
2026/02/04 14:00 1/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Version - 2024.01

Dernière mise-à-jour : 2024/12/20 13:54

DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et
Monitoring

Contenu du Module

DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring
Contenu du Module
StatefulSets

LAB #1 - Mise en Place d'un StatefulSet Simple
1.1 - Création du Service et du StatefulSet
1.2 - Mise en Place d'un Scale Up
1.3 - Mise en Place d'un Scale Down
1.4 - Suppression du StatefulSet

StorageClass Avancé
LAB #2 - Provisionnement NFS dynamique

2.1 - Configuration du Serveur NFS
2.2 - Configuration des Clients NFS
2.3 - Configuration de K8s
2.4 - Création d'un PersistentVolumeClaim
2.5 - Utilisation du PersistentVolumeClaim avec un pod
2.6 - Création d'un Deuxième PersistentVolumeClaim
2.7 - Suppression des PersistentVolumeClaims

Helm Avancé
LAB #3 - Création d'un Paquet Helm Simple

3.1 - Le Fichier values.yaml
3.2 - Les Templates

2026/02/04 14:00 2/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

3.3 - Installation et Suppression
Monitoring

LAB #4 - Mise en Place d'une Solution Prometheus
4.1 - Déploiement du Stack avec Helm
4.2 - Consultation des Données avec Grafana
4.3 - Consultation des Alertes avec le Web UI de Prometheus

Ressources

Lab #1

https://www.dropbox.com/scl/fi/xqqpanbovwrx7cknd0yam/quarkus-service.yaml?rlkey=buou4viy128u7cgxapwmpetpl&dl=0
https://www.dropbox.com/scl/fi/zqrdnfhcxuzcfftgbokx6/statefulset.yaml?rlkey=tqs0xxdlxjlukv30crwy2gll1&dl=0

Lab #2

https://www.dropbox.com/scl/fi/rk3xnorqu6gk6tstvlivz/pvc.yaml?rlkey=g1dr28lrs6ec6iejp07q2o4jf&dl=0
https://www.dropbox.com/scl/fi/1rjljxupug5wra2zpu84n/nfs-busybox.yaml?rlkey=yta13fyr2rh6a6dmsnjl10p7b&dl=0
https://www.dropbox.com/scl/fi/b2ocglzuqbadnnyzipfyc/pvc2.yaml?rlkey=xxc7wz3pwdo4ybfqa54zav63z&dl=0

Lab #3

https://www.dropbox.com/scl/fi/0d5znog6rdou1doko43yy/ghost.yaml?rlkey=hebkdn9ch0v9nctimiayondwc&dl=0
https://www.dropbox.com/scl/fi/m6fmpsz25lqugzqfqxpdt/ghost-service.yaml?rlkey=zyxh7ep17eujbuycddqjdsrqy&dl=0
https://www.dropbox.com/scl/fi/zot4i0u0hf4yw2yj3kyey/values.yaml?rlkey=apv0grxwvomxa9c0avig87pzy&dl=0
https://www.dropbox.com/scl/fi/zyf0mbbp3wuwnnfzzez3a/service.yaml?rlkey=47bpjs3f6u474f8v0tiunl3am&dl=0
https://www.dropbox.com/scl/fi/kark41xnz5hlilag5on0y/ghost-values.yaml?rlkey=fohccb7rwc8z66qhn4heyn2lj&dl=0

https://www.dropbox.com/scl/fi/xqqpanbovwrx7cknd0yam/quarkus-service.yaml?rlkey=buou4viy128u7cgxapwmpetpl&dl=0
https://www.dropbox.com/scl/fi/zqrdnfhcxuzcfftgbokx6/statefulset.yaml?rlkey=tqs0xxdlxjlukv30crwy2gll1&dl=0
https://www.dropbox.com/scl/fi/rk3xnorqu6gk6tstvlivz/pvc.yaml?rlkey=g1dr28lrs6ec6iejp07q2o4jf&dl=0
https://www.dropbox.com/scl/fi/1rjljxupug5wra2zpu84n/nfs-busybox.yaml?rlkey=yta13fyr2rh6a6dmsnjl10p7b&dl=0
https://www.dropbox.com/scl/fi/b2ocglzuqbadnnyzipfyc/pvc2.yaml?rlkey=xxc7wz3pwdo4ybfqa54zav63z&dl=0
https://www.dropbox.com/scl/fi/0d5znog6rdou1doko43yy/ghost.yaml?rlkey=hebkdn9ch0v9nctimiayondwc&dl=0
https://www.dropbox.com/scl/fi/m6fmpsz25lqugzqfqxpdt/ghost-service.yaml?rlkey=zyxh7ep17eujbuycddqjdsrqy&dl=0
https://www.dropbox.com/scl/fi/zot4i0u0hf4yw2yj3kyey/values.yaml?rlkey=apv0grxwvomxa9c0avig87pzy&dl=0
https://www.dropbox.com/scl/fi/zyf0mbbp3wuwnnfzzez3a/service.yaml?rlkey=47bpjs3f6u474f8v0tiunl3am&dl=0
https://www.dropbox.com/scl/fi/kark41xnz5hlilag5on0y/ghost-values.yaml?rlkey=fohccb7rwc8z66qhn4heyn2lj&dl=0

2026/02/04 14:00 3/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

StatefulSets

Un StatefulSet est un composant de Kubernetes qui est utilisé pour des applications avec état (Stateful Applications).

Des exemples d'applications avec état sont :

MySQL
elasticsearch
mongoDB

Ces applications enregistrent les données client des activités d'une session pour les utiliser lors de la session suivante. Les données enregistrées sont
appelées l'état de l'application.

Les applications avec état sont déployées en utilisant un StatefulSet tandis que des applications sans état sont déployées en utilisant un Deployment.

Les StatefulSets et les Deployments sont similaires dans la mesure où les deux répliquent de multiples pods basés sur une spécification identique
d'un conteneur.

La différence entre un StatefulSet et un Deployment est que dans un StatefulSet les pods ne sont pas identiques et possèdent ce que l'on appelle un
Pod Identity. De ce fait les pods :

ne peuvent pas être créés ou supprimés en même temps,
ne peuvent pas être adressés d'une manière aléatoire.

Prenons le cas d'un StatfulSet contenant trois répliques d'un pod MySQL :

mysql-0
mysql-1
mysql-2

Notez que :

le nom du pod prend la forme $(Nom_du_StatefulSet)-$(ordinal) où l'ordinal commence à 0
le StatefulSet ne créera pas le pod suivant tant que le pod précédent n'est pas dans un état de Running
dans le cas de la suppression du StatefulSet ou bien dans le cas d'un scale down, les pods sont supprimés dans l'ordre inverse de leur création,

2026/02/04 14:00 4/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

par exemple mysql-2 > mysql-1 > mysql-0. Chaque pod doit être complètement supprimé avant que K8s procède à la suppression du suivant

Dans ce cas de notre StatefulSet, les trois pods :

ne peuvent pas tous accepter des requêtes d'écriture car ceci donnerait des données incohérentes,
peuvent tous accepter des requêtes de lecture.

De ce fait, un mécanisme du StatefulSet choisit un maître pour accepter des requêtes d'écriture, par exemple :

mysql-0 - écriture / lecture - Maître
mysql-1 - lecture seulement - Esclave
mysql-2 - lecture seulement - Esclave

Il existe donc une différence précise entre le pod Maître et les deux pods Esclaves.

La différence entre les deux pods Esclaves s'expliquent par le fait que les pods n'utilisent pas le même stockage physique persistant et distant :

mysql-0 - /data/vol/pv1
mysql-1 - /data/vol/pv2
mysql-2 - /data/vol/pv3

De façon à ce que chaque pod contient les mêmes données, un mecanisme de réplication en continu doit être mis en place entre les deux pods
Esclaves et le pod Maître.

