 09:23 55/66
- key: app
operator: In
values:
- hginx
topologyKey: "kubernetes.io/hostname"
containers:

- image: nginx:1.18.0
imagePullPolicy: IfNotPresent
name: nginx

_ Important - the content of this file creates a deployment of 1 replica of the nginx pod
= from the nginx:1.18.0 image.

Next, create the service.yaml manifest:

'. : To do: Copy the content from here and paste it into your file.

root@kubemaster:~/kustomize/base# vi service.yaml
root@kubemaster:~/kustomize/base# cat service.yaml
apiVersion: vl

kind: Service

metadata:
name: nginx
labels:
app: nginx
spec:
type: ClusterIP
ports:

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/qnr0m18sa3lwjbsk1qrj5/service.yaml?rlkey=sd5t8a4bh1trawum5vpy2bzww&dl=0

2026/02/04 09:23 56/66 DOE303 - The kubectl, krew and kustomize commands

- port: 80
protocol: TCP
targetPort: 80

selector:
app: nginx

Important - the contents of this file create a ClusterlP service using the previous
deployment. The ClusterlP service enables PODs offering the same service to be grouped
together for easier communication.

Finally, create the kustomization.yaml manifest:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~/kustomize/base# vi kustomization.yaml
root@kubemaster:~/kustomize/base# cat kustomization.yaml
apiVersion: kustomize.config.k8s.io/vlbetal

kind: Kustomization

images:
- name: nginx
newTag: 1.19.1

resources:

- deployment.yaml
- service.yaml

L}
-

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/5pz0wg63yd68w018248nc/kustomization.yaml?rlkey=liff7kt68fsicgjfyvxaozadi&dl=0

2026/02/04 09:23

57/66 DOE303 - The kubectl, krew and kustomize commands

u
— J

Important - the contents of this file contain a patch for the nginx application created by
the two previous files. Note the newTag in the images section. The resources section
lists the manifests affected by the patch. Note that only the deployment.yaml manifest
refers to an image. However, the service.yaml file is included here, as it will be needed

later.

Use the tree command to view the kustomize directory:

root@kubemaster:~/kustomize/base# cd

root@kubemaster:~/kustomi

L— base
— deployment.yaml

— kustomization.yam
L service.yaml
1 directory, 3 files

Now run the kustomize comman

ze# tree

1

d to create a patch for the files in the base directory:

root@kubemaster:~/kustomize# kubectl kustomize base

apiVersion: vl
kind: Service

metadata:
labels:
app: nginx
name: nginx
spec:
ports:
- port: 80

protocol: TCP
targetPort: 80
selector:

www.ittraining.team - https://ittraining.team/

58/66

DOE303 - The kubectl, krew and kustomize commands

2026/02/04 09:23

app: nginx
type: ClusterIP
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: nginx
name: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
affinity:
podAntiAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- nhginx

topologyKey: kubernetes.io/hostname

containers:
- image: nginx:1.19.1

imagePullPolicy: IfNotPresent

name: nginx

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 59/66 DOE303 - The kubectl, krew and kustomize commands

Important - note that the generated file contains the contents of the two files
deployment.yaml and service.yaml separated by the — characters. The contents of the
service.yaml file have not been modified, whereas the image has been changed from
image: nginx:1.18.0 to image: nginx:1.19.1 in the contents of the deployment.yaml
file. Note that the two original files have not been modified.

L}
[

Now let's imagine you want to deploy two different environments of the same application, one for production and one for development. The
kustomize command lets you do this using overlays.

Create the kustomize/overlays/development and kustomize/overlays/production directories:

root@kubemaster:~/kustomize# mkdir -p overlays/development
root@kubemaster:~/kustomize# mkdir overlays/production

View the kustomize directory tree:
root@kubemaster:~/kustomize# tree

— base

— deployment.yaml
— kustomization.yaml
L — service.yaml

L overlays

—— development

— production

4 directories, 3 files

Create the file dev_kustomization.yaml:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 60/66

DOE303 - The kubectl, krew and kustomize commands

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~/kustomize# vi overlays/development/kustomization.yaml
root@kubemaster:~/kustomize# cat overlays/development/kustomization.yaml
apiVersion: kustomize.config.k8s.io/vlbetal

kind: Kustomization

t-)a?(.eji./base A indicates where the main manifests are stored
nameSuffix: -development # <--------- updates the service/deployment name
commonLabels:

environment: development # <--------- adds an additional label

namespace: nginx-dev # <------------- indicates the namespace name

Apply these changes :

root@kubemaster:~/kustomize# kubectl kustomize overlays/development/
apiVersion: vl
kind: Service
metadata:
labels:
app: nginx
environment: development # <----------- additional label
name: nginx-development # <-------------- updated service name
namespace: nginx-dev # <----------------- namespace name
spec:
ports:
- port: 80

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/2j60pti1wmd60kuv6kvc2/dev_kustomization.yaml?rlkey=iz6488nj8rrwg2b3y83suwch2&dl=0

2026/02/04 09:23 61/66

DOE303 - The kubectl, krew and kustomize commands

protocol: TCP

targetPort: 80
selector:

app: nginx

environment: development # <------

type: ClusterIP
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: nginx
environment: development
name: nginx-development
namespace: nginx-dev

additional label

requiredDuringSchedulingIgnoredDuringExecution:

spec:
replicas: 1
selector:
matchLabels:
app: nginx
environment: development
template:
metadata:
labels:
app: nginx
environment: development
spec:
affinity:
podAntiAffinity:
- labelSelector:
matchExpressions:
- key: app

operator: In

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 62/66 DOE303 - The kubectl, krew and kustomize commands

values:
- nginx
topologyKey: kubernetes.io/hostname
containers:
- image: nginx:1.19.1 # <------------- uses the image specified in /kustomize/base/kustomization.yaml

imagePullPolicy: IfNotPresent
name: nginx

Now create the file prod_kustomization.yaml:

