
2026/02/04 14:04 1/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Version - 2020.03

Dernière mise-à-jour : 2020/12/31 10:14

DOF304 - Gestion du Réseau, des Services et d'une Architecture de
Microservices

Contenu du Module

DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
Contenu du Module
LAB #1 - Gestion du Réseau et des Services

1.1 - Présentation
1.2 - Le Service NodePort
1.3 - Le Service ClusterIP

LAB #2 - Gestion de l'Architecture des Microservices
2.1 - Présentation
2.2 - Création des Deployments
2.3 - Création des Services
2.4 - Déployer l'Application
2.5 - Tester l'Application
2.6 - Scaling Up

LAB #1 - Gestion du Réseau et des Services

1.1 - Présentation

Kubernetes impose des conditions pour l’implémentation d'un réseau :

2026/02/04 14:04 2/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Les PODs sur un nœud peuvent communiquer avec tous les PODs sur tous le nœuds sans utiliser NAT,
Les agents sur un nœud (par exemple kubelet) peuvent communiquer avec tous les PODs sur le nœud.

Important : La description technique et détaillée de
l'approche réseau de Kubernetes peut être consultée à
l'adresse :
https://kubernetes.io/docs/concepts/cluster-administr
ation/networking/.

Dans le cluster de ce cours, le réseau mis en place entre les noeuds Kubernetes est le 172.18.0.0/16 :

root@debian10:~# kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
kind-control-plane Ready master 26h v1.19.1 172.18.0.5 <none> Ubuntu Groovy Gorilla
(development branch) 4.19.0-6-amd64 containerd://1.4.0
kind-worker2 Ready <none> 26h v1.19.1 172.18.0.4 <none> Ubuntu Groovy Gorilla
(development branch) 4.19.0-6-amd64 containerd://1.4.0
kind-worker3 Ready <none> 26h v1.19.1 172.18.0.3 <none> Ubuntu Groovy Gorilla
(development branch) 4.19.0-6-amd64 containerd://1.4.0

Kind crée les noeuds en tant que conteneurs Docker dans l'hôte Debian_10 :

root@debian10:~# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
2cff99fff93b kindest/node:v1.19.1 "/usr/local/bin/entr…" 27 hours ago Up 27 hours
kind-worker
9b810f08fcc4 kindest/node:v1.19.1 "/usr/local/bin/entr…" 27 hours ago Up 27 hours
kind-worker2
23dd96c58ceb kindest/node:v1.19.1 "/usr/local/bin/entr…" 27 hours ago Up 27 hours

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

2026/02/04 14:04 3/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

127.0.0.1:44833->6443/tcp kind-control-plane
1106161c7cd5 kindest/node:v1.19.1 "/usr/local/bin/entr…" 27 hours ago Up 27 hours
kind-worker3

ainsi que le réseau kind de type bridge pour les relier :

root@debian10:~# docker network list
NETWORK ID NAME DRIVER SCOPE
e6d50c85fcc4 bridge bridge local
471d983b1248 host host local
aac5f2655b24 kind bridge local
50b8123f99bf none null local

La commande docker network inspect montre clairement la configuration de chaque conteneur :

root@debian10:~# docker network inspect kind
[
 {
 "Name": "kind",
 "Id": "aac5f2655b24912d0b7f88c538927edfc8464bd3c7f0b3a7fb438069d667eff7",
 "Created": "2020-11-30T14:12:57.708788165+01:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": true,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1"
 },
 {
 "Subnet": "fc00:f853:ccd:e793::/64",

