
2025/08/11 06:52 1/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Version - 2025.01

Last update : 2025/01/17 16:38

DOE302 - Managing Pods, Replication Controllers, ReplicaSets,
Deployments, Maintenance and Cluster Updates

Curriculum

DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates
Curriculum
LAB #1 - Creating a pod

1.1 - Introducing a pod
1.2 - Manual pod creation
1.3 - Creating a pod using a YAML file

apiVersion
kind
metadata
spec
Using the YAML file

LAB #2 - Using Replication Controllers and ReplicaSets
2.1 - Replication Controllers

Overview
Implementation

2.2 - ReplicaSets
Overview
Implementation

LAB #3 - Deployment management
3.1 - Overview
3.2 - Implementation

2025/08/11 06:52 2/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Rollouts
Rolling Updates
Rollbacks

LAB #4 - Maintenance
4.1 - The drain command
4.2 - The uncordon command

LAB #5 - Managing Cluster Updates
5.1 - Updating kubeadm
5.2 - Updating Workers

LAB #1 - Creating a pod

1.1 - Introducing a pod

A pod is an object that encapsulates a container. The container is an instance of an application. The relationship between a pod and an application
container is generally 1:1, i.e. in the case of an increase in load, additional pods are created, each containing an application container, rather than
creating several containers in the same pod.

Conversely, when load is reduced, pods are destroyed. With Kubernetes, you can't create multiple containers of the same type in the same pod.
However, it is possible to have containers of different types in the same pod.

In this case, we speak of an application container and one or more Helper containers. The application container and the Helper container can
communicate directly because they share the same network space. They also have access to the same storage space.

A pod therefore frees the administrator from having to manage Docker links and volumes.

When a pod is created with the kubectl command, it downloads the Docker image needed to create the container from the Docker Hub.

1.2 - Manual pod creation

Start by creating a pod called nginx from the nginx image:

2025/08/11 06:52 3/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl run nginx --image=nginx
pod/nginx created

View the pod with the kubectl command:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 0/1 ContainerCreating 0 20s

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 44s

Consult the information concerning this pod :

root@kubemaster:~# kubectl describe pods
Name: nginx
Namespace: default
Priority: 0
Node: kubenode1.ittraining.loc/192.168.56.3
Start Time: Wed, 13 Jul 2022 05:09:12 +0200
Labels: run=nginx
Annotations: cni.projectcalico.org/containerID: b401002d2766b402d37143c1fa4da7b87c1fc332324e841a9532c3814320ff83
 cni.projectcalico.org/podIP: 192.168.239.1/32
 cni.projectcalico.org/podIPs: 192.168.239.1/32
Status: Running
IP: 192.168.239.1
IPs:
 IP: 192.168.239.1
Containers:
 nginx:
 Container ID: containerd://7976f5c10f7884c02d862c69bb21115f47bf8cd22646a76aed51ede70214371e
 Image: nginx
 Image ID:

2025/08/11 06:52 4/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

docker.io/library/nginx@sha256:dbe677093f569cc0afe2a149c529645f255aac959490ef11fb19ac6418b815d3
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Wed, 13 Jul 2022 05:09:55 +0200
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-pmfww (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 kube-api-access-pmfww:
 Type: Projected (a volume that contains injected data from multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 23m default-scheduler Successfully assigned default/nginx to kubenode1.ittraining.loc
 Normal Pulling 23m kubelet Pulling image "nginx"
 Normal Pulled 22m kubelet Successfully pulled image "nginx" in 41.16449179s
 Normal Created 22m kubelet Created container nginx

2025/08/11 06:52 5/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 Normal Started 22m kubelet Started container nginx

Important: Note that the first line of the Events section clearly indicates that in this
example, the kubemaster has scheduled the pod on kubenode1.

Now use the kubectl command with the -o wide option:

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
nginx 1/1 Running 0 24m 192.168.239.1 kubenode1.ittraining.loc <none> <none>

Important: Note that the pod's IP address is 192.168.239.1. This address is dynamic. If
the pod stops and another one starts, the IP address of the new pod will be different.

Important: Note that the NOMINATED NODE column is marked <none>. This is
because it's possible to assign a pod to a specific node by using a label defined for the
nominated node(s). For more information, go to
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/.

Important: Note that in the READINESS GATES column it says <none>. In fact, it is
possible to assign specific conditions to a pod so that Kubenetes considers the pod to be in
a ready state. For more information, visit the
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readines

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate

2025/08/11 06:52 6/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

s-gate link.

1.3 - Creating a pod using a YAML file

Kubernetes uses YAML files to create objects. Consequently, the definition of the pod to be created is described in a YAML file. Create the file pod-
definition.yaml :

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi pod-definition.yaml
root@kubemaster:~# cat pod-definition.yaml

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

This file contains the following fields:

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate
https://www.dropbox.com/scl/fi/n8iwjrfich5af7vtoezac/pod-definition.yaml?rlkey=hs3nwcczi1zucs3l7cge3bc9s&dl=0

2025/08/11 06:52 7/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

apiVersion

This field is required,
The API version differs according to the type of object created,
The field value is a string.

kind apiVersion
Pod v1
Service v1
ReplicaSet apps/v1
Deployment apps/v1

kind

This field is required,
The value of the apiServer in relation to the object type is :

kind apiVersion
Pod v1
Service v1
ReplicaSet apps/v1
Deployment apps/v1

metadata

This field is mandatory,
It contains information such as name and labels,
The information is in the form of a YAML dictionary:

metadata:
 name: myapp-pod
 labels:
 app: myapp

2025/08/11 06:52 8/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 type: front-end

spec

* This field is required, * It contains information for Kubernetes specific to the type of object to be created, * The information is in the form of a YAML
list:

spec:
 containers:
 - name: nginx-container
 image: nginx

Using the YAML file

Now use the YAML file to create a pod:

root@kubemaster:~# kubectl create -f pod-definition.yaml
pod/myapp-pod created

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 23s
nginx 1/1 Running 0 29m

LAB #2 - Using Replication Controllers and ReplicaSets

2.1 - Replication Controllers

2025/08/11 06:52 9/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Overview

A Replication Controller allows multiple instances of the same pod to be run, providing high availability in the event of an application crash and pod
failure. Even if there is only one pod, the Replication Controller can automatically start another pod containing the application:

A Replication Controller can also be used to start new pods in the event of an increase in the load, as well as to ensure load balancing between pods:

In the event that the first node runs out of resources, a Replication Controller is able to start new pods on a second node:

2025/08/11 06:52 10/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Implementation

To create a Replication Controller, you need to create a YAML file. Create the file cr-definition.yaml :

To do: Copy the content from here and paste it into your file.

apiVersion: v1
kind: ReplicationController
metadata:
 name: myapp-cr
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp

https://www.dropbox.com/scl/fi/2atlsvs2oi21fp6xudh46/cr_definition.yaml?rlkey=35lzzkg6qah55pjw34ccaval7&dl=0

2025/08/11 06:52 11/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx

 replicas: 3

This file contains a section called template. This section is a template for the creation of additional pods and is identical to the contents of the pod-
definition.yaml file without the apiVersion and kind fields:

root@kubemaster:~# cat pod-definition.yaml
apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

The replicas field indicates the number of pods to be created.