4

- To do: Copy the content from here and paste it into your file.

root@kubemaster:~/kustomize# vi overlays/production/kustomization.yaml
root@kubemaster:~/kustomize# cat overlays/production/kustomization.yaml
apiVersion: kustomize.config.k8s.io/vlbetal

kind: Kustomization

bases:
- ../../base # <--------i indicates where the main manifests are stored
nameSuffix: -production # <---------- updates the service/deployment name
commonLabels:
environment: production # <-------- adds an additional label
namespace: nginx-prod # <------------ indicates the namespace name
images:
- name: nginx
newTag: 1.19.2 # <----------------- modifies the image specified in /kustomize/base/kustomization.yaml

www.ittraining.team - https://ittraining.team/

https://www.dropbox.com/scl/fi/bbdxrx0vxdx4y67uxehlv/prod_kustomization.yaml?rlkey=c723auhoeuzlut1p6qx96ktse&dl=0

63/66

DOE303 - The kubectl, krew and kustomize commands

2026/02/04 09:23

Apply these modifications :

root@kubemaster:~/kustomize# kubectl kustomize overlays/production/

apiVersion: vl

kind: Service

metadata:
labels:

app: nginx
environment: production # <----------- additional label

name: nginx-production # <-------------- updated service name
namespace: nginx-prod # <--------------- namespace name
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
app: nginx
environment: production # <
type: ClusterIP
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: nginx
environment: production
name: nginx-production
namespace: nginx-prod

----------- additional label

spec:
replicas: 1
selector:
matchLabels:

app: nginx

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 64/66 DOE303 - The kubectl, krew and kustomize commands

environment: production
template:
metadata:
labels:
app: nginx
environment: production

spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- nginx
topologyKey: kubernetes.io/hostname
containers:
- image: nginx:1.19.2 # <------------- uses the image specified in overlays/production/kustomization.yaml

imagePullPolicy: IfNotPresent
name: nginx

Now create the nginx-prod namespace:

root@kubemaster:~/kustomize# kubectl create ns nginx-prod
namespace/nginx-prod created

Install the production application:
root@kubemaster:~/kustomize# kubectl apply -k overlays/production/
service/nginx-production created

deployment.apps/nginx-production created

Check the result of the installation:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 65/66 DOE303 - The kubectl, krew and kustomize commands

root@kubemaster:~/kustomize# kubectl get pods -n nginx-prod

NAME READY STATUS RESTARTS AGE
nginx-production-75d9486bb9-7xpr6 1/1 Running 0 45s
root@kubemaster:~/kustomize# kubectl get deployments -n nginx-prod

NAME READY UP-TO-DATE AVAILABLE AGE

nginx-production 1/1 1 1 62s
root@kubemaster:~/kustomize# kubectl get services -n nginx-prod

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-production ClusterIP 10.97.147.125 <none> 80/TCP 79s

Remove the nginx-production deployment and service:

root@kubemaster:~/kustomize# kubectl delete deployments/nginx-production -n nginx-prod
deployment.apps “nginx-production” deleted

root@kubemaster:~/kustomize# kubectl get deployments -n nginx-prod
No resources found in nginx-prod namespace.

root@kubemaster:~/kustomize# kubectl get services -n nginx-prod
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-production ClusterIP 10.97.147.125 <none> 80/TCP 2m54s

root@kubemaster:~/kustomize# kubectl get pods -n nginx-prod
No resources found in nginx-prod namespace.

root@kubemaster:~/kustomize# kubectl delete services/nginx-production -n nginx-prod
service “nginx-production” deleted

root@kubemaster:~/kustomize# kubectl get services -n nginx-prod
No resources found in nginx-prod namespace.

Install the development application:

www.ittraining.team - https://ittraining.team/

2026/02/04 09:23 66/66

DOE303 - The kubectl, krew and kustomize commands

root@kubemaster:~/kustomize# kubectl create ns nginx-dev
namespace/nginx-dev created

root@kubemaster:~/kustomize# kubectl apply -k overlays/development/
service/nginx-development created
deployment.apps/nginx-development created

Check the result:

root@kubemaster:~/kustomize# kubectl get pods -n nginx-dev

NAME READY STATUS RESTARTS AGE
nginx-development-5f8d7bdd88-fsnc6 1/1 Running 0 37s
root@kubemaster:~/kustomize# kubectl get deployments -n nginx-dev
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-development 1/1 1 1 58s
root@kubemaster:~/kustomize# kubectl get services -n nginx-dev

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-development ClusterIP 10.98.227.222 <none> 80/TCP

Copyright © 2025 Hugh Norris

From:
https://ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s02

Last update: 2025/01/17 16:38

AGE
70s

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes_en:k8s02

	DOE303 - The kubectl, krew and kustomize commands
	Curriculum
	LAB #1 - Using the kubectl command
	1.1 - Getting help with kubectl commands
	1.2 - Obtaining information about the Cluster
	The version Command
	The cluster-info command
	The api-versions command
	The api-resources command

	1.3 - Obtaining information about nodes
	The describe node command
	The top command

	1.4 - Obtaining information about Pods
	The describe pod command
	The top command

	1.5 - Working with the kubectl command
	The apply command
	The create command
	The get command
	Using Options
	The exec command
	1.6 - Imperative commands

	LAB #2 - Managing kubectl plugins with the krew command
	2.1 - Installing krew
	2.2 - Viewing the list of plugins
	2.3 - Installing and using plugins
	2.4 - Updating and deleting plugins

	LAB #3 - Managing patches with the kustomize command