2026/02/04 14:04 4/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 "Gateway": "fc00:f853:ccd:e793::1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "1106161c7cd51db1694b7fe00e97636d5ed20be2cdfa56d32e3c335c29697539": {
 "Name": "kind-worker3",
 "EndpointID": "66a2356715009d227026231f0cbe66ccb718939a80e63945501c6d7e0d17b1c9",
 "MacAddress": "02:42:ac:12:00:03",
 "IPv4Address": "172.18.0.3/16",
 "IPv6Address": "fc00:f853:ccd:e793::3/64"
 },
 "23dd96c58ceb0eaf5b5f0fcac1431825444dd91d860c894bece4690ac302b9ab": {
 "Name": "kind-control-plane",
 "EndpointID": "147e765d44fca78ee2eae41ea247aefefedfe1f97997f51240a0f8496b79f095",
 "MacAddress": "02:42:ac:12:00:05",
 "IPv4Address": "172.18.0.5/16",
 "IPv6Address": "fc00:f853:ccd:e793::5/64"
 },
 "2cff99fff93bf15f2c511da420cde9fc350823c4224a573a0d8aed5380a28300": {
 "Name": "kind-worker",
 "EndpointID": "76e472551da35af4713c3314c1ca93bce09d9d6905fc9ff44db9775c65951924",
 "MacAddress": "02:42:ac:12:00:02",
 "IPv4Address": "172.18.0.2/16",
 "IPv6Address": "fc00:f853:ccd:e793::2/64"
 },
 "9b810f08fcc4a3fcc7755a691af724a3f115dbbc1f4a8656a6dc9be55f4ac1f9": {

2026/02/04 14:04 5/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 "Name": "kind-worker2",
 "EndpointID": "b2f3b842915c81211351d181fb13650ea3d4d0e631fa06c50f2a4906d436748e",
 "MacAddress": "02:42:ac:12:00:04",
 "IPv4Address": "172.18.0.4/16",
 "IPv6Address": "fc00:f853:ccd:e793::4/64"
 }
 },
 "Options": {
 "com.docker.network.bridge.enable_ip_masquerade": "true"
 },
 "Labels": {}
 }
]

Sous Kubernetes, les adresses IP ne sont pas attachées aux conteneurs dans les PODs de chaque noeud mais aux PODs eux-mêmes :

root@debian10:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES
myapp-deployment-6f899c7745-g6888 1/1 Running 0 8h 10.244.1.18 kind-worker2 <none>
<none>
myapp-deployment-6f899c7745-gdpp8 1/1 Running 0 8h 10.244.1.19 kind-worker2 <none>
<none>
myapp-deployment-6f899c7745-rtqhq 1/1 Running 0 8h 10.244.3.15 kind-worker3 <none>
<none>

Il est possible d'obtenir les CIDR des PODs en utilisant la commande suivante :

root@debian10:~# kubectl get nodes -o jsonpath='{.items[*].spec.podCIDR}'
10.244.0.0/24 10.244.1.0/24 10.244.3.0/24root@debian10:~#

Notez que les adresses 10.244.1.x sont associées aux PODs sur kind-worker2 tandis que les adresses 10.244.3.x sont associées aux PODs sur kind-
worker3. Ces adresses sont issues du réseau 10.244.0.0/16 stipulé par l'option –pod-network-cidr lors de l'initialisation du maître du cluster :

2026/02/04 14:04 6/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

root@debian10:~# kubectl cluster-info dump | grep -m 1 cluster-cidr
 "--cluster-cidr=10.244.0.0/16",

L'extension réseau utilisée par kind n'est pas une des classiques déjà présentées. En fait il s'agit d'une extension propre au projet dénommée kindnet
:

root@debian10:~# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-f9fd979d6-hd5sh 1/1 Running 0 26h
coredns-f9fd979d6-q7tcx 1/1 Running 0 26h
etcd-kind-control-plane 1/1 Running 0 26h
kindnet-2vgnb 1/1 Running 0 26h
kindnet-6x6pk 1/1 Running 0 26h
kindnet-snk42 1/1 Running 0 26h
kube-apiserver-kind-control-plane 1/1 Running 0 26h
kube-controller-manager-kind-control-plane 1/1 Running 0 26h
kube-proxy-lkljb 1/1 Running 0 26h
kube-proxy-mfgcf 1/1 Running 0 26h
kube-proxy-wl4mk 1/1 Running 0 26h
kube-scheduler-kind-control-plane 1/1 Running 0 26h

En sachant que dans chaque POD existe un conteneur Nginx, testez si vous pouvez afficher la page d'accueil de Nginx en vous connectant à kind-
worker2 et kind-worker2 :

root@debian10:~# curl 172.18.0.3
curl: (7) Failed to connect to 172.18.0.3 port 80: Connection refused
root@debian10:~# curl 172.18.0.4
curl: (7) Failed to connect to 172.18.0.4 port 80: Connection refused

Important : Notez l'échec de la connexion.