Use the rc-definition.yaml file to create the Replication Controller:

root@kubemaster:~# kubectl create -f cr-definition.yaml
replicationcontroller/myapp-cr created

To view the Replication Controller, use the following command:

root@kubemaster:~# kubectl get replicationcontroller

2025/08/11 06:52 12/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

NAME DESIRED CURRENT READY AGE
myapp-cr 3 3 3 71s

To view the pods created by the Replication Controller, use the following command:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-cr-6gxg6 1/1 Running 0 90s
myapp-cr-78frz 1/1 Running 0 90s
myapp-pod 1/1 Running 0 3m53s
nginx 1/1 Running 0 32m

Important: Note that the Replication Controller has created two replicas myapp-
cr-6gxg6 and myapp-cr-78frz because the first already existed: myapp-pod. To identify
an existing pod of the same type, the Replication Controller relies on the labels field in the
template section.

Now delete the pod myapp-pod:

root@kubemaster:~# kubectl delete pod myapp-pod
pod “myapp-pod” deleted

Then note the Replication Controller's reaction:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-cr-6gxg6 1/1 Running 0 3m5s
myapp-cr-78frz 1/1 Running 0 3m5s
myapp-cr-pt4zt 1/1 Running 0 27s
nginx 1/1 Running 0 34m

2025/08/11 06:52 13/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Important: Note that the Replication Controller has created the myapp-cr-pt4zt pod.

To view the status of a Replication Controller, use the following command:

root@kubemaster:~# kubectl describe replicationcontrollers/myapp-cr
Name: myapp-cr
Namespace: default
Selector: app=myapp,type=front-end
Labels: app=myapp
 type=front-end
Annotations: <none>
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=myapp
 type=front-end
 Containers:
 nginx-container:
 Image: nginx
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 3m51s replication-controller Created pod: myapp-cr-78frz
 Normal SuccessfulCreate 3m51s replication-controller Created pod: myapp-cr-6gxg6
 Normal SuccessfulCreate 72s replication-controller Created pod: myapp-cr-pt4zt

2025/08/11 06:52 14/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

To delete a Replication Controller, use the following command:

root@kubemaster:~# kubectl delete replicationcontroller myapp-cr
replicationcontroller “myapp-cr” deleted

2.2 - ReplicaSets

Overview

A ReplicaSet performs the same function as a Replication Controller. ReplicaSets are the latest way to manage replication.

Implementation

To create a ReplicaSet, create the file replicaset-definition.yaml :

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi replicaset-definition.yaml
root@kubemaster:~# cat replicaset-definition.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: myapp-replicaset
 labels:
 app: myapp
 type: front-end
spec:

https://www.dropbox.com/scl/fi/j8ww8mdm82cec71lnz023/replicaset-definition.yaml?rlkey=2iypd89690ipt6lik3h3bae3f&dl=0

2025/08/11 06:52 15/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx

 replicas: 3
 selector:
 matchLabels:
 type: front-end

Important: Note that in the case of a ReplicaSet, it identifies the pods under its control by
the value of the matchLabels field.

Use the replicaset-definition.yaml file to create the ReplicaSet:

root@kubemaster:~# kubectl create -f replicaset-definition.yaml
replicaset.apps/myapp-replicaset created

To view the ReplicaSet, use the following command:

root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 3 3 3 12s

2025/08/11 06:52 16/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

To view the pods created by ReplicaSet, use the following command:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-replicaset-56gwv 1/1 Running 0 29s
myapp-replicaset-gh8gl 1/1 Running 0 29s
myapp-replicaset-kz742 1/1 Running 0 29s
nginx 1/1 Running 0 60m

Now modify the replicaset-definition.yaml file, increasing the number of replicas from 3 to 6 :

root@kubemaster:~# vi replicaset-definition.yaml
root@kubemaster:~# cat replicaset-definition.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: myapp-replicaset
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx

2025/08/11 06:52 17/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 replicas: 6
 selector:
 matchLabels:
 type: front-end

Then run the kubectl replace command:

root@kubemaster:~# kubectl replace -f replicaset-definition.yaml
replicaset.apps/myapp-replicaset replaced

View the ReplicaSet :

root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 6 6 3 95s
root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 6 6 5 98s
root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 6 6 6 99s

View the pods created by the ReplicaSet :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-replicaset-56gwv 1/1 Running 0 2m14s
myapp-replicaset-7g6r4 1/1 Running 0 49s
myapp-replicaset-7rsnc 1/1 Running 0 49s
myapp-replicaset-gh8gl 1/1 Running 0 2m14s
myapp-replicaset-kz742 1/1 Running 0 2m14s
myapp-replicaset-twcwg 1/1 Running 0 49s
nginx 1/1 Running 0 62m

2025/08/11 06:52 18/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Then run the following command:

root@kubemaster:~# kubectl scale --replicas=9 -f replicaset-definition.yaml
replicaset.apps/myapp-replicaset scaled

View the ReplicaSet :

root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 9 9 9 3m6s

View the pods created by ReplicaSet :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-replicaset-56gwv 1/1 Running 0 3m12s
myapp-replicaset-7g6r4 1/1 Running 0 107s
myapp-replicaset-7rsnc 1/1 Running 0 107s
myapp-replicaset-gh8gl 1/1 Running 0 3m12s
myapp-replicaset-klsvp 1/1 Running 0 33s
myapp-replicaset-kz742 1/1 Running 0 3m12s
myapp-replicaset-twcwg 1/1 Running 0 107s
myapp-replicaset-vqsxc 1/1 Running 0 33s
myapp-replicaset-z9l65 1/1 Running 0 33s
nginx 1/1 Running 0 63m

Note that in this case, the replicaset value in the replicaset-definition.yaml file has not been modified:

root@kubemaster:~# cat replicaset-definition.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: myapp-replicaset

2025/08/11 06:52 19/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx

 replicas: 6
 selector:
 matchLabels:
 type: front-end

Finally, run the following command :

root@kubemaster:~# kubectl scale --replicas=3 replicaset myapp-replicaset
replicaset.extensions/myapp-replicaset scaled

View the ReplicaSet :

root@kubemaster:~# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
myapp-replicaset 3 3 3 4m12s

View the pods created by the ReplicaSet :

2025/08/11 06:52 20/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-replicaset-56gwv 1/1 Running 0 4m4s
myapp-replicaset-7g6r4 1/1 Running 0 2m39s
myapp-replicaset-gh8gl 1/1 Running 0 4m4s
nginx 1/1 Running 0 64m

Now create a pod outside of the ReplicaSet :

root@kubemaster:~# kubectl create -f pod-definition.yaml
pod/myapp-pod created

View the list of pods:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Terminating 0 2s
myapp-replicaset-56gwv 1/1 Running 0 5m58s
myapp-replicaset-7g6r4 1/1 Running 0 4m33s
myapp-replicaset-gh8gl 1/1 Running 0 5m58s
nginx 1/1 Running 0 66m

Important: Note that myapp-pod is in a Terminating state. ReplicaSet does not allow
the creation of a pod with the same label as specified by the matchLabels field in
replicaset-definition.yaml.