Dans le cas où un nouveau pod est ajouté au cluster MySQL, celui-ci doit commencer par cloner les données du dernier pod dans le cluster existant,
puis il doit commencer la réplication des données avec le Maître :

mysql-0 - données
mysql-1 - données répliquées de mysql-0
mysql-2 - données répliquées de mysql-0
mysql-3 - clone des données du pod mysql-2 puis, par la suite, données répliquées de mysql-0

L'état de chaque pod, incluant sa Pod Identity, est stocké dans le stockage physique à côté des données. De ce fait, quand un pod est remplacé, et un
nouveau pod ajouté, ce pod nouveau hérite de l'identité de l'ancien pod.

Par exemple, si on supprime le pod mysql-1, on obtient :

2026/02/04 14:00 5/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

mysql-0 - /data/vol/pv1
pod supprimé - /data/vol/pv2 = stockage physique persistant et distant non-supprimé
mysql-2 - /data/vol/pv3
mysql-3 - /data/vol/pv4

En ajoutant un pod de remplaceement, on obtient :

mysql-0
mysql-1 ««««« Le /data/vol/pv2 est rattaché au pod. Le nouveau pod s'appelle mysql-1 et non mysql-4.
mysql-2
mysql-3

Lors de la création d'un ReplicaSet, un service d'équilibrage de charge est créé. Ce service attribue un Endpoint DNS unique à chaque pod. L'Endpoint
DNS prend la forme $(Nom_du_pod).$(Nom_du_service).$(namespace).svc.cluster.local :

mysql-0 - mysql-0.mysvc.default.svc.cluster.local
mysql-1 - mysql-1.mysvc.default.svc.cluster.local
mysql-2 - mysql-2.mysvc.default.svc.cluster.local
mysql-3 - mysql-3.mysvc.default.svc.cluster.local

De cette façon, quand un pod est redémarré bien que son adresse IP changera :

son nom ne changera pas
son Endpoint DNS ne changera pas

Pour résumer :

mysql-0
Rôle : Maître
Données : écriture / lecture
Stockage : /data/vol/pv1
Endpoint DNS : mysql-0..mysvc.default.svc.cluster.local

mysql-1
Rôle : Esclave
Données : lecture seulement

2026/02/04 14:00 6/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Stockage : /data/vol/pv2
Endpoint DNS : mysql-1.mysvc.default.svc.cluster.local

mysql-2
Rôle : Esclave
Données : lecture seulement
Stockage : /data/vol/pv3
Endpoint DNS : mysql-2.mysvc.default.svc.cluster.local

mysql-3
Rôle : Esclave
Données : lecture seulement
Stockage : /data/vol/pv4
Endpoint DNS : mysql-3.mysvc.default.svc.cluster.local

Dernièrement, un StatefulSet est un composant K8s compliqué et difficile à mettre en oeuvre car Kubernetes ne s'occupe pas de certaines tâches
telles :

la configuration du clonage des données
la configuration de la réplication des données
la création et la configuration du stockage physique persistant et distant
la configuration et la gestion des sauvegardes des données

LAB #1 - Mise en Place d'un StatefulSet Simple

Créez un Namespace quarkus puis modifiez le context de kubernetes-admin@kubernetes :

root@kubemaster:~# kubectl create ns quarkus
namespace/quarkus created

root@kubemaster:~# kubectl config set-context --current --namespace=quarkus
Context "kubernetes-admin@kubernetes" modified.

Important : Quarkus est un framework Java natif pour Kubernetes complet, conçu pour

2026/02/04 14:00 7/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

les machines virtuelles Java (JVM) et la compilation native, qui permet d'optimiser Java
spécifiquement pour les conteneurs afin d'en faire une plateforme efficace pour les
environnements serverless, cloud et Kubernetes.

Si vous souhaitez observer les résultats des commandes suivantes en temps réel, ouvrez un deuxième terminal et saisissez la commande suivante :

root@kubemaster:~# watch -n 1 "kubectl get pods -o wide | awk '{print \$1 \" \" \$2 \" \" \$3 \" \" \$5 \" \"
\$7}' | column -t"

1.1 - Création du Service et du StatefulSet

Créez maintenant le fichier quarkus-service.yaml :

root@kubemaster:~# vi quarkus-service.yaml
root@kubemaster:~# cat quarkus-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: quarkus
 labels:
 app: quarkus-statefulset
spec:
 ports:
 - port: 8080
 name: web
 clusterIP: None
 selector:
 app: quarkus-statefulset

Important : Notez le nom du service - quarkus. La valeur None de l'entrée ClusterIP

2026/02/04 14:00 8/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

rend le service headless. Dans ce cas, le serveur DNS renverra les adresses IP des pods
individuels au lieu de l'adresse IP du service. Le client peut alors se connecter à n'importe
lequel d'entre eux.

Créez le service :

root@kubemaster:~# kubectl apply -f quarkus-service.yaml
service/quarkus created

Créez maintenant le fichier statefulset.yaml :

root@kubemaster:~# vi statefulset.yaml
root@kubemaster:~# cat statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: quarkus-statefulset
 labels:
 app: quarkus-statefulset
spec:
 serviceName: "quarkus"
 replicas: 2
 template:
 metadata:
 labels:
 app: quarkus-statefulset
 spec:
 containers:
 - name: quarkus-statefulset
 image: quay.io/rhdevelopers/quarkus-demo:v1
 ports:
 - containerPort: 8080
 name: web

2026/02/04 14:00 9/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 selector:
 matchLabels:
 app: quarkus-statefulset

Important : Notez que la valeur de serviceName est quarkus.

Créez le StatefulSet :

root@kubemaster:~# kubectl apply -f statefulset.yaml
statefulset.apps/quarkus-statefulset created

Constatez la présence des deux pods dans le Namespace :

Every 1,0s: kubectl get pods -o wide | awk '{print $1 " " $2 " " $3 " " $5 " " $7}' | column -t
kubemaster.ittraining.loc: Tue Dec 6 17:43:50 2022

NAME READY STATUS AGE NODE
quarkus-statefulset-0 1/1 Running 2m17s kubenode2.ittraining.loc
quarkus-statefulset-1 1/1 Running 106s kubenode1.ittraining.loc

Contrôlez l'état du StatefulSet :

root@kubemaster:~# kubectl get statefulsets
NAME READY AGE
quarkus-statefulset 2/2 3m35s

ainsi que la présence du service :

root@kubemaster:~# kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

2026/02/04 14:00 10/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

quarkus ClusterIP None <none> 8080/TCP 12m

1.2 - Mise en Place d'un Scale Up

Procédez à un scale up :

root@kubemaster:~# kubectl scale sts quarkus-statefulset --replicas=3

Important : Notez que le nom court d'un serviceName est sts.

Constatez la présence des trois pods dans le Namespace :

Every 1,0s: kubectl get pods -o wide | awk '{print $1 " " $2 " " $3 " " $5 " " $7}' | column -t
kubemaster.ittraining.loc: Tue Dec 6 17:46:42 2022

NAME READY STATUS AGE NODE
quarkus-statefulset-0 1/1 Running 5m9s kubenode2.ittraining.loc
quarkus-statefulset-1 1/1 Running 4m38s kubenode1.ittraining.loc
quarkus-statefulset-2 1/1 Running 13s kubenode2.ittraining.loc

Constatez l'ordre de création des pods :

root@kubemaster:~# kubectl get events --sort-by=.metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
6m35s Normal SuccessfulCreate statefulset/quarkus-statefulset create Pod quarkus-statefulset-0 in
StatefulSet quarkus-statefulset successful
6m35s Normal Scheduled pod/quarkus-statefulset-0 Successfully assigned quarkus/quarkus-
statefulset-0 to kubenode2.ittraining.loc
6m34s Normal Pulling pod/quarkus-statefulset-0 Pulling image
"quay.io/rhdevelopers/quarkus-demo:v1"