2026/02/04 14:04 7/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant à un des PODs :

root@debian10:~# curl 10.244.1.18
^C

Important : Retenez donc qu'à ce stade il n'est pas
possible d'afficher la page d'accueil de Nginx en vous
connectant de l'extérieur du cluster.

Lors de l'installation du cluster contenant kubemaster, kubenode1 et kubenode2 nous avons spécifié l'utilisation d'une extension réseau appelée
Calico, issue de la liste suivante :

Calico,
Cilium,
Flannel,
Kube-router,
Romana,
WeaveNet,
Antrea,
kube-ovn,
Canal (utilise Flannel pour le réseau et Calico pour le pare-feu).

Important : Une étude comparative des extensions réseau
pour Kubernetes peut être trouvée à la page :
https://itnext.io/benchmark-results-of-kubernetes-net
work-plugins-cni-over-10gbit-s-network-updated-
august-2020-6e1b757b9e49.

Ces extensions permettent la mise en place de Services :

https://www.projectcalico.org/
https://cilium.io/
https://coreos.com/flannel/docs/latest/
https://www.kube-router.io/
https://romana.io/
https://www.weave.works/oss/net/
https://antrea.io/docs/master/getting-started/
https://github.com/alauda/kube-ovn
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49

2026/02/04 14:04 8/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

NodePort,
Ce Service rend un POD accessible sur un port du nœud le contenant,

ClusterIP
Ce Service crée une adresse IP virtuelle afin de permettre la communication entre de services différents dans le cluster, par exemple des
serveurs front-end avec des serveurs back-end,

LoadBalancer
Ce service provisionne un équilibrage de charge pour une application dans certains fournisseurs de Cloud publique tels Amazon Web
Services et Google Cloud Platform.

1.2 - Le Service NodePort

Le Service NodePort définit trois ports :

TargetPort : le port sur le POD,
Port : le port sur le Service lié à un IP du Cluster,
NodePort : le port sur le Nœud issu de la plage 30000-32767.

2026/02/04 14:04 9/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Si dans le même nœud, plusieurs PODs ont les étiquettes qui correspondent au selector du Service, le Service identifie les PODs et s'étend
automatiquement pour englober tous les PODs. Les PODs sont appelés des End-Points :

Important : Notez que dans ce cas l'équilibrage de charge
est automatique est utilise l’algorithme Random avec une
affinité de session..

De même, quand les PODs sont distribués sur plusieurs nœuds, le Service s'étend pour tout englober :

2026/02/04 14:04 10/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Créez donc le fichier YAML service-definition.yaml :

root@debian10:~# vi service-definition.yaml
root@debian10:~# cat service-definition.yaml
apiVersion: v1
kind: Service
metadata:
 name: myapp-service

spec:
 type: NodePort
 ports:
 - targetPort: 80
 port: 80
 nodePort: 30008
 selector:
 app: myapp
 type: front-end

Important : Notez que si le champ type: est manquant, sa
valeur par défaut est ClusterIP. Notez aussi que dans
ports, seul le champ port est obligatoire. Si le champ

2026/02/04 14:04 11/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

targetPort est manquant, sa valeur par défaut est celle du
champ port. Si le champ nodePort est manquant, sa
valeur par défaut est le premier port disponible dans la
plage entre 30 000 et 32 767. Dernièrement, il est possible
de spécifier de multiples définitions de ports dans le service.