To delete the ReplicaSet, use the following command:

root@kubemaster:~# kubectl delete replicaset myapp-replicaset
replicaset.extensions “myapp-replicaset” deleted

2025/08/11 06:52 21/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Now view all objects in the cluster:

root@kubemaster:~# kubectl get all
NAME READY STATUS RESTARTS AGE
pod/nginx 1/1 Running 0 67m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 16h

LAB #3 - Managing Deployments

3.1 - Overview

A Deployment in Kubernetes is an object hierarchically superior to a ReplicaSet :

2025/08/11 06:52 22/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

A Deployment is used to manage :

Rollouts,
Rolling Updates,
Rollbacks.

3.2 - Implementation

Rollouts

To create a Deployment, you need to create a YAML file. Create the file deployment-definition.yaml :

2025/08/11 06:52 23/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

To do: Copy the content from here and paste it into your file.

root@kubemaster:~# vi deployment-definition.yaml
root@kubemaster:~# cat deployment-definition.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx

 replicas: 3
 selector:
 matchLabels:
 type: front-end

Use the following command to create the Deployment :

https://www.dropbox.com/scl/fi/h057eynmqvlaoytph372r/deployment-definition.yaml?rlkey=lrs8llq89ffn1a5megm317f5y&dl=0

2025/08/11 06:52 24/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl create -f deployment-definition.yaml
deployment.apps/myapp-deployment created

View the Deployment:

root@kubemaster:~# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
myapp-deployment 3/3 3 3 17s

Note that creating the Deployment also created a ReplicaSet :

root@kubemaster:~# kubectl get replicasets
NAME DESIRED CURRENT READY AGE
myapp-deployment-689f9d59 3 3 3 41s

Important: Note that the value 689f9d59 is randomly generated internally by
Kubernetes.

The creation of the Deployment created the number of pods indicated in the YAML file:

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-deployment-689f9d59-cmxlm 1/1 Running 0 98s
myapp-deployment-689f9d59-kt88s 1/1 Running 0 98s
myapp-deployment-689f9d59-zlwp4 1/1 Running 0 98s

To see all these objects at once, use the kubectl get all command:

root@kubemaster:~# kubectl get all
NAME READY STATUS RESTARTS AGE
pod/myapp-deployment-689f9d59-cmxlm 1/1 Running 0 2m10s

2025/08/11 06:52 25/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

pod/myapp-deployment-689f9d59-kt88s 1/1 Running 0 2m10s
pod/myapp-deployment-689f9d59-zlwp4 1/1 Running 0 2m10s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 16h

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/myapp-deployment 3/3 3 3 2m10s

NAME DESIRED CURRENT READY AGE
replicaset.apps/myapp-deployment-689f9d59 3 3 3 2m10s

For more information about the Deployment, use the kubectl describe command:

root@kubemaster:~# kubectl describe deployments
Name: myapp-deployment
Namespace: default
CreationTimestamp: Wed, 13 Jul 2022 06:18:11 +0200
Labels: app=myapp
 type=front-end
Annotations: deployment.kubernetes.io/revision: 1
Selector: type=front-end
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=myapp
 type=front-end
 Containers:
 nginx-container:
 Image: nginx
 Port: <none>
 Host Port: <none>

2025/08/11 06:52 26/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: myapp-deployment-689f9d59 (3/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 2m48s deployment-controller Scaled up replica set myapp-deployment-689f9d59 to 3

During the Deployment Rollout, a Revision is created. This Revision is incremented with each update:

To view the Rollout status, use the following command:

root@kubemaster:~# kubectl rollout status deployment/myapp-deployment
deployment “myapp-deployment” successfully rolled out

2025/08/11 06:52 27/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

To view the list of Revisions, use the following command:

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 <none>

Important: Note that the value of CHANGE-CAUSE is <none> because the –record
option has not been specified on the command line. It is possible to modify the CHANGE-
CAUSE value with the kubectl annotate deployment <deployment>
kubernetes.io/change-cause=“<Message>” –record=false –overwrite=true
command.

Delete the Deployment with the following command:

root@kubemaster:~# kubectl delete deployment myapp-deployment
deployment.extensions “myapp-deployment” deleted

Check that Deployment has been deleted:

root@kubemaster:~# kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 18h

Create the Deployment again, adding the –record option:

root@kubemaster:~# kubectl create -f deployment-definition.yaml --record
deployment.apps/myapp-deployment created

Check the Rollout status:

2025/08/11 06:52 28/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl rollout status deployment/myapp-deployment
deployment “myapp-deployment” successfully rolled out

Important: Note that a Deployment can be paused with the kubectl rollout pause
deployment <deployment> command and can be resumed with the kubectl rollout
resume deployment <deployment> command.

View the list of Revisions :

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true

Important: Note that the value of CHANGE-CAUSE is the command that was executed.

Rolling Updates

There are two Deployment methods for rolling updates:

Recreate,
In this case, all existing pods are destroyed at the same time, and pods containing the update are created at a later stage. The
disadvantage of this method is obvious - between the destruction of the pods and the re-creation of the new pods, the application is not
available,

Rolling Update
In this case, pods are destroyed one by one. After each deletion, a new pod is created containing the update. In this way, the application
remains available.

2025/08/11 06:52 29/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Important: Note that Rolling Update is the default method.

Now modify the deployment-description.yaml file, specifying version 1.12 of nginx :

root@kubemaster:~# vi deployment-definition.yaml
root@kubemaster:~# cat deployment-definition.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
 labels:
 app: myapp
 type: front-end
spec:
 template:

 metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
 spec:
 containers:
 - name: nginx-container
 image: nginx:1.12

 replicas: 3
 selector:
 matchLabels:
 type: front-end

2025/08/11 06:52 30/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Apply this change :

root@kubemaster:~# kubectl apply -f deployment-definition.yaml --record
Flag --record has been deprecated, --record will be removed in the future
Warning: resource deployments/myapp-deployment is missing the kubectl.kubernetes.io/last-applied-configuration
annotation which is required by kubectl apply. kubectl apply should only be used on resources created
declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched
automatically.
deployment.apps/myapp-deployment configured

Check the status of the Deployment :

root@kubemaster:~# kubectl rollout status deployment/myapp-deployment
Waiting for deployment “myapp-deployment” rollout to finish: 1 old replicas are pending termination...
Waiting for deployment “myapp-deployment” rollout to finish: 1 old replicas are pending termination...
deployment “myapp-deployment” successfully rolled out

Note that there is now an additional Revision:

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true
2 kubectl apply --filename=deployment-definition.yaml --record=true

View the details of myapp-deployment:

root@kubemaster:~# kubectl describe deployment myapp-deployment
Name: myapp-deployment
Namespace: default
CreationTimestamp: Wed, 13 Jul 2022 07:44:43 +0200
Labels: app=myapp
 type=front-end
Annotations: deployment.kubernetes.io/revision: 2