2026/02/04 14:00 11/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

6m5s Normal Pulled pod/quarkus-statefulset-0 Successfully pulled image
"quay.io/rhdevelopers/quarkus-demo:v1" in 28.871622372s
6m4s Normal Created pod/quarkus-statefulset-0 Created container quarkus-statefulset
6m4s Normal Started pod/quarkus-statefulset-0 Started container quarkus-statefulset
6m3s Normal Scheduled pod/quarkus-statefulset-1 Successfully assigned quarkus/quarkus-
statefulset-1 to kubenode1.ittraining.loc
6m3s Normal SuccessfulCreate statefulset/quarkus-statefulset create Pod quarkus-statefulset-1 in
StatefulSet quarkus-statefulset successful
5m58s Normal Pulling pod/quarkus-statefulset-1 Pulling image
"quay.io/rhdevelopers/quarkus-demo:v1"
5m22s Normal Pulled pod/quarkus-statefulset-1 Successfully pulled image
"quay.io/rhdevelopers/quarkus-demo:v1" in 35.551473165s
5m21s Normal Created pod/quarkus-statefulset-1 Created container quarkus-statefulset
5m21s Normal Started pod/quarkus-statefulset-1 Started container quarkus-statefulset
99s Normal Scheduled pod/quarkus-statefulset-2 Successfully assigned quarkus/quarkus-
statefulset-2 to kubenode2.ittraining.loc
99s Normal SuccessfulCreate statefulset/quarkus-statefulset create Pod quarkus-statefulset-2 in
StatefulSet quarkus-statefulset successful
98s Normal Pulled pod/quarkus-statefulset-2 Container image
"quay.io/rhdevelopers/quarkus-demo:v1" already present on machine
97s Normal Created pod/quarkus-statefulset-2 Created container quarkus-statefulset
97s Normal Started pod/quarkus-statefulset-2 Started container quarkus-statefulset

Créez maintenant un pod pour interroger le DNS de K8s :

root@kubemaster:~# kubectl run -it --restart=Never --rm --image busybox:1.28 dns-test
If you don't see a command prompt, try pressing enter.
/ # nslookup quarkus-statefulset-0.quarkus
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: quarkus-statefulset-0.quarkus
Address 1: 192.168.150.2 quarkus-statefulset-0.quarkus.quarkus.svc.cluster.local
/ # exit

2026/02/04 14:00 12/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

pod "dns-test" deleted
root@kubemaster:~#

1.3 - Mise en Place d'un Scale Down

Procédez maintenant à un scale down :

root@kubemaster:~# kubectl scale sts quarkus-statefulset --replicas=2
statefulset.apps/quarkus-statefulset scaled

Constatez la présence de deux pods dans le Namespace :

Every 1,0s: kubectl get pods -o wide | awk '{print $1 " " $2 " " $3 " " $5 " " $7}' | column -t
kubemaster.ittraining.loc: Tue Dec 6 18:02:27 2022

NAME READY STATUS AGE NODE
quarkus-statefulset-0 1/1 Running 20m kubenode2.ittraining.loc
quarkus-statefulset-1 1/1 Running 20m kubenode1.ittraining.loc

1.4 - Suppression du StatefulSet

Pour terminer, supprimez le StatefulSet, le service et le Namespace :

root@kubemaster:~# kubectl delete -f statefulset.yaml
statefulset.apps "quarkus-statefulset" deleted

root@kubemaster:~# kubectl delete -f quarkus-service.yaml
service "quarkus-statefulset-2" deleted

root@kubemaster:~# kubectl config set-context --current --namespace=default
Context "kubernetes-admin@kubernetes" modified.

2026/02/04 14:00 13/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

StorageClass Avancé

LAB #2 - Provisionnement NFS dynamique

2.1 - Configuration du Serveur NFS

Connectez-vous à la VM CentOS8 en tant que trainee au 10.0.2.45.

Devenez root puis créez le répertoire /srv/nfs/kubedata :

[root@centos8 ~]# mkdir -p /srv/nfs/kubedata

Continuez maintenant par activer et démarrer le service nfs-server :

[root@centos8 ~]# systemctl status nfs-server
● nfs-server.service - NFS server and services
 Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; disabled; vendor prese>
 Active: inactive (dead)

[root@centos8 ~]# systemctl enable nfs-server.service
Created symlink /etc/systemd/system/multi-user.target.wants/nfs-server.service → /usr/lib/systemd/system/nfs-
server.service.

[root@centos8 ~]# systemctl start nfs-server.service

[root@centos8 ~]# systemctl status nfs-server.service
● nfs-server.service - NFS server and services
 Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; enabled; vendor preset: disabled)
 Active: active (exited) since Mon 2022-11-21 11:02:13 CET; 9s ago
 Process: 3276 ExecStart=/bin/sh -c if systemctl -q is-active gssproxy; then systemctl reload gssproxy ; fi
(code=exited, >

2026/02/04 14:00 14/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 Process: 3263 ExecStart=/usr/sbin/rpc.nfsd (code=exited, status=0/SUCCESS)
 Process: 3261 ExecStartPre=/usr/sbin/exportfs -r (code=exited, status=0/SUCCESS)
 Main PID: 3276 (code=exited, status=0/SUCCESS)

Nov 21 11:02:12 centos8.ittraining.loc systemd[1]: Starting NFS server and services...
Nov 21 11:02:13 centos8.ittraining.loc systemd[1]: Started NFS server and services.

Editez le fichier /etc/exports :

[root@centos8 ~]# vi /etc/exports
[root@centos8 ~]# cat /etc/exports
/srv/nfs/kubedata *(rw,sync,no_subtree_check,no_root_squash,no_all_squash,insecure)

Important : Dans ce cas, nous avons partagé le répertoire /srv/nfs/kubedata avec le
monde.

Appliquez l'export :

[root@centos8 ~]# exportfs -rav
exporting *:/srv/nfs/kubedata

[root@centos8 ~]# exportfs -v
/srv/nfs/kubedata
 <world>(sync,wdelay,hide,no_subtree_check,sec=sys,rw,insecure,no_root_squash,no_all_squash)

Passez SELinux en mode permissive :

[root@centos8 ~]# getenforce
Enforcing

[root@centos8 ~]# setenforce permissive

2026/02/04 14:00 15/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Configurez ensuite le pare-feu :

[root@centos8 ~]# firewall-cmd --permanent --add-service=nfs
success
[root@centos8 ~]# firewall-cmd --permanent --add-service=rpc-bind
success
[root@centos8 ~]# firewall-cmd --permanent --add-service=mountd
success
[root@centos8 ~]# firewall-cmd --reload
success

2.2 - Configuration des Clients NFS

Revenez à votre gateway et connectez-vous en tant que l'utilisateur trainee à kubenode2 au 192.168.56.4. Devenez ensuite l'utilisateur root :

trainee@kubenode2:~$ su -
Mot de passe : fenestros
root@kubenode2:~#

Installez le paquet nfs-common :

root@kubenode2:~# apt update
...

root@kubenode2:~# apt install nfs-common
...