Le champs selector contient les étiquettes des PODs concernés par la mise en place du Service :

root@debian10:~# cat pod-definition.yaml

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
 type: front-end
spec:
 containers:
 - name: nginx-container
 image: nginx

Créez le Service en utilisant le fichier service-definition.yaml :

root@debian10:~# kubectl create -f service-definition.yaml
service/myapp-service created

Constatez la création du Service :

root@debian10:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 27h

2026/02/04 14:04 12/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

myapp-service NodePort 10.96.228.251 <none> 80:30008/TCP 25s

Important : Notez que le Service a une adresse IP du
cluster et qu'il a exposé le port 30 008.

Testez maintenant si vous pouvez afficher la page d'accueil de Nginx en vous connectant à un des PODs en utilisant le service NodePort :

root@debian10:~# curl 172.18.0.3:30008
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>

2026/02/04 14:04 13/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

</body>
</html>

1.3 - Le Service ClusterIP

Le Service ClusterIP permet de regrouper les PODs offrant le même service afin de faciliter la communication, par exemple :

3 PODs front-end = une adresse ClusterIP,
3 PODs back-end = une autre adresse ClusterIP.

Pour créer un Service ClusterIP, créez le fichier clusterip-definition.yaml :

root@debian10:~# vi clusterip-definition.yaml
root@debian10:~# cat clusterip-definition.yaml

apiVersion: v1
kind: Service
metadata:
 name: back-end

spec:
 type: ClusterIP
 ports:
 - targetPort: 80
 port: 80
 selector:
 app: myapp
 type: front-end

Créez le Service en utilisant le fichier clusterip-definition.yaml :

root@debian10:~# kubectl create -f clusterip-definition.yaml

2026/02/04 14:04 14/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

service/back-end created

Vérifiez maintenant la présence du Service :

root@debian10:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
back-end ClusterIP 10.96.188.7 <none> 80/TCP 14s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45h
myapp-service NodePort 10.96.228.251 <none> 80:30008/TCP 17h

Supprimez maintenant les Services créés :

root@debian10:~# kubectl delete service myapp-service
service "myapp-service" deleted
root@debian10:~# kubectl delete service back-end
service "back-end" deleted

Dernièrement supprimez le Deployment myapp-deployment :

root@debian10:~# kubectl delete deployment myapp-deployment
deployment.apps "myapp-deployment" deleted

Vérifiez qu'il ne reste que le service par défaut kubernetes :

root@debian10:~# kubectl get all
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 45h

LAB #2 - Gestion d'une Architecture de Microservices

2026/02/04 14:04 15/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

2.1 - Présentation

Vous allez mettre en place une application simple, appelé demo-voting-app et développé par Docker, sous forme de microservices :

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une
interace HTML :

2026/02/04 14:04 16/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met à jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous NodeJS lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

2026/02/04 14:04 17/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Cette application peut être mise en place sous docker avec les commandes suivantes :

docker run -d --name=redis redis
docker run -d --name=db -e POSTGRES_PASSWORD=postgres -e POSTGRES_USER=postgres postgres:9.4
docker run -d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp_vote
docker run -d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp_result
docker run -d --name=worker --link db:db ---link redis:redis dockersamples/examplevotingapp_worker

Par contre, Docker annonce le retrait éventuel de l'option –lien et indique qu'il vaudrait mieux utiliser des réseaux pour assurer la communication entre
les conteneurs :

2026/02/04 14:04 18/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

“Warning: The –link flag is a legacy feature of Docker. It may eventually be removed. Unless you absolutely need to continue using it, we recommend
that you use user-defined networks to facilitate communication between two containers instead of using –link. One feature that user-defined networks
do not support that you can do with –link is sharing environment variables between containers. However, you can use other mechanisms such as
volumes to share environment variables between containers in a more controlled way.”