2025/08/11 06:52 31/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 kubernetes.io/change-cause: kubectl apply --filename=deployment-definition.yaml --
record=true
Selector: type=front-end
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=myapp
 type=front-end
 Containers:
 nginx-container:
 Image: nginx:1.12
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: myapp-deployment-57c6cb89d9 (3/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 7m46s deployment-controller Scaled up replica set myapp-deployment-689f9d59 to 3
 Normal ScalingReplicaSet 4m45s deployment-controller Scaled up replica set myapp-deployment-57c6cb89d9 to 1
 Normal ScalingReplicaSet 4m20s deployment-controller Scaled down replica set myapp-deployment-689f9d59 to 2
 Normal ScalingReplicaSet 4m19s deployment-controller Scaled up replica set myapp-deployment-57c6cb89d9 to 2
 Normal ScalingReplicaSet 3m43s deployment-controller Scaled down replica set myapp-deployment-689f9d59 to 1
 Normal ScalingReplicaSet 3m42s deployment-controller Scaled up replica set myapp-deployment-57c6cb89d9 to 3

2025/08/11 06:52 32/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 Normal ScalingReplicaSet 2m10s deployment-controller Scaled down replica set myapp-deployment-689f9d59 to 0

Important: Note that the image used is indeed nginx:1.12. Then note that in the Events
section, the pods have been Scaled down one-by-one and Scaled up one-by-one. Also
note that the value of StrategyType can be either Recreate or RollingUpdate. Finally,
note the value of RollingUpdateStrategy. 25% max unavailable indicates that at time
“t” 75% of all pods must be available, while 25% max surge indicates that the total
number of pods cannot exceed 1.25 times the value of the Replicas field. These values
can be modified. See page
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

When updating, Deployment creates another ReplicaSet containing the updated pods, using the Rolling Update method. This can be seen by looking at
the output of the kubectl get replicasets command:

root@kubemaster:~# kubectl get replicasets
NAME DESIRED CURRENT READY AGE
myapp-deployment-57c6cb89d9 3 3 3 5m41s
myapp-deployment-689f9d59 0 0 0 8m42s

Important: Note that the number of old ReplicaSets retained is 10 by default. This value
can be modified. See page
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

The image version can also be modified via the command line:

root@kubemaster:~# kubectl set image deployment/myapp-deployment nginx-container=nginx:1.14 --record
Flag --record has been deprecated, --record will be removed in the future
deployment.apps/myapp-deployment image updated

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

2025/08/11 06:52 33/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

The nginx-container container name is defined in the pod definition file:

root@kubemaster:~# cat pod-definition.yaml

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

Check the status of the Deployment:

root@kubemaster:~# kubectl rollout status deployment/myapp-deployment
deployment “myapp-deployment” successfully rolled out

Note that there is now an additional Revision:

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true
2 kubectl apply --filename=deployment-definition.yaml --record=true
3 kubectl set image deployment/myapp-deployment nginx-container=nginx:1.14 --record=true

On update, Deployment creates another ReplicaSet containing the updated pods using the Rolling Update method. This can be seen by looking at the
output of the kubectl get replicasets command:

root@kubemaster:~# kubectl get replicasets

2025/08/11 06:52 34/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

NAME DESIRED CURRENT READY AGE
myapp-deployment-57c6cb89d9 0 0 0 22m
myapp-deployment-689f9d59 0 0 0 25m
myapp-deployment-6c95f449f5 3 3 3 16m

See the details of myapp-deployment :

root@kubemaster:~# kubectl describe deployment myapp-deployment
Name: myapp-deployment
Namespace: default
CreationTimestamp: Wed, 13 Jul 2022 07:44:43 +0200
Labels: app=myapp
 type=front-end
Annotations: deployment.kubernetes.io/revision: 3
 kubernetes.io/change-cause: kubectl set image deployment/myapp-deployment nginx-
container=nginx:1.14 --record=true
Selector: type=front-end
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=myapp
 type=front-end
 Containers:
 nginx-container:
 Image: nginx:1.14
 Port: <none>
 Host Port: <none>
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason

2025/08/11 06:52 35/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: myapp-deployment-6c95f449f5 (3/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 26m deployment-controller Scaled up replica set myapp-
deployment-689f9d59 to 3
 Normal ScalingReplicaSet 23m deployment-controller Scaled up replica set myapp-
deployment-57c6cb89d9 to 1
 Normal ScalingReplicaSet 22m deployment-controller Scaled down replica set myapp-
deployment-689f9d59 to 2
 Normal ScalingReplicaSet 22m deployment-controller Scaled up replica set myapp-
deployment-57c6cb89d9 to 2
 Normal ScalingReplicaSet 22m deployment-controller Scaled down replica set myapp-
deployment-689f9d59 to 1
 Normal ScalingReplicaSet 22m deployment-controller Scaled up replica set myapp-
deployment-57c6cb89d9 to 3
 Normal ScalingReplicaSet 20m deployment-controller Scaled down replica set myapp-
deployment-689f9d59 to 0
 Normal ScalingReplicaSet 16m deployment-controller Scaled up replica set myapp-
deployment-6c95f449f5 to 1
 Normal ScalingReplicaSet 16m deployment-controller Scaled down replica set myapp-
deployment-57c6cb89d9 to 2
 Normal ScalingReplicaSet 14m (x4 over 16m) deployment-controller (combined from similar events): Scaled
down replica set myapp-deployment-57c6cb89d9 to 0

Important: Note that the image used was nginx:1.14.

2025/08/11 06:52 36/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Rollbacks

Thanks to the Revisions system, you can go back to the previous N-1 version of the application. Enter the following command:

root@kubemaster:~# kubectl rollout undo deployment/myapp-deployment
deployment.extensions/myapp-deployment rolled back

Important: Note that it is possible to roll back to a specific previous version with the
kubectl rollout undo deployment <deployment> –to-revision=<revision>
command.

Enter the kubectl get replicasets command:

root@kubemaster:~# kubectl get replicasets
NAME DESIRED CURRENT READY AGE
myapp-deployment-57c6cb89d9 3 3 3 24m
myapp-deployment-689f9d59 0 0 0 27m
myapp-deployment-6c95f449f5 0 0 0 18m

Important: Note that the application has reverted to the previous ReplicaSet.

Use the kubectl rollout history command:

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true
3 kubectl set image deployment/myapp-deployment nginx-container=nginx:1.14 --record=true

2025/08/11 06:52 37/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

4 kubectl apply --filename=deployment-definition.yaml --record=true

Important: Note that Revision 2 has become Revision 4, demonstrating a rollback.

Now create a Rollout error:

root@kubemaster:~# kubectl set image deployment/myapp-deployment nginx-container=nginx1.14 --record
deployment.extensions/myapp-deployment image updated

Important: Note that the error is nginx1.14 which should be nginx:1.14.

Check the Deployment status:

root@kubemaster:~# kubectl rollout status deployment/myapp-deployment
Waiting for deployment “myapp-deployment” rollout to finish: 1 out of 3 new replicas have been updated...
^C

Important: Note that the rollout is blocked. An error error: deployment “myapp-
deployment” exceeded its progress deadline will be returned after about ten
minutes!