Vérifiez que vous pouvez voir le répertoire exporté par le 10.0.2.45 :

root@kubenode2:~# showmount --exports 10.0.2.45

2026/02/04 14:00 16/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Export list for 10.0.2.45:
/srv/nfs/kubedata *

Vérifiez que vous pouvez monter le répertoire exporté par le 10.0.2.45 :

root@kubenode2:~# mount -t nfs 10.0.2.45:/srv/nfs/kubedata /mnt
root@kubenode2:~# mount | grep kubedata
10.0.2.45:/srv/nfs/kubedata on /mnt type nfs4
(rw,relatime,vers=4.2,rsize=524288,wsize=524288,namlen=255,hard,proto=tcp,port=0,timeo=600,retrans=2,sec=sys,clie
ntaddr=10.0.2.67,local_lock=none,addr=10.0.2.45)

Démontez ensuite 10.0.2.45:/srv/nfs/kubedata :

root@kubenode2:~# umount /mnt

root@kubenode2:~# mount | grep kubedata

Connectez-vous à kubenode1 au 192.168.56.3 :

root@kubenode2:~# ssh -l trainee 192.168.56.3
The authenticity of host '192.168.56.3 (192.168.56.3)' can't be established.
ECDSA key fingerprint is SHA256:sEfHBv9azmK60cjqF/aJgUc9jg56slNaZQdAUcvBOvE.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.56.3' (ECDSA) to the list of known hosts.
trainee@192.168.56.3's password: trainee
Linux kubenode1.ittraining.loc 4.9.0-19-amd64 #1 SMP Debian 4.9.320-2 (2022-06-30) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Sep 28 09:54:21 2022 from 192.168.56.2

2026/02/04 14:00 17/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

trainee@kubenode1:~$ su -
Mot de passe : fenestros
root@kubenode1:~#

Installez ensuite le paquet nfs-common :

root@kubenode1:~# apt update
...

root@kubenode1:~# apt install nfs-common
...

Revenez à votre gateway :

root@kubenode1:~# exit
déconnexion
trainee@kubenode1:~$ exit
déconnexion
Connection to 192.168.56.3 closed.
root@kubenode2:~# exit
déconnexion
trainee@kubenode2:~$ exit
déconnexion
Connection to 192.168.56.4 closed.

2.3 - Configuration de K8s

Connectez-vous à votre kubemaster au 192.168.56.2.

Installez ensuite le paquet nfs-common :

root@kubemaster:~# apt update

2026/02/04 14:00 18/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

...

root@kubemaster:~# apt install nfs-common
...

Ajoutez le dépôt nfs-subdir-external-provisioner à helm :

root@kubemaster:~# helm repo add nfs-subdir-external-provisioner
https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner/
"nfs-subdir-external-provisioner" has been added to your repositories

Installez le chart helm nfs-subdir-external-provisioner :

root@kubemaster:~# helm install nfs-subdir-external-provisioner nfs-subdir-external-provisioner/nfs-subdir-
external-provisioner --set nfs.server=10.0.2.45 --set nfs.path=/srv/nfs/kubedata
NAME: nfs-subdir-external-provisioner
LAST DEPLOYED: Wed Dec 7 11:12:23 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Contrôlez l'état du pod créé :

root@kubemaster:~# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
netshoot 1/1 Running 3 (25h ago) 70d 192.168.239.58
kubenode1.ittraining.loc <none> <none>
nfs-subdir-external-provisioner-59b4b5c476-wxkp4 0/1 ContainerCreating 0 19m <none>
kubenode1.ittraining.loc <none> <none>
nginx-netshoot 1/1 Running 3 (25h ago) 70d 192.168.239.59
kubenode1.ittraining.loc <none> <none>
postgresql-6f885d8957-tnlbb 1/1 Running 3 (25h ago) 70d 192.168.239.62

2026/02/04 14:00 19/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

kubenode1.ittraining.loc <none> <none>
sharedvolume 2/2 Running 6 (25h ago) 78d 192.168.150.60
kubenode2.ittraining.loc <none> <none>
troubleshooting 1/1 Running 3 (25h ago) 70d 192.168.239.60
kubenode1.ittraining.loc <none> <none>
volumepod 0/1 Completed 0 78d 192.168.150.41
kubenode2.ittraining.loc <none> <none>

Important : Si le pod nfs-subdir-external-provisioner-yyyyyyyyyy-xxxxx reste dans
un état de ContainerCreating pour plus de 5 minutes, supprimez les trois pods calico-
node-xxxxx du Namespace kube-system et attendez qu'ils soient recréés.

Une fois recréés, vous pouvez constater que le pod nfs-subdir-external-provisioner-yyyyyyyyyy-xxxxx est dans un état de Running :

root@kubemaster:~# kubectl get pods -o wide
NAMESPACE NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE READINESS GATES
default netshoot 1/1 Running 3 (25h ago) 70d
192.168.239.58 kubenode1.ittraining.loc <none> <none>
default nfs-subdir-external-provisioner-59b4b5c476-wxkp4 1/1 Running 1 (3m18s ago) 36m
192.168.239.63 kubenode1.ittraining.loc <none> <none>
default nginx-netshoot 1/1 Running 3 (25h ago) 70d
192.168.239.59 kubenode1.ittraining.loc <none> <none>
default postgresql-6f885d8957-tnlbb 1/1 Running 3 (25h ago) 70d
192.168.239.62 kubenode1.ittraining.loc <none> <none>
default sharedvolume 2/2 Running 6 (25h ago) 78d
192.168.150.60 kubenode2.ittraining.loc <none> <none>
default troubleshooting 1/1 Running 3 (25h ago) 70d
192.168.239.60 kubenode1.ittraining.loc <none> <none>
default volumepod 0/1 Completed 0 78d
192.168.150.41 kubenode2.ittraining.loc <none> <none>

2026/02/04 14:00 20/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

L'examen du log du pod nfs-subdir-external-provisioner-yyyyyyyyyy-xxxxx démontre que tout fonctionne :

root@kubemaster:~# kubectl logs nfs-subdir-external-provisioner-59b4b5c476-wxkp4
I1207 10:45:38.321263 1 leaderelection.go:242] attempting to acquire leader lease default/cluster.local-
nfs-subdir-external-provisioner...
I1207 10:45:59.097918 1 leaderelection.go:252] successfully acquired lease default/cluster.local-nfs-
subdir-external-provisioner
I1207 10:45:59.097979 1 event.go:278] Event(v1.ObjectReference{Kind:"Endpoints", Namespace:"default",
Name:"cluster.local-nfs-subdir-external-provisioner", UID:"986e4938-a054-4bf9-bfdd-903749c7f63f",
APIVersion:"v1", ResourceVersion:"6690493", FieldPath:""}): type: 'Normal' reason: 'LeaderElection' nfs-subdir-
external-provisioner-59b4b5c476-wxkp4_1d17de3a-ac5b-442c-aa63-8253d33c2857 became leader
I1207 10:45:59.098098 1 controller.go:820] Starting provisioner controller cluster.local/nfs-subdir-
external-provisioner_nfs-subdir-external-provisioner-59b4b5c476-wxkp4_1d17de3a-ac5b-442c-aa63-8253d33c2857!
I1207 10:45:59.198332 1 controller.go:869] Started provisioner controller cluster.local/nfs-subdir-
external-provisioner_nfs-subdir-external-provisioner-59b4b5c476-wxkp4_1d17de3a-ac5b-442c-aa63-8253d33c2857!

Consultez maintenant la liste des StorageClasses :

root@kubemaster:~# kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
localdisk kubernetes.io/no-provisioner Delete Immediate true
77d
nfs-client cluster.local/nfs-subdir-external-provisioner Delete Immediate true
52m

2.4 - Création d'un PersistentVolumeClaim

Créez maintenant le fichier pvc.yaml :

root@kubemaster:~# vi pvc.yaml
root@kubemaster:~# cat pvc.yaml

2026/02/04 14:00 21/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc1
spec:
 storageClassName: nfs-client
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 500Mi

Appliquez le fichier pvc.yaml :

root@kubemaster:~# kubectl apply -f pvc.yaml
persistentvolumeclaim/pvc1 created

Constatez maintenant la liste de PersistentVolumes et de PersistentVolumeClaims :

root@kubemaster:~# kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
persistentvolume/mypv 1Gi RWO Recycle Available
localdisk 77d
persistentvolume/pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX Delete Bound
default/pvc1 nfs-client 66s

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
persistentvolumeclaim/pvc1 Bound pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX nfs-
client 67s

2026/02/04 14:00 22/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Important : Notez que le PersistentVolume
persistentvolume/pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da a été créé
automatiquement.