Cette application peut être mise en place sous docker swarm avec les commandes suivantes :

docker@manager1:~$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ENGINE VERSION
vwshwppuaoze785gy12k0gh62 * manager1 Ready Active Leader
18.09.3
t0rjtq76j35mbn44olp0t3yeq worker1 Ready Active
18.09.3
udv7w988tepuba7pf6rb5k1o3 worker2 Ready Active
18.09.3
uz2m26qe0hdf7lplb9a5m0ysv worker3 Ready Active
18.09.3
sfig9atrbgzt41sjxhj95wfgu worker4 Ready Active
18.09.3
56az1cupssf9uqx9h0yvbmydw worker5 Ready Active
18.09.3

docker@manager1:~$ vi docker-stack.yml
docker@manager1:~$ cat docker-stack.yml
version: "3"
services:

 redis:
 image: redis:alpine
 ports:
 - "6379"
 networks:
 - frontend

2026/02/04 14:04 19/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 deploy:
 replicas: 1
 update_config:
 parallelism: 2
 delay: 10s
 restart_policy:
 condition: on-failure
 db:
 image: postgres:9.4
 volumes:
 - db-data:/var/lib/postgresql/data
 networks:
 - backend
 deploy:
 placement:
 constraints: [node.role == manager]
 vote:
 image: dockersamples/examplevotingapp_vote:before
 ports:
 - 5000:80
 networks:
 - frontend
 depends_on:
 - redis
 deploy:
 replicas: 2
 update_config:
 parallelism: 2
 restart_policy:
 condition: on-failure
 result:
 image: dockersamples/examplevotingapp_result:before
 ports:
 - 5001:80

2026/02/04 14:04 20/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 networks:
 - backend
 depends_on:
 - db
 deploy:
 replicas: 1
 update_config:
 parallelism: 2
 delay: 10s
 restart_policy:
 condition: on-failure

 worker:
 image: dockersamples/examplevotingapp_worker
 networks:
 - frontend
 - backend
 deploy:
 mode: replicated
 replicas: 1
 labels: [APP=VOTING]
 restart_policy:
 condition: on-failure
 delay: 10s
 max_attempts: 3
 window: 120s
 placement:
 constraints: [node.role == manager]

 visualizer:
 image: dockersamples/visualizer:stable
 ports:
 - "8080:8080"
 stop_grace_period: 1m30s

2026/02/04 14:04 21/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 deploy:
 placement:
 constraints: [node.role == manager]

networks:
 frontend:
 backend:

volumes:
 db-data:

docker@manager1:~$ docker stack deploy -c docker-stack.yml app
Creating network app_backend
Creating network app_frontend
Creating network app_default
Creating service app_worker
Creating service app_visualizer
Creating service app_redis
Creating service app_db
Creating service app_vote
Creating service app_result

2.2 - Création des Deployments

Créez le répertoire myapp. Placez-vous dans ce répertoire et créez le fichier voting-app-deployment.yaml :

root@debian10:~# mkdir myapp
root@debian10:~# cd myapp
root@debian10:~/myapp# vi voting-app-deployment.yaml
root@debian10:~/myapp# cat voting-app-deployment.yaml

2026/02/04 14:04 22/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

apiVersion: apps/v1
kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé voting-app qui utilise le
port 80 et qui est créé à partir de l'image
dockersamples/examplevotingapp_vote.

2026/02/04 14:04 23/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Créez maintenant le fichier redis-deployment.yaml :

root@debian10:~/myapp# vi redis-deployment.yaml
root@debian10:~/myapp# cat redis-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: redis-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: redis-pod
 app: demo-voting-app
 template:
 metadata:
 name: redis pod
 labels:
 name: redis-pod
 app: demo-voting-app

 spec:
 containers:
 - name: redis
 image: redis
 ports:
 - containerPort: 6379

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template

2026/02/04 14:04 24/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

contenant un conteneur dénommé redis qui utilise le port
6379 et qui est créé à partir de l'image redis.