To see what's happening, use the kubectl get deployments command:

root@kubemaster:~# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE

2025/08/11 06:52 38/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

myapp-deployment 3/3 1 3 15m

The kubectl get pods command shows a status of ImagePullBackOff for the first pod in the new ReplicaSet which indicates that Kubernetes cannot
perform the pull of the image from Docker Hub :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-deployment-57c6cb89d9-dh4cb 1/1 Running 0 7m24s
myapp-deployment-57c6cb89d9-f69nk 1/1 Running 0 7m30s
myapp-deployment-57c6cb89d9-q7d4p 1/1 Running 0 7m19s
myapp-deployment-74f697676f-2z95l 0/1 ImagePullBackOff 0 4m1s

When consulting the Rollout history, an additional Revision was added:

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true
3 kubectl set image deployment/myapp-deployment nginx-container=nginx:1.14 --record=true
4 kubectl apply --filename=deployment-definition.yaml --record=true
5 kubectl set image deployment/myapp-deployment nginx-container=nginx1.14 --record=true

To rectify this error, you need to run a Rollback :

root@kubemaster:~# kubectl rollout undo deployment/myapp-deployment
deployment.extensions/myapp-deployment rolled back

Note the success of the command :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-deployment-57c6cb89d9-dh4cb 1/1 Running 0 9m38s
myapp-deployment-57c6cb89d9-f69nk 1/1 Running 0 9m44s
myapp-deployment-57c6cb89d9-q7d4p 1/1 Running 0 9m33s

2025/08/11 06:52 39/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl rollout history deployment/myapp-deployment
deployment.apps/myapp-deployment
REVISION CHANGE-CAUSE
1 kubectl create --filename=deployment-definition.yaml --record=true
3 kubectl set image deployment/myapp-deployment nginx-container=nginx:1.14 --record=true
5 kubectl set image deployment/myapp-deployment nginx-container=nginx1.14 --record=true
6 kubectl apply --filename=deployment-definition.yaml --record=true

LAB #4 - Maintenance

To perform maintenance on a node, it is often necessary to remove it from the cluster. This operation is called a drain.

4.1 - The drain command

Check the status of all the pods:

root@kubemaster:~# kubectl get pods -o wide --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
default myapp-deployment-57c6cb89d9-dh4cb 1/1 Running 0 27m
192.168.150.2 kubenode2.ittraining.loc <none> <none>
default myapp-deployment-57c6cb89d9-q7d4p 1/1 Running 0 27m
192.168.239.2 kubenode1.ittraining.loc <none> <none>
default myapp-deployment-57c6cb89d9-f69nk 1/1 Running 0 27m
192.168.150.3 kubenode2.ittraining.loc <none> <none>
default nginx 1/1 Running 0 32m
192.168.239.1 kubenode1.ittraining.loc <none> <none>
kube-system calico-kube-controllers-6799f5f4b4-zk298 1/1 Running 0 60m
192.168.55.195 kubemaster.ittraining.loc <none> <none>
kube-system calico-node-5htrc 1/1 Running 0 50m
192.168.56.3 kubenode1.ittraining.loc <none> <none>

2025/08/11 06:52 40/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

kube-system calico-node-dc7hd 1/1 Running 0 60m 10.0.2.65
kubemaster.ittraining.loc <none> <none>
kube-system calico-node-qk5kt 1/1 Running 0 52m
192.168.56.4 kubenode2.ittraining.loc <none> <none>
kube-system coredns-6d4b75cb6d-kxtqk 1/1 Running 0 62m
192.168.55.194 kubemaster.ittraining.loc <none> <none>
kube-system coredns-6d4b75cb6d-td7cf 1/1 Running 0 62m
192.168.55.193 kubemaster.ittraining.loc <none> <none>
kube-system etcd-kubemaster.ittraining.loc 1/1 Running 1 (57m ago) 63m 10.0.2.65
kubemaster.ittraining.loc <none> <none>
kube-system kube-apiserver-kubemaster.ittraining.loc 1/1 Running 2 (55m ago) 63m 10.0.2.65
kubemaster.ittraining.loc <none> <none>
kube-system kube-controller-manager-kubemaster.ittraining.loc 1/1 Running 5 (50m ago) 63m 10.0.2.65
kubemaster.ittraining.loc <none> <none>
kube-system kube-proxy-fpksg 1/1 Running 0 62m 10.0.2.65
kubemaster.ittraining.loc <none> <none>
kube-system kube-proxy-sn26v 1/1 Running 0 50m
192.168.56.3 kubenode1.ittraining.loc <none> <none>
kube-system kube-proxy-wxm4z 1/1 Running 0 52m
192.168.56.4 kubenode2.ittraining.loc <none> <none>
kube-system kube-scheduler-kubemaster.ittraining.loc 1/1 Running 5 (51m ago) 63m 10.0.2.65
kubemaster.ittraining.loc <none> <none>

Important: Note that on kubenode1.ittraining.loc, there are 4 pods, namely myapp-
deployment-57c6cb89d9-q7d4p, nginx, calico-node-5htrc and kube-proxy-sn26v.

Now drain kubenode1.ittraining.loc :

root@kubemaster:~# kubectl drain kubenode1.ittraining.loc
node/kubenode1.ittraining.loc cordoned
error: unable to drain node “kubenode1.ittraining.loc” due to error:[cannot delete Pods declare no controller

2025/08/11 06:52 41/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

(use --force to override): default/nginx, cannot delete DaemonSet-managed Pods (use --ignore-daemonsets to
ignore): kube-system/calico-node-5htrc, kube-system/kube-proxy-sn26v], continuing command...
There are pending nodes to be drained:
kubenode1.ittraining.loc
cannot delete Pods declare no controller (use --force to override): default/nginx
cannot delete DaemonSet-managed Pods (use --ignore-daemonsets to ignore): kube-system/calico-node-5htrc, kube-
system/kube-proxy-sn26v

Note that the command returns two errors:

cannot delete Pods declare no controller (use –force to override): default/nginx
cannot delete DaemonSet-managed Pods (use –ignore-daemonsets to ignore): kube-system/calico-node-5htrc, kube-system/kube-proxy-sn26v

The first error is due to the fact that the operation cannot move an isolated pod, i.e. a pod not managed by a Controller, from one node to another. In
this case, the drain can only delete the nginx pod and therefore refuses to do so without using the –force option.

Important: The word Controller implies a ReplicationController, a ReplicaSet, a Job, a
DaemonSet or a StatefulSet.

The second error is due to the fact that the operation cannot process DaemonSets.

Important: A DaemonSet contains pods that are linked to specific nodes.

Run the command again, adding the two options –ignore-daemonsets and –force :

root@kubemaster:~# kubectl drain kubenode1.ittraining.loc --ignore-daemonsets --force
node/kubenode1.ittraining.loc already cordoned
WARNING: deleting Pods that declare no controller: default/nginx; ignoring DaemonSet-managed Pods: kube-
system/calico-node-5htrc, kube-system/kube-proxy-sn26v

2025/08/11 06:52 42/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

evicting pod default/nginx
evicting pod default/myapp-deployment-57c6cb89d9-f69nk
pod/nginx evicted
pod/myapp-deployment-57c6cb89d9-f69nk evicted
node/kubenode1.ittraining.loc drained

Important: Note that the command returned no errors.