Connectez-vous au serveur NFS et constatez le contenu du répertoire /srv/nfs/kubedata :

root@kubemaster:~# ssh -l trainee 10.0.2.45
The authenticity of host '10.0.2.45 (10.0.2.45)' can't be established.
ECDSA key fingerprint is SHA256:Q7T/CP0SLiMbMAIgVzTuEHegYS/spPE5zzQchCHD5Vw.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.2.45' (ECDSA) to the list of known hosts.
trainee@10.0.2.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Dec 7 10:34:25 2022 from 10.0.2.65

[trainee@centos8 ~]$ ls -l /srv/nfs/kubedata/
total 0
drwxrwxrwx. 2 root root 6 Dec 7 12:32 default-pvc1-pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da
[trainee@centos8 ~]$ exit
logout
Connection to 10.0.2.45 closed.

2.5 - Utilisation du PersistentVolumeClaim avec un pod

Créez maintenant le fichier nfs-busybox.yaml :

root@kubemaster:~# vi nfs-busybox.yaml
root@kubemaster:~# cat nfs-busybox.yaml
apiVersion: v1
kind: Pod

2026/02/04 14:00 23/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

metadata:
 name: nfs-pv-pod
spec:
 restartPolicy: Never
 containers:
 - name: busybox
 image: busybox
 command: ['sh', '-c', 'while true; do sleep 3600; done']
 volumeMounts:
 - name: pv-storage
 mountPath: /pv-pod-storage
 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: pvc1

Appliquez le fichier nfs-busybox.yaml :

root@kubemaster:~# kubectl apply -f nfs-busybox.yaml
pod/nfs-pv-pod created

Vérifiez que le statut du pod nfs-pv-pod est Running :

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
netshoot 1/1 Running 3 (26h ago) 70d
nfs-pv-pod 1/1 Running 0 2m9s
nfs-subdir-external-provisioner-59b4b5c476-wxkp4 1/1 Running 1 (80m ago) 113m
nginx-netshoot 1/1 Running 3 (26h ago) 70d
postgresql-6f885d8957-tnlbb 1/1 Running 3 (26h ago) 70d
sharedvolume 2/2 Running 6 (26h ago) 78d
troubleshooting 1/1 Running 3 (26h ago) 70d
volumepod 0/1 Completed 0 78d

2026/02/04 14:00 24/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Connectez-vous au conteneur du pod nfs-pv-pod :

root@kubemaster:~# kubectl exec -it nfs-pv-pod -- sh
/ #

Créez le fichier hello dans le répertoire pv-pod-storage :

root@kubemaster:~# kubectl exec -it nfs-pv-pod -- sh
/ # ls
bin dev etc home lib lib64 proc
pv-pod-storage root sys tmp usr var
/ # touch /pv-pod-storage/hello
/ # ls /pv-pod-storage/
hello
/ # exit

Connectez-vous au serveur NFS et constatez le contenu du répertoire /srv/nfs/kubedata :

root@kubemaster:~# ssh -l trainee 10.0.2.45
trainee@10.0.2.45's password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Dec 7 12:37:00 2022 from 10.0.2.65
[trainee@centos8 ~]$ ls -lR /srv/nfs/kubedata/
/srv/nfs/kubedata/:
total 0
drwxrwxrwx. 2 root root 19 Dec 7 13:13 default-pvc1-pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da

/srv/nfs/kubedata/default-pvc1-pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da:
total 0
-rw-r--r--. 1 root root 0 Dec 7 13:13 hello
[trainee@centos8 ~]$ exit
logout

2026/02/04 14:00 25/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Connection to 10.0.2.45 closed.

Important : Notez la présence du fichier hello.

2.6 - Création d'un Deuxième PersistentVolumeClaim

Vréez le fichier pvc2.yaml :

root@kubemaster:~# vi pvc2.yaml
root@kubemaster:~# cat pvc2.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc2
spec:
 storageClassName: nfs-client
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

Appliquez le fichier pvc2.yaml :

root@kubemaster:~# kubectl apply -f pvc2.yaml
persistentvolumeclaim/pvc2 created

Constatez maintenant la liste de PersistentVolumes et de PersistentVolumeClaims :

2026/02/04 14:00 26/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
persistentvolume/mypv 1Gi RWO Recycle Available
localdisk 77d
persistentvolume/pvc-6dbce6de-e473-4e4c-99be-0fbea26576de 100Mi RWO Delete Bound
default/pvc2 nfs-client 58s
persistentvolume/pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX Delete Bound
default/pvc1 nfs-client 53m

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
persistentvolumeclaim/pvc1 Bound pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX nfs-
client 53m
persistentvolumeclaim/pvc2 Bound pvc-6dbce6de-e473-4e4c-99be-0fbea26576de 100Mi RWO nfs-
client 58s

Important : Notez que le PersistentVolume persistentvolume/pvc-6dbce6de-
e473-4e4c-99be-0fbea26576de a été créé automatiquement.

2.7 - Suppression des PersistentVolumeClaims

Commencer par supprimer le pod nfs-pv-pod :

root@kubemaster:~# kubectl delete pod nfs-pv-pod
pod "nfs-pv-pod" deleted

Constatez la suppression effective du pod :

2026/02/04 14:00 27/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

root@kubemaster:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
netshoot 1/1 Running 3 (27h ago) 70d
nfs-subdir-external-provisioner-59b4b5c476-wxkp4 1/1 Running 1 (126m ago) 159m
nginx-netshoot 1/1 Running 3 (27h ago) 70d
postgresql-6f885d8957-tnlbb 1/1 Running 3 (27h ago) 70d
sharedvolume 2/2 Running 6 (27h ago) 78d
troubleshooting 1/1 Running 3 (27h ago) 70d
volumepod 0/1 Completed 0 78d

Constatez maintenant la liste de PersistentVolumes et de PersistentVolumeClaims :

root@kubemaster:~# kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
persistentvolume/mypv 1Gi RWO Recycle Available
localdisk 77d
persistentvolume/pvc-6dbce6de-e473-4e4c-99be-0fbea26576de 100Mi RWO Delete Bound
default/pvc2 nfs-client 27m
persistentvolume/pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX Delete Bound
default/pvc1 nfs-client 79m

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
persistentvolumeclaim/pvc1 Bound pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da 500Mi RWX nfs-
client 79m
persistentvolumeclaim/pvc2 Bound pvc-6dbce6de-e473-4e4c-99be-0fbea26576de 100Mi RWO nfs-
client 27m

Important : Notez que les PersistentVolumes et les PersistentVolumeClaims sont toujours
présents.

2026/02/04 14:00 28/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Supprimes les deux PersistentVolumeClaims :

root@kubemaster:~# kubectl delete pvc --all
persistentvolumeclaim "pvc1" deleted
persistentvolumeclaim "pvc2" deleted

Constatez ensuite que les deux PersistentVolumes ont été supprimés automatiquement :

root@kubemaster:~# kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE
persistentvolume/mypv 1Gi RWO Recycle Available localdisk
77d

Connectez-vous au serveur NFS et constatez le contenu du répertoire /srv/nfs/kubedata :

root@kubemaster:~# ssh -l trainee 10.0.2.45
trainee@10.0.2.45's password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Dec 7 13:15:49 2022 from 10.0.2.65
[trainee@centos8 ~]$ ls -lR /srv/nfs/kubedata/
/srv/nfs/kubedata/:
total 0
drwxrwxrwx. 2 root root 19 Dec 7 13:13 archived-default-pvc1-pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da
drwxrwxrwx. 2 root root 6 Dec 7 13:24 archived-default-pvc2-pvc-6dbce6de-e473-4e4c-99be-0fbea26576de

/srv/nfs/kubedata/archived-default-pvc1-pvc-721f5ed3-88b1-41bb-82c2-9eab3b4464da:
total 0
-rw-r--r--. 1 root root 0 Dec 7 13:13 hello

/srv/nfs/kubedata/archived-default-pvc2-pvc-6dbce6de-e473-4e4c-99be-0fbea26576de:
total 0
[trainee@centos8 ~]$ exit

2026/02/04 14:00 29/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

logout
Connection to 10.0.2.45 closed.