Créez le fichier worker-deployment.yaml :

root@debian10:~/myapp# vi worker-deployment.yaml
root@debian10:~/myapp# cat worker-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: worker-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: worker-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: worker-app-pod
 labels:
 name: worker-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: worker-app
 image: dockersamples/examplevotingapp_worker

2026/02/04 14:04 25/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé worker-app qui est créé
à partir de l'image
dockersamples/examplevotingapp_worker.

Créez ensuite le fichier postgres-deployment.yaml :

root@debian10:~/myapp# vi postgres-deployment.yaml
root@debian10:~/myapp# cat postgres-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: postgres-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:
 name: postgres-pod
 app: demo-voting-app
 template:
 metadata:
 name: postgres pod
 labels:
 name: postgres-pod
 app: demo-voting-app

 spec:

2026/02/04 14:04 26/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 containers:
 - name: postgres
 image: postgres:9.4
 env:
 - name: POSTGRES_USER
 value: postgres
 - name: POSTGRES_PASSWORD
 value: postgres
 ports:
 - containerPort: 5432

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé postgres qui utilise le
port 5432 et qui est créé à partir de l'image postgres:9.4.

Dernièrement, créez le fichier result-app-deployment.yaml :

root@debian10:~/myapp# vi result-app-deployment.yaml
root@debian10:~/myapp# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 1
 selector:
 matchLabels:

2026/02/04 14:04 27/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:
 - containerPort: 80

Important : Ce fichier décrit un Deployment. Notez que le
Deployment crée un replica du POD spécifié par template
contenant un conteneur dénommé result-app qui utilise le
port 80 et qui est créé à partir de l'image
dockersamples/examplevotingapp_result.

2.3 - Création des Services

Créez maintenant le fichier redis-service.yaml :

root@debian10:~/myapp# vi redis-service.yaml
root@debian10:~/myapp# cat redis-service.yaml

apiVersion: v1

2026/02/04 14:04 28/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

kind: Service
metadata:
 name: redis
 labels:
 name: redis-service
 app: demo-voting-app

spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:
 name: redis-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service ClusterIP. Notez
que le Service expose le port 6379 sur tout POD ayant le
nom redis-pod.

Créez ensuite le fichier postgres-service.yaml :

root@debian10:~/myapp# vi postgres-service.yaml
root@debian10:~/myapp# cat postgres-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: db
 labels:
 name: db-service
 app: demo-voting-app

2026/02/04 14:04 29/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 name: postgres-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service ClusterIP. Notez
que le Service expose le port 5432 sur tout POD ayant le
nom postgres-pod.

Créez le fichier voting-app-service.yaml :

root@debian10:~/myapp# vi voting-app-service.yaml
root@debian10:~/myapp# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:

2026/02/04 14:04 30/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 name: voting-app-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service NodePort. Notez
que le Service expose le port 80 sur tout POD ayant le nom
voting-app-pod.

Dernièrement, créez le fichier result-app-service.yaml :

root@debian10:~/myapp# vi result-app-service.yaml
root@debian10:~/myapp# cat result-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: result-service
 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: NodePort
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

Important : Ce fichier décrit un Service NodePort. Notez

2026/02/04 14:04 31/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

que le Service expose le port 80 sur tout POD ayant le nom
result-app-pod.

2.4 - Déployer l'Application

Vérifiez que vous avez créé les fichiers *9 YAML necéssaires :

root@debian10:~/myapp# ls -l
total 36
-rw-r--r-- 1 root root 590 Dec 15 10:59 postgres-deployment.yaml
-rw-r--r-- 1 root root 222 Dec 15 11:03 postgres-service.yaml
-rw-r--r-- 1 root root 439 Dec 15 10:57 redis-deployment.yaml
-rw-r--r-- 1 root root 225 Dec 15 11:01 redis-service.yaml
-rw-r--r-- 1 root root 494 Dec 15 11:00 result-app-deployment.yaml
-rw-r--r-- 1 root root 253 Dec 15 11:05 result-app-service.yaml
-rw-r--r-- 1 root root 492 Dec 15 10:56 voting-app-deployment.yaml
-rw-r--r-- 1 root root 253 Dec 15 11:04 voting-app-service.yaml
-rw-r--r-- 1 root root 451 Dec 15 10:57 worker-deployment.yaml