Check the pod status again:

root@kubemaster:~# kubectl get pods -o wide --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
default myapp-deployment-57c6cb89d9-dh4cb 1/1 Running 0 45m
192.168.150.2 kubenode2.ittraining.loc <none> <none>
default myapp-deployment-57c6cb89d9-f69nk 1/1 Running 0 45m
192.168.150.3 kubenode2.ittraining.loc <none> <none>
default myapp-deployment-57c6cb89d9-l7lkd 1/1 Running 0 6m22s
192.168.150.4 kubenode2.ittraining.loc <none> <none>
kube-system calico-kube-controllers-6799f5f4b4-zk298 1/1 Running 0 77m
192.168.55.195 kubemaster.ittraining.loc <none> <none>
kube-system calico-node-5htrc 1/1 Running 0 68m
192.168.56.3 kubenode1.ittraining.loc <none> <none>
kube-system calico-node-dc7hd 1/1 Running 0 77m
10.0.2.65 kubemaster.ittraining.loc <none> <none>
kube-system calico-node-qk5kt 1/1 Running 0 70m
192.168.56.4 kubenode2.ittraining.loc <none> <none>
kube-system coredns-6d4b75cb6d-kxtqk 1/1 Running 0 80m
192.168.55.194 kubemaster.ittraining.loc <none> <none>
kube-system coredns-6d4b75cb6d-td7cf 1/1 Running 0 80m
192.168.55.193 kubemaster.ittraining.loc <none> <none>

2025/08/11 06:52 43/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

kube-system etcd-kubemaster.ittraining.loc 1/1 Running 1 (74m ago) 80m
10.0.2.65 kubemaster.ittraining.loc <none> <none>
kube-system kube-apiserver-kubemaster.ittraining.loc 1/1 Running 2 (73m ago) 80m
10.0.2.65 kubemaster.ittraining.loc <none> <none>
kube-system kube-controller-manager-kubemaster.ittraining.loc 1/1 Running 5 (67m ago) 80m
10.0.2.65 kubemaster.ittraining.loc <none> <none>
kube-system kube-proxy-fpksg 1/1 Running 0 80m
10.0.2.65 kubemaster.ittraining.loc <none> <none>
kube-system kube-proxy-sn26v 1/1 Running 0 68m
192.168.56.3 kubenode1.ittraining.loc <none> <none>
kube-system kube-proxy-wxm4z 1/1 Running 0 70m
192.168.56.4 kubenode2.ittraining.loc <none> <none>
kube-system kube-scheduler-kubemaster.ittraining.loc 1/1 Running 5 (68m ago) 80m
10.0.2.65 kubemaster.ittraining.loc <none> <none>

Important: Note that the nginx pod has been destroyed, while the myapp-
deployment-57c6cb89d9-q7d4p pod has been evicted. A new pod called myapp-
deployment-57c6cb89d9-l7lkd has been created on kubenode2.ittraining.loc to
keep the number at 3. The two pods calico-node-5htrc and kube-proxy-sn26v have
been ignored.

Now look at the status of the nodes:

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 91m v1.24.2
kubenode1.ittraining.loc Ready,SchedulingDisabled <none> 80m v1.24.2
kubenode2.ittraining.loc Ready <none> 82m v1.24.2

Important: Note that the STATUS of kubenode1.ittraining.loc is SchedulingDisabled,

2025/08/11 06:52 44/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

which means that the node no longer accepts new pods. In this state, the node is
cordoned.

4.2 - The uncordon command

To enable the node to receive pods again, use the following command:

root@kubemaster:~# kubectl uncordon kubenode1.ittraining.loc
node/kubenode1.ittraining.loc uncordoned

Check the status of the nodes again:

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 124m v1.24.2
kubenode1.ittraining.loc Ready <none> 113m v1.24.2
kubenode2.ittraining.loc Ready <none> 115m v1.24.2

Lastly, check pod status again:

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
myapp-deployment-57c6cb89d9-dh4cb 1/1 Running 0 91m 192.168.150.2 kubenode2.ittraining.loc
<none> <none>
myapp-deployment-57c6cb89d9-f69nk 1/1 Running 0 91m 192.168.150.3 kubenode2.ittraining.loc
<none> <none>
myapp-deployment-57c6cb89d9-l7lkd 1/1 Running 0 52m 192.168.150.4 kubenode2.ittraining.loc
<none> <none>

2025/08/11 06:52 45/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Important: Note that using the uncordon command does not move the l7lkd pod to the
kubenode1.ittraining.loc node.

LAB #5 - Managing Cluster Updates

5.1 - Updating kubeadm

Start by modifying the package sources :

root@kubemaster:~# mkdir /etc/apt/keyrings

root@kubemaster:~# curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo gpg --dearmor -o
/etc/apt/keyrings/kubernetes-apt-keyring.gpg

root@kubemaster:~# echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg]
https://pkgs.k8s.io/core:/stable:/v1.25/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /

root@kubemaster:~# vi /etc/apt/sources.list

root@kubemaster:~# cat /etc/apt/sources.list
deb http://archive.debian.org/debian/ stretch main
deb-src http://archive.debian.org/debian/ stretch main
deb [arch=amd64] https://download.docker.com/linux/debian stretch stable

root@kubemaster:~# apt update
Ign:1 http://archive.debian.org/debian stretch InRelease
Atteint:2 http://archive.debian.org/debian stretch Release

2025/08/11 06:52 46/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Réception de:3 https://download.docker.com/linux/debian stretch InRelease [44,8 kB]
Réception de:4 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.28/deb InRelease
[1 192 B]
Réception de:6 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.28/deb Packages
[21,3 kB]
67,3 ko réceptionnés en 0s (190 ko/s)
Lecture des listes de paquets... Fait
Construction de l'arbre des dépendances
Lecture des informations d'état... Fait
8 packages can be upgraded. Run 'apt list --upgradable' to see them.

In order to upgrade kubeadm, a drain of the Controller is required:

root@kubemaster:~# kubectl drain kubemaster.ittraining.loc --ignore-daemonsets
node/kubemaster.ittraining.loc cordoned
WARNING: ignoring DaemonSet-managed Pods: kube-system/calico-node-mp24s, kube-system/kube-proxy-btng8
evicting pod kube-system/coredns-6d4b75cb6d-t5rqf
evicting pod kube-system/calico-kube-controllers-bc5cbc89f-slc7s
evicting pod kube-system/coredns-6d4b75cb6d-hncvw
pod/calico-kube-controllers-bc5cbc89f-slc7s evicted
pod/coredns-6d4b75cb6d-hncvw evicted
pod/coredns-6d4b75cb6d-t5rqf evicted
node/kubemaster.ittraining.loc drained

To find out which version(s) is (are) higher than the installed one, use the following command:

root@kubemaster:~# apt-cache madison kubeadm
kubeadm | 1.25.16-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.15-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.14-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.13-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.12-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.11-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.10-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages

2025/08/11 06:52 47/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

kubeadm | 1.25.9-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.8-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.7-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.6-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.5-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.4-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.3-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.2-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.1-1.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages
kubeadm | 1.25.0-2.1 | https://pkgs.k8s.io/core:/stable:/v1.25/deb Packages