Important : Notez que les répertoires ont un préfixe archived-

Helm Avancé

Un chart est une collection de fichiers et de répertoires qui prennent la forme suivante :

MyChart/
 Chart.yaml
 LICENSE
 README.md
 values.yaml
 values.schema.json
 charts/
 crds/
 templates/
 templates/NOTES.txt

Le langage des templates de helm est basé sur le langage GO.

Dans le LAB suivant, vous allez prendre les deux manifests suivants, ghost.yaml et ghost-service.yaml et créer un chart helm pour installer Ghost,
une plateforme de blogs gratuite, sous licence logiciel libre :

root@kubemaster:~# vi ghost.yaml
root@kubemaster:~# cat ghost.yaml
apiVersion: apps/v1
kind: Deployment

2026/02/04 14:00 30/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

metadata:
 name: blog
 labels:
 app: blog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: blog
 template:
 metadata:
 labels:
 app: blog
 spec:
 containers:
 - name: blog
 image: ghost:2.6-alpine
 imagePullPolicy: Always
 ports:
 - containerPort: 2368
 env:
 - name: url
 value: http://exampleblog.com

root@kubemaster:~# vi ghost-service.yaml
root@kubemaster:~# cat ghost-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: blog
spec:
 type: NodePort
 selector:
 app: blog

2026/02/04 14:00 31/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 ports:
 - protocol: TCP
 port: 80
 targetPort: 2368

LAB #3 - Création d'un Paquet Helm Simple

Commencez par créer le répertoire ~/ghost et placez-vous dedans :

root@kubemaster:~# mkdir ghost
root@kubemaster:~# cd ghost

Un chart necéssite la présence d'un fichier nommé Chart.yaml qui doit décrire le chart en question. Créez donc ce fichier :

root@kubemaster:~/ghost# touch Chart.yaml

3.1 - Le Fichier values.yaml

Un chart a aussi besoin d'un fichier dénommé values.yaml qui contient des valeurs de configuration du chart en question. Créez donc le fichier
values.yaml avec le contenu suivant :

root@kubemaster:~/ghost# vi values.yaml
root@kubemaster:~/ghost# cat values.yaml
service:
 name: blog
 type: NodePort
 app: blog
 protocol: TCP
 port: 80
 targetPort: 2368

2026/02/04 14:00 32/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

3.2 - Les Templates

Créez le sous-répertoire templates dans ghost :

root@kubemaster:~/ghost# mkdir templates

Copiez le contenu du fichier ~/ghost-service.yaml et collez-le dans le fichier ~/ghost/templates/service.yaml :

root@kubemaster:~/ghost# vi templates/service.yaml
root@kubemaster:~/ghost# cat templates/service.yaml
apiVersion: v1
kind: Service
metadata:
 name: blog
spec:
 type: NodePort
 selector:
 app: blog
 ports:
 - protocol: TCP
 port: 80
 targetPort: 2368

Modifiez ensuite ce fichier pour lire les valeurs du fichier values.yaml :

root@kubemaster:~/ghost# vi templates/service.yaml
root@kubemaster:~/ghost# cat templates/service.yaml
apiVersion: v1
kind: Service
metadata:
 name: {{ .Values.service.name }}
spec:
 type: {{ .Values.service.type }}

2026/02/04 14:00 33/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 selector:
 app: {{ .Values.service.app }}
 ports:
 - protocol: {{ .Values.service.protocol }}
 port: {{ .Values.service.port }}
 targetPort: {{ .Values.service.targetPort }}

Naviguez vers le répertoire parent du répertoire ghost :

root@kubemaster:~/ghost# cd ..

Vérifiez que helm peut lire la liste des valeurs du fichier values.yaml :

root@kubemaster:~# helm show values ghost
Error: validation: chart.metadata.name is required

L'erreur obtenu fait référence au fichier Chart.yaml, actuellement vide. Editez donc ce fichier :

root@kubemaster:~# vi ghost/Chart.yaml
root@kubemaster:~# cat ghost/Chart.yaml
name: ghost
version: 1

Vérifiez maintenant que helm peut lire la liste des valeurs du fichier values.yaml :

root@kubemaster:~# helm show values ghost
service:
 name: blog
 type: NodePort
 app: blog
 protocol: TCP
 port: 80
 targetPort: 2368

2026/02/04 14:00 34/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Vérifiez maintenant que le manifest service.yaml qui sera créé par Helm est correct :

root@kubemaster:~# helm install check ghost --dry-run
NAME: check
LAST DEPLOYED: Thu Dec 8 15:54:13 2022
NAMESPACE: default
STATUS: pending-install
REVISION: 1
TEST SUITE: None
HOOKS:
MANIFEST:

Source: ghost/templates/service.yaml
apiVersion: v1
kind: Service
metadata:
 name: blog
spec:
 type: NodePort
 selector:
 app: blog
 ports:
 - protocol: TCP
 port: 80
 targetPort: 2368

Copiez maintenant le contenu du fichier ~/ghost.yaml et collez-le dans le fichier ~/ghost/templates/ghost.yaml :

root@kubemaster:~# vi ghost/templates/ghost.yaml
root@kubemaster:~# cat ghost/templates/ghost.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: blog

2026/02/04 14:00 35/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 labels:
 app: blog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: blog
 template:
 metadata:
 labels:
 app: blog
 spec:
 containers:
 - name: blog
 image: ghost:2.6-alpine
 imagePullPolicy: Always
 ports:
 - containerPort: 2368
 env:
 - name: url
 value: http://exampleblog.com

Modifiez ensuite ce fichier pour lire les valeurs du fichier values.yaml :

root@kubemaster:~# vi ghost/templates/ghost.yaml
root@kubemaster:~# cat ghost/templates/ghost.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ .Values.blog.name }}
 labels:
 app: {{ .Values.blog.label }}
spec:
 replicas: {{ .Values.blog.replicas }}

2026/02/04 14:00 36/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 selector:
 matchLabels:
 app: {{ .Values.blog.name }}
 template:
 metadata:
 labels:
 app: {{ .Values.blog.name }}
 spec:
 containers:
 - name: {{ .Values.blog.name }}
 image: {{ .Values.blog.image }}
 imagePullPolicy: {{ .Values.blog.imagePullPolicy }}
 ports:
 - containerPort: {{ .Values.blog.containerPort }}
 env:
 - name: {{ .Values.blog.url }}
 value: {{ .Values.blog.urlValue }}

Completez maintenant le contenu du fichier values.yaml :

root@kubemaster:~# vi ghost/values.yaml
root@kubemaster:~# cat ghost/values.yaml
service:
 name: blog
 type: NodePort
 app: blog
 protocol: TCP
 port: 80
 targetPort: 2368
blog:
 name: blog
 label: blog
 replicas: 1
 image: ghost:2.6-alpine

2026/02/04 14:00 37/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

 imagePullPolicy: Always
 containerPort: 2368
 url: url
 urlValue: http://exampleblog.com

Vérifiez maintenant que le manifest ghost.yaml qui sera créé par Helm est correct :

root@kubemaster:~# helm install check ghost --dry-run
NAME: check
LAST DEPLOYED: Thu Dec 8 16:12:29 2022
NAMESPACE: default
STATUS: pending-install
REVISION: 1
TEST SUITE: None
HOOKS:
MANIFEST:

Source: ghost/templates/service.yaml
apiVersion: v1
kind: Service
metadata:
 name: blog
spec:
 type: NodePort
 selector:
 app: blog
 ports:
 - protocol: TCP
 port: 80
 targetPort: 2368

Source: ghost/templates/ghost.yaml
apiVersion: apps/v1
kind: Deployment

2026/02/04 14:00 38/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

metadata:
 name: blog
 labels:
 app: blog
spec:
 replicas: 1
 selector:
 matchLabels:
 app: blog
 template:
 metadata:
 labels:
 app: blog
 spec:
 containers:
 - name: blog
 image: ghost:2.6-alpine
 imagePullPolicy: Always
 ports:
 - containerPort: 2368
 env:
 - name: url
 value: http://exampleblog.com