Utilisez ensuite la commande kubectl create :

root@debian10:~/myapp# kubectl create -f .
deployment.apps/postgres-deployment created
service/db created
deployment.apps/redis-deployment created
service/redis created
deployment.apps/result-app-deployment created
service/result-service created
deployment.apps/voting-app-deployment created
service/voting-service created
deployment.apps/worker-app-deployment created

2026/02/04 14:04 32/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Important : Notez l'utilisation du caractère . qui indique
tout fichier dans le répertoire courant.

Attendez que tous les Deployments soient READY (2 à 3 minutes) :

root@debian10:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 0/1 1 0 27s
redis-deployment 0/1 1 0 27s
result-app-deployment 0/1 1 0 27s
voting-app-deployment 0/1 1 0 26s
worker-app-deployment 0/1 1 0 25s

root@debian10:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 2m43s
redis-deployment 1/1 1 1 2m43s
result-app-deployment 1/1 1 1 2m43s
voting-app-deployment 1/1 1 1 2m42s
worker-app-deployment 1/1 1 1 2m41s

Contrôlez ensuite l'état des PODs :

root@debian10:~/myapp# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-deployment-746bc85b8-8lw6c 1/1 Running 0 3m34s
redis-deployment-64cff75679-8zqr8 1/1 Running 0 3m34s
result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 0 3m34s
voting-app-deployment-678c67fc7-zcs6c 1/1 Running 0 3m33s
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 0 3m32s

2026/02/04 14:04 33/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

ainsi que la liste des Services :

root@debian10:~/myapp# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
db ClusterIP 10.96.30.165 <none> 5432/TCP 4m2s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 46h
redis ClusterIP 10.96.99.190 <none> 6379/TCP 4m2s
result-service NodePort 10.96.128.82 <none> 80:31801/TCP 4m1s
voting-service NodePort 10.96.73.238 <none> 80:30343/TCP 4m

Dans le cas donc de l'exemple dans ce cours, l'application ressemble maintenant au diagramme suivant :

2.5 - Tester l'Application

Connectez-vous à votre serveur cloud en utilisant X2Go. Ouvrez Oracle VirtualBox et double-cliquez sur la machine virtuelle Debian_10. Connectez-
vous à la VM en tant que trainee avec le mot de passe trainee :

2026/02/04 14:04 34/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Testez ensuite votre application en vous connectant à http://172.18.0.4:30343 à partir du navigateur dans la machine virtuelle Debian_10.

Important : Modifiez les sockets en fonction de votre
installation.

2.6 - Scaling Up

Éditez le fichier voting-app-deployment.yaml et modifiez la valeur du champ replicas de 1 à 3 :

root@debian10:~/myapp# vi voting-app-deployment.yaml
root@debian10:~/myapp# cat voting-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: voting-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: voting-app-pod
 app: demo-voting-app
 template:
 metadata:

http://172.18.0.4:30343

2026/02/04 14:04 35/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 name: voting-app-pod
 labels:
 name: voting-app-pod
 app: demo-voting-app

 spec:
 containers:
 - name: voting-app
 image: dockersamples/examplevotingapp_vote
 ports:
 - containerPort: 80

Éditez le fichier result-app-deployment.yaml et modifiez la valeur du champ replicas de 1 à 3 :

root@debian10:~/myapp# vi result-app-deployment.yaml
root@debian10:~/myapp# cat result-app-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: result-app-deployment
 labels:
 app: demo-voting-app
spec:
 replicas: 3
 selector:
 matchLabels:
 name: result-app-pod
 app: demo-voting-app
 template:
 metadata:
 name: result-app-pod
 labels:
 name: result-app-pod