Now update kubeadm :

root@kubemaster:~# apt-get update && apt-get install -y --allow-change-held-packages kubeadm=1.25.0-2.1
Ign:1 http://archive.debian.org/debian stretch InRelease
Reached:2 http://archive.debian.org/debian stretch Release
Received:3 https://download.docker.com/linux/debian stretch InRelease [44,8 kB]
Reached:5 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.25/deb InRelease
44.8 kB received in 0s (81.7 kB/s)
Reading packet lists... Done
Read packet lists... Done
Build dependency tree
Read status information... Done
The following packages have been installed automatically and are no longer required:
libjsoncpp1 linux-image-4.9.0-8-amd64
Please use “apt autoremove” to remove them.
The following selected packages will be changed:
kubeadm
The following packages will be updated:
kubeadm
1 updated, 0 newly installed, 0 to be removed and 7 not updated.
It is necessary to take 9,219 kB from the archives.
After this operation, 537 kB of disk space will be freed up.
Receipt of:1 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.25/deb kubeadm

2025/08/11 06:52 48/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

1.25.0-2.1 [9 219 kB]
9,219 kB received in 0s (14.6 Mb/s)
apt-listchanges : Reads changelog files...
(Reading the database... 137041 files and directories already installed).
Preparing to unpack .../kubeadm_1.25.0-2.1_amd64.deb ...
Unpacking kubeadm (1.25.0-2.1) on (1.24.2-00) ...
dpkg: warning: unable to delete old directory “/etc/systemd/system/kubelet.service.d” : Folder not empty
kubeadm settings (1.25.0-2.1) ...

Important : Note the use of the –allow-change-held-packages option.

Check that the desired version has been installed:

root@kubemaster:~# kubeadm version
kubeadm version: &version.Info{Major: “1”, Minor: “25”, GitVersion: “v1.25. 0”, GitCommit:
‘a866cbe2e5bbaa01cfd5e969aa3e033f3282a8a2’, GitTreeState: ‘clean’, BuildDate: ‘2022-08-23T17:43:25Z’, GoVersion:
‘go1.19’, Compiler: ‘gc’, Platform: ‘linux/amd64’}

To find out which versions of Control Plane components are compatible with kubeadm version 1.25.0, use the kubeadm upgrade plan command:

root@kubemaster:~# kubeadm upgrade plan
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o
yaml'
[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
[preflight] Running pre-flight checks.
[upgrade] Running cluster health checks
[upgrade] Fetching available versions to upgrade to
[upgrade/versions] Cluster version: v1.24.2
[upgrade/versions] kubeadm version: v1.25.0

2025/08/11 06:52 49/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

I0314 07:25:04.222393 8210 version.go:256] remote version is much newer: v1.29.2; falling back to: stable-1.25
[upgrade/versions] Target version: v1.25.16
[upgrade/versions] Latest version in the v1.24 series: v1.24.17

Components that must be upgraded manually after you have upgraded the control plane with 'kubeadm upgrade apply':
COMPONENT CURRENT TARGET
kubelet 3 x v1.24.2 v1.24.17

Upgrade to the latest version in the v1.24 series:

COMPONENT CURRENT TARGET
kube-apiserver v1.24.2 v1.24.17
kube-controller-manager v1.24.2 v1.24.17
kube-scheduler v1.24.2 v1.24.17
kube-proxy v1.24.2 v1.24.17
CoreDNS v1.8.6 v1.9.3
etcd 3.5.3-0 3.5.4-0

You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.24.17

Components that must be upgraded manually after you have upgraded the control plane with 'kubeadm upgrade apply':
COMPONENT CURRENT TARGET
kubelet 3 x v1.24.2 v1.25.16

Upgrade to the latest stable version:

COMPONENT CURRENT TARGET
kube-apiserver v1.24.2 v1.25.16
kube-controller-manager v1.24.2 v1.25.16
kube-scheduler v1.24.2 v1.25.16

2025/08/11 06:52 50/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

kube-proxy v1.24.2 v1.25.16
CoreDNS v1.8.6 v1.9.3
etcd 3.5.3-0 3.5.4-0

You can now apply the upgrade by executing the following command:

 kubeadm upgrade apply v1.25.16

Note: Before you can perform this upgrade, you have to update kubeadm to v1.25.16.

The table below shows the current state of component configs as understood by this version of kubeadm.
Configs that have a "yes" mark in the "MANUAL UPGRADE REQUIRED" column require manual config upgrade or
resetting to kubeadm defaults before a successful upgrade can be performed. The version to manually
upgrade to is denoted in the "PREFERRED VERSION" column.

API GROUP CURRENT VERSION PREFERRED VERSION MANUAL UPGRADE REQUIRED
kubeproxy.config.k8s.io v1alpha1 v1alpha1 no
kubelet.config.k8s.io v1beta1 v1beta1 no

Update kubeadm to version 1.25.0 :

root@kubemaster:~# kubeadm upgrade apply v1.25.0
[upgrade/config] Making sure the configuration is correct:
[upgrade/config] Reading configuration from the cluster...
[upgrade/config] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o
yaml'
[preflight] Running pre-flight checks.
[upgrade] Running cluster health checks
[upgrade/version] You have chosen to change the cluster version to “v1.25.0”
[upgrade/versions] Cluster version: v1.24.2

2025/08/11 06:52 51/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

[upgrade/versions] kubeadm version: v1.25.0
[upgrade] Are you sure you want to proceed? [y/N]: y

At the end of the process, you'll see the following two lines:

...
[upgrade/successful] SUCCESS! Your cluster was upgraded to “v1.25.0”. Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets if you
haven't already done so.
root@kubemaster:~#

Upgrade now kubelet and kubectl :

root@kubemaster:~# apt-get update && apt-get install -y --allow-change-held-packages kubelet=1.25.0-2.1
kubectl=1.25.0-2.1
...

If the kubelet service file has changed, restart the systemctl daemon and the kubelet service:

root@kubemaster:~# systemctl daemon-reload

root@kubemaster:~# systemctl restart kubelet

Cancel the kubemaster drain:

root@kubemaster:~# export KUBECONFIG=/etc/kubernetes/admin.conf

root@kubemaster:~# kubectl uncordon kubemaster.ittraining.loc
node/kubemaster.ittraining.loc uncordoned

Now check the status of the nodes:

2025/08/11 06:52 52/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 3h15m v1.25.0
kubenode1.ittraining.loc Ready <none> 3h4m v1.24.2
kubenode2.ittraining.loc Ready <none> 3h6m v1.24.2

Important: Note that Control Plane is at version 1.25.0 while the Workers are at version
1.24.2.