Consultez maintenant l'organisation du chart ghost :

root@kubemaster:~# tree ghost
ghost
├── Chart.yaml
├── templates
│ ├── ghost.yaml
│ └── service.yaml
└── values.yaml

2026/02/04 14:00 39/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

1 directory, 4 files

3.3 - Installation et Suppression

Installez le chart ghost :

root@kubemaster:~# helm install live ghost
NAME: live
LAST DEPLOYED: Thu Dec 8 16:14:13 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Vérifiez l'état du service dans le cluster :

root@kubemaster:~# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
blog NodePort 10.106.215.169 <none> 80:32070/TCP 52s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 95d
service-netshoot ClusterIP 10.107.115.28 <none> 80/TCP 71d

Vérifiez la présence du pod dans le cluster :

root@kubemaster:~# kubectl get po
NAME READY STATUS RESTARTS AGE
blog-8545df8764-hk8rc 1/1 Running 0 105s
netshoot 1/1 Running 3 (2d6h ago) 71d
nfs-subdir-external-provisioner-59b4b5c476-wxkp4 1/1 Running 1 (28h ago) 29h
nginx-netshoot 1/1 Running 3 (2d6h ago) 71d
postgresql-6f885d8957-tnlbb 1/1 Running 3 (2d6h ago) 71d
sharedvolume 2/2 Running 6 (2d6h ago) 79d

2026/02/04 14:00 40/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

troubleshooting 1/1 Running 3 (2d6h ago) 71d
volumepod 0/1 Completed 0

Vérifiez le statut du chart :

root@kubemaster:~# helm status live
NAME: live
LAST DEPLOYED: Thu Dec 8 16:14:13 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

Dernièrement, supprimez le chart :

root@kubemaster:~# helm delete live
release "live" uninstalled

Monitoring

Le serveur Prometheus est composé de trois modules :

Data Retrieval Worker qui récupére les métriques
Time Series Database qui stocke les métriques
HTTP Server qui accepte des requêtes PromQL et qui fournit un Web UI pour la consultation des données

Important : PromQL, abréviation de Prometheus Querying Language, est le principal
moyen d'interroger les métriques dans Prometheus. Vous pouvez afficher le retour d'une
expression sous forme de graphique ou l'exporter à l'aide de l'API HTTP. PromQL utilise
trois types de données : les scalaires, les vecteurs de plage et les vecteurs instantanés. Il
utilise également des chaînes, mais uniquement en tant que littéraux.

https://prometheus.io/docs/prometheus/latest/querying/basics/

2026/02/04 14:00 41/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Des alertes sont ensuite passées à l'Alertmanager qui informe des personnes en focntion de la configuration mise en place.

LAB #4 - Mise en Place d'une Solution Prometheus

Connectez-vous à la VM Gateway_10.0.2.40_VNC.

4.1 - Déploiement du Stack avec Helm

Ajoutez le dépôt prometheus-community :

trainee@gateway:~$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
"prometheus-community" has been added to your repositories

trainee@gateway:~$ helm repo update

Installez ensuite le chart kube-prometheus-stack :

trainee@gateway:~$ helm install prometheus prometheus-community/kube-prometheus-stack
NAME: prometheus
LAST DEPLOYED: Thu Dec 8 17:04:17 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
kube-prometheus-stack has been installed. Check its status by running:
 kubectl --namespace default get pods -l "release=prometheus"

Visit https://github.com/prometheus-operator/kube-prometheus for instructions on how to create & configure
Alertmanager and Prometheus instances using the Operator.

Patientez jusqu'à ce que tous les pods soient dans un état de Running :

2026/02/04 14:00 42/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

trainee@gateway:~$ kubectl --namespace default get pods -l "release=prometheus"
NAME READY STATUS RESTARTS AGE
prometheus-kube-prometheus-operator-689dd6679c-2th6f 1/1 Running 0 4m12s
prometheus-kube-state-metrics-6cfd96f4c8-wrw2n 1/1 Running 0 4m12s
prometheus-prometheus-node-exporter-8cb4s 1/1 Running 0 4m13s
prometheus-prometheus-node-exporter-ll4qp 1/1 Running 0 4m13s
prometheus-prometheus-node-exporter-x87f7 1/1 Running 0 4m13s

Consultez maintenant l'ensemb le des objets Prometheus créés par l'installation :

trainee@gateway:~$ kubectl get all -l "release=prometheus"
NAME READY STATUS RESTARTS AGE
pod/prometheus-kube-prometheus-operator-689dd6679c-2th6f 1/1 Running 0 13h
pod/prometheus-kube-state-metrics-6cfd96f4c8-wrw2n 1/1 Running 0 13h
pod/prometheus-prometheus-node-exporter-8cb4s 1/1 Running 0 13h
pod/prometheus-prometheus-node-exporter-ll4qp 1/1 Running 0 13h
pod/prometheus-prometheus-node-exporter-x87f7 1/1 Running 0 13h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/prometheus-kube-prometheus-alertmanager ClusterIP 10.103.114.236 <none> 9093/TCP 13h
service/prometheus-kube-prometheus-operator ClusterIP 10.107.174.218 <none> 443/TCP 13h
service/prometheus-kube-prometheus-prometheus ClusterIP 10.108.124.100 <none> 9090/TCP 13h
service/prometheus-kube-state-metrics ClusterIP 10.109.13.26 <none> 8080/TCP 13h
service/prometheus-prometheus-node-exporter ClusterIP 10.103.100.124 <none> 9100/TCP 13h

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
daemonset.apps/prometheus-prometheus-node-exporter 3 3 3 3 3 <none>
13h

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/prometheus-kube-prometheus-operator 1/1 1 1 13h
deployment.apps/prometheus-kube-state-metrics 1/1 1 1 13h

2026/02/04 14:00 43/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

NAME DESIRED CURRENT READY AGE
replicaset.apps/prometheus-kube-prometheus-operator-689dd6679c 1 1 1 13h
replicaset.apps/prometheus-kube-state-metrics-6cfd96f4c8 1 1 1 13h

NAME READY AGE
statefulset.apps/alertmanager-prometheus-kube-prometheus-alertmanager 1/1 13h
statefulset.apps/prometheus-prometheus-kube-prometheus-prometheus 1/1 13h

Dans cette sortie on constate :

2 StatefulSets dont :
le serveur Prometheus statefulset.apps/prometheus-prometheus-kube-prometheus-prometheus
l'Alertmanager statefulset.apps/alertmanager-prometheus-kube-prometheus-alertmanager

2 Deployments dont :
l'operator deployment.apps/prometheus-kube-prometheus-operator qui a créé les deux StatefulSets
le kube-state-metrics deployment.apps/prometheus-kube-state-metrics qui est une dépendance de Prometheus et donc un
Subchart de ce dernier

2 ReplicaSets créés par les Deployments :
replicaset.apps/prometheus-kube-prometheus-operator-689dd6679c
replicaset.apps/prometheus-kube-state-metrics-6cfd96f4c8

1 DaemonSet daemonset.apps/prometheus-prometheus-node-exporter :
les pods de ce DaemonSet sont responsables pour la transformation des métriques des noeuds en métriques Prometheus

L'installation a aussi créé un grand nombre de ConfigMaps :

trainee@gateway:~$ kubectl get configmap -l "release=prometheus"
NAME DATA AGE
prometheus-kube-prometheus-alertmanager-overview 1 13h
prometheus-kube-prometheus-apiserver 1 13h
prometheus-kube-prometheus-cluster-total 1 13h
prometheus-kube-prometheus-controller-manager 1 13h
prometheus-kube-prometheus-etcd 1 13h
prometheus-kube-prometheus-grafana-datasource 1 13h
prometheus-kube-prometheus-grafana-overview 1 13h