2026/02/04 14:04 36/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

 app: demo-voting-app

 spec:
 containers:
 - name: result-app
 image: dockersamples/examplevotingapp_result
 ports:
 - containerPort: 80

Appliquez les modifications à l'aide de la commande kubectl apply :

root@debian10:~/myapp# kubectl apply -f voting-app-deployment.yaml
Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/voting-app-deployment configured
root@debian10:~/myapp# kubectl apply -f result-app-deployment.yaml
Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
deployment.apps/result-app-deployment configured

Contrôlez ensuite les Deployments :

root@debian10:~/myapp# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
postgres-deployment 1/1 1 1 68m
redis-deployment 1/1 1 1 68m
result-app-deployment 1/3 3 1 68m
voting-app-deployment 3/3 3 3 68m
worker-app-deployment 1/1 1 1 68m

ainsi que les PODs :

root@debian10:~/myapp# kubectl get pods
NAME READY STATUS RESTARTS AGE
postgres-deployment-746bc85b8-8lw6c 1/1 Running 1 69m
redis-deployment-64cff75679-8zqr8 1/1 Running 1 69m

2026/02/04 14:04 37/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

result-app-deployment-7cdc94dfcd-nddsh 1/1 Running 1 69m
result-app-deployment-7cdc94dfcd-ntbdj 1/1 Running 0 54s
result-app-deployment-7cdc94dfcd-wsm2d 1/1 Running 0 54s
voting-app-deployment-678c67fc7-59q7z 1/1 Running 0 67s
voting-app-deployment-678c67fc7-sgczf 1/1 Running 0 67s
voting-app-deployment-678c67fc7-zcs6c 1/1 Running 1 69m
worker-app-deployment-767d5b67ff-sgj2x 1/1 Running 2 69m

Dans le cas de l'exemple dans ce cours, l'application ressemble maintenant au diagramme suivant :

Retournez sur le navigateur de votre VM Debian_10 et rafraichissez la page du voting-app :

Important : Notez le POD qui a servi la page.

2026/02/04 14:04 38/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Rafraîchissez la page de nouveau :

Important : Notez que le POD qui a servi la page a changé.

Notez que ce changement de POD n'indique pas un équilibrage de charge. En effet, sous VirtualBox, il faudrait mettre en place une autre machine
virtuelle sous, par exemple, HAProxy pour obtenir l'équilibrage.

Par contre, dans le cas d'une application sur GCP par exemple, il convient de modifier les deux fichiers suivants en changeant la valeur de champ type
de NodePort à LoadBalancer puis de configurer une instance du Load Balancer natif de GCP :

root@debian10:~/myapp# cat voting-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: voting-service
 labels:
 name: voting-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: voting-app-pod
 app: demo-voting-app

2026/02/04 14:04 39/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

Important : Ce fichier décrit un Service LoadBalancer.
Notez que le Service expose le port 80 sur tout POD ayant
le nom voting-app-pod.

Dernièrement, créez le fichier result-app-service.yaml :

root@debian10:~/myapp# cat result-app-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: result-service
 labels:
 name: result-service
 app: demo-voting-app

spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: 80
 selector:
 name: result-app-pod
 app: demo-voting-app

<html> <DIV ALIGN=“CENTER”> Copyright © 2020 Hugh Norris </div> </html>

2026/02/04 14:04 40/40 DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices

www.ittraining.team - https://ittraining.team/

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s11

Last update: 2020/12/31 10:14

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s11

	DOF304 - Gestion du Réseau, des Services et d'une Architecture de Microservices
	Contenu du Module
	LAB #1 - Gestion du Réseau et des Services
	1.1 - Présentation
	1.2 - Le Service NodePort
	1.3 - Le Service ClusterIP

	LAB #2 - Gestion d'une Architecture de Microservices
	2.1 - Présentation
	2.2 - Création des Deployments
	2.3 - Création des Services
	2.4 - Déployer l'Application
	2.5 - Tester l'Application
	2.6 - Scaling Up