5.2 - Updating Workers

To update a Worker, you need to drain the Worker concerned:

root@kubemaster:~# kubectl drain kubenode1.ittraining.loc --ignore-daemonsets --force
node/kubenode1.ittraining.loc cordoned
Warning: ignoring DaemonSet-managed Pods: kube-system/calico-node-hgrt9, kube-system/kube-proxy-czrqt
evicting pod kube-system/calico-kube-controllers-bc5cbc89f-q2zkl
pod/calico-kube-controllers-bc5cbc89f-q2zkl evicted
node/kubenode1.ittraining.loc drained

Connect to kubenode1 :

root@kubemaster:~# ssh -l trainee kubenode1
trainee@kubenode1's password: trainee
Linux kubenode1.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

2025/08/11 06:52 53/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Mar 14 06:43:48 2024 from 192.168.56.2
trainee@kubenode1:~$ su -
Password : fenestros
root@kubenode1:~#

Start by modifying the package sources:

root@kubemaster:~# mkdir /etc/apt/keyrings

root@kubemaster:~# curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo gpg --dearmor -o
/etc/apt/keyrings/kubernetes-apt-keyring.gpg

root@kubemaster:~# echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg]
https://pkgs.k8s.io/core:/stable:/v1.25/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /

root@kubenode1:~# vi /etc/apt/sources.list

root@kubenode1:~# cat /etc/apt/sources.list
deb http://archive.debian.org/debian/ stretch main
deb-src http://archive.debian.org/debian/ stretch main
deb [arch=amd64] https://download.docker.com/linux/debian stretch stable

root@kubenode1:~# apt update

Update the kubeadm package:

root@kubenode1:~# apt-get update && apt-get install -y --allow-change-held-packages kubeadm=1.25.0-2.1
...

Update the node:

2025/08/11 06:52 54/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubenode1:~# kubeadm upgrade node
[upgrade] Reading configuration from the cluster...
[upgrade] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[preflight] Running pre-flight checks
[preflight] Skipping prepull. Not a control plane node.
[upgrade] Skipping phase. Not a control plane node.
[kubelet-start] Writing kubelet configuration to file “/var/lib/kubelet/config.yaml”
[upgrade] The configuration for this node was successfully updated!
[upgrade] Now you should go ahead and upgrade the kubelet package using your package manager.

Update kubelet and kubectl :

root@kubenode1:~# apt-get update && apt-get install -y --allow-change-held-packages kubelet=1.25.0-2.1
kubectl=1.25.0-2.1
...

If the kubelet service file has changed, restart the systemctl daemon and the kubelet service:

root@kubenode1:~# systemctl daemon-reload

root@kubenode1:~# systemctl restart kubelet

Return to the kubemaster machine:

root@kubenode1:~# exit
logout
trainee@kubenode1:~$ exit
logout
Connection to kubenode1 closed.
root@kubemaster:~#

Cancel the kubenode1 drain:

2025/08/11 06:52 55/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~# kubectl uncordon kubenode1.ittraining.loc
node/kubenode1.ittraining.loc uncordoned

Now check the status of the nodes:

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 3h43m v1.25.0
kubenode1.ittraining.loc Ready <none> 3h32m v1.25.0
kubenode2.ittraining.loc Ready <none> 3h34m v1.24.2

Important: Note that Control Plane and kubenode1 are at version 1.25.0 while kubenode2
is at version 1.24.2.

Drain kubenode2:

root@kubemaster:~# kubectl drain kubenode2.ittraining.loc --ignore-daemonsets --force
node/kubenode2.ittraining.loc cordoned
Warning: ignoring DaemonSet-managed Pods: kube-system/calico-node-7q8nc, kube-system/kube-proxy-xmqkj
evicting pod kube-system/coredns-565d847f94-b6j2v
evicting pod kube-system/calico-kube-controllers-bc5cbc89f-zfdlbb
pod/calico-kube-controllers-bc5cbc89f-zfdlb evicted
pod/coredns-565d847f94-b6j2v evicted
node/kubenode2.ittraining.loc drained

Connect to kubenode2 :

root@kubemaster:~# ssh -l trainee kubenode2
trainee@kubenode2's password: trainee
Linux kubenode2.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

2025/08/11 06:52 56/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Mar 14 06:45:08 2024 from 192.168.56.2
trainee@kubenode2:~$ su -
Password : fenestros
root@kubenode2:~#

Start by modifying the package sources:

root@kubemaster:~# mkdir /etc/apt/keyrings

root@kubemaster:~# curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo gpg --dearmor -o
/etc/apt/keyrings/kubernetes-apt-keyring.gpg

root@kubemaster:~# echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg]
https://pkgs.k8s.io/core:/stable:/v1.25/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /

root@kubenode1:~# vi /etc/apt/sources.list

root@kubenode1:~# cat /etc/apt/sources.list
deb http://archive.debian.org/debian/ stretch main
deb-src http://archive.debian.org/debian/ stretch main
deb [arch=amd64] https://download.docker.com/linux/debian stretch stable

root@kubenode1:~# apt update

Update the kubeadm package:

root@kubenode2:~# apt-get update && apt-get install -y --allow-change-held-packages kubeadm=1.25.0-2.1

2025/08/11 06:52 57/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

...

Update the node:

root@kubenode2:~# kubeadm upgrade node
[upgrade] Reading configuration from the cluster...
[upgrade] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[preflight] Running pre-flight checks
[preflight] Skipping prepull. Not a control plane node.
[upgrade] Skipping phase. Not a control plane node.
[kubelet-start] Writing kubelet configuration to file “/var/lib/kubelet/config.yaml”
[upgrade] The configuration for this node was successfully updated!
[upgrade] Now you should go ahead and upgrade the kubelet package using your package manager.

Update kubelet and kubectl :

root@kubenode2:~# apt-get update && apt-get install -y --allow-change-held-packages kubelet=1.25.0-2.1
kubectl=1.25.0-2.1
...

If the kubelet service file has changed, restart the systemctl daemon and the kubelet service:

root@kubenode2:~# systemctl daemon-reload

root@kubenode2:~# systemctl restart kubelet

Return to the kubemaster machine:

root@kubenode2:~# exit
logout
trainee@kubenode2:~$ exit
logout
Connection to kubenode2 closed.

2025/08/11 06:52 58/58 DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates

Printed on 2025/08/11 06:52

root@kubemaster:~#

Cancel kubenode1 drain:

root@kubemaster:~# kubectl uncordon kubenode2.ittraining.loc
node/kubenode2.ittraining.loc uncordoned

Now check the status of the nodes:

root@kubemaster:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubemaster.ittraining.loc Ready control-plane 3h56m v1.25.0
kubenode1.ittraining.loc Ready <none> 3h45m v1.25.0
kubenode2.ittraining.loc Ready <none> 3h47m v1.25.0

Important: Note that everything has been updated.

Copyright © 2025 Hugh Norris

	DOE302 - Managing Pods, Replication Controllers, ReplicaSets, Deployments, Maintenance and Cluster Updates
	Curriculum
	LAB #1 - Creating a pod
	1.1 - Introducing a pod
	1.2 - Manual pod creation
	1.3 - Creating a pod using a YAML file
	apiVersion
	kind
	metadata
	spec
	Using the YAML file

	LAB #2 - Using Replication Controllers and ReplicaSets
	2.1 - Replication Controllers
	Overview
	Implementation

	2.2 - ReplicaSets
	Overview
	Implementation

	LAB #3 - Managing Deployments
	3.1 - Overview
	3.2 - Implementation
	Rollouts
	Rolling Updates
	Rollbacks

	LAB #4 - Maintenance
	4.1 - The drain command
	4.2 - The uncordon command

	LAB #5 - Managing Cluster Updates
	5.1 - Updating kubeadm
	5.2 - Updating Workers