2026/02/04 14:00 44/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

prometheus-kube-prometheus-k8s-coredns 1 13h
prometheus-kube-prometheus-k8s-resources-cluster 1 13h
prometheus-kube-prometheus-k8s-resources-namespace 1 13h
prometheus-kube-prometheus-k8s-resources-node 1 13h
prometheus-kube-prometheus-k8s-resources-pod 1 13h
prometheus-kube-prometheus-k8s-resources-workload 1 13h
prometheus-kube-prometheus-k8s-resources-workloads-namespace 1 13h
prometheus-kube-prometheus-kubelet 1 13h
prometheus-kube-prometheus-namespace-by-pod 1 13h
prometheus-kube-prometheus-namespace-by-workload 1 13h
prometheus-kube-prometheus-node-cluster-rsrc-use 1 13h
prometheus-kube-prometheus-node-rsrc-use 1 13h
prometheus-kube-prometheus-nodes 1 13h
prometheus-kube-prometheus-nodes-darwin 1 13h
prometheus-kube-prometheus-persistentvolumesusage 1 13h
prometheus-kube-prometheus-pod-total 1 13h
prometheus-kube-prometheus-prometheus 1 13h
prometheus-kube-prometheus-proxy 1 13h
prometheus-kube-prometheus-scheduler 1 13h
prometheus-kube-prometheus-workload-total 1 13h

ainsi que des Secrets :

trainee@gateway:~$ kubectl get secrets
NAME TYPE DATA AGE
alertmanager-prometheus-kube-prometheus-alertmanager Opaque 1 13h
alertmanager-prometheus-kube-prometheus-alertmanager-generated Opaque 1 13h
alertmanager-prometheus-kube-prometheus-alertmanager-tls-assets-0 Opaque 0 13h
alertmanager-prometheus-kube-prometheus-alertmanager-web-config Opaque 1 13h
my-secret Opaque 2 88d
prometheus-grafana Opaque 3 13h
prometheus-kube-prometheus-admission Opaque 3 13h
prometheus-prometheus-kube-prometheus-prometheus Opaque 1 13h
prometheus-prometheus-kube-prometheus-prometheus-tls-assets-0 Opaque 1 13h

2026/02/04 14:00 45/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

prometheus-prometheus-kube-prometheus-prometheus-web-config Opaque 1 13h
sh.helm.release.v1.nfs-subdir-external-provisioner.v1 helm.sh/release.v1 1 43h
sh.helm.release.v1.prometheus.v1 helm.sh/release.v1 1 13h

des Custom Resource Definitions ou crd :

trainee@gateway:~$ kubectl get crd
NAME CREATED AT
alertmanagerconfigs.monitoring.coreos.com 2022-12-08T16:04:14Z
alertmanagers.monitoring.coreos.com 2022-12-08T16:04:14Z
bgpconfigurations.crd.projectcalico.org 2022-09-04T07:38:47Z
bgppeers.crd.projectcalico.org 2022-09-04T07:38:47Z
blockaffinities.crd.projectcalico.org 2022-09-04T07:38:48Z
caliconodestatuses.crd.projectcalico.org 2022-09-04T07:38:48Z
clusterinformations.crd.projectcalico.org 2022-09-04T07:38:48Z
felixconfigurations.crd.projectcalico.org 2022-09-04T07:38:48Z
globalnetworkpolicies.crd.projectcalico.org 2022-09-04T07:38:48Z
globalnetworksets.crd.projectcalico.org 2022-09-04T07:38:49Z
hostendpoints.crd.projectcalico.org 2022-09-04T07:38:49Z
ipamblocks.crd.projectcalico.org 2022-09-04T07:38:49Z
ipamconfigs.crd.projectcalico.org 2022-09-04T07:38:49Z
ipamhandles.crd.projectcalico.org 2022-09-04T07:38:50Z
ippools.crd.projectcalico.org 2022-09-04T07:38:50Z
ipreservations.crd.projectcalico.org 2022-09-04T07:38:50Z
kubecontrollersconfigurations.crd.projectcalico.org 2022-09-04T07:38:50Z
networkpolicies.crd.projectcalico.org 2022-09-04T07:38:50Z
networksets.crd.projectcalico.org 2022-09-04T07:38:50Z
podmonitors.monitoring.coreos.com 2022-12-08T16:04:14Z
probes.monitoring.coreos.com 2022-12-08T16:04:14Z
prometheuses.monitoring.coreos.com 2022-12-08T16:04:14Z
prometheusrules.monitoring.coreos.com 2022-12-08T16:04:14Z
servicemonitors.monitoring.coreos.com 2022-12-08T16:04:15Z
thanosrulers.monitoring.coreos.com 2022-12-08T16:04:15Z

2026/02/04 14:00 46/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

4.2 - Consultation des Données avec Grafana

L'installation du chart helm a aussi installé Grafana.

Grafana est une plate-forme de visualisation de données interactive open source, développée par Grafana Labs, qui permet aux utilisateurs de voir
leurs données via des tableaux et des graphiques qui sont unifiés dans un tableau de bord (ou plusieurs tableaux de bord) pour une interprétation et
une compréhension plus faciles.

Consultez les objets Grafana :

trainee@gateway:~$ kubectl get all | grep grafana
pod/prometheus-grafana-5d9f5d6499-f4x6t 3/3 Running 1 (13h ago) 14h
service/prometheus-grafana ClusterIP 10.109.207.199 <none> 80/TCP
14h
deployment.apps/prometheus-grafana 1/1 1 1 14h
replicaset.apps/prometheus-grafana-5d9f5d6499 1 1 1 14h

Vérifiez le port utilisé par Grafana :

trainee@gateway:~$ kubectl logs prometheus-grafana-5d9f5d6499-f4x6t -c grafana | grep HTTP
logger=http.server t=2022-12-08T16:16:51.215644746Z level=info msg="HTTP Server Listen" address=[::]:3000
protocol=http subUrl= socket=

ainsi que le nom de l'utilisateur pour se connecter à Grafana :

trainee@gateway:~$ kubectl logs prometheus-grafana-5d9f5d6499-f4x6t -c grafana | grep "user="
logger=sqlstore t=2022-12-08T16:16:50.536980031Z level=info msg="Created default admin" user=admin

Le mot de passe par défaut de l'utilisateur admin peut être obtenu en consultant le contenu du fichier values.yaml

Important : Notez que le mot de passe est prom-operator.

https://github.com/prometheus-community/helm-charts/blob/main/charts/kube-prometheus-stack/values.yaml

2026/02/04 14:00 47/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Mettez en place une redirection de port :

trainee@gateway:~$ kubectl port-forward deployment/prometheus-grafana 3000
Forwarding from 127.0.0.1:3000 -> 3000
Forwarding from [::1]:3000 -> 3000

Consultez maintenant la VM Gateway_10.0.2.40_VNC et lancez le navigateur web. Saisissez l'URL http://127.0.0.1:3000 et connectez-vous à
Grafana :

http://127.0.0.1:3000

2026/02/04 14:00 48/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

2026/02/04 14:00 49/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Cliquez ensuite sur Dashboards > Browse > Kubernetes / Compute Resources / Node (Pods) :

2026/02/04 14:00 50/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

2026/02/04 14:00 51/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Dernièrement, cliquez ensuite sur Dashboards > Browse > Node Exporter / Nodes :

2026/02/04 14:00 52/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

2026/02/04 14:00 53/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

4.3 - Consultation des Alertes avec le Web UI de Prometheus

Pour consultez le Web UI de Prometheus, mettez en place une redirection de port :

trainee@gateway:~$ kubectl port-forward prometheus-prometheus-kube-prometheus-prometheus-0 9090
Forwarding from 127.0.0.1:9090 -> 9090
Forwarding from [::1]:9090 -> 9090

Retournez dans l'interface graphique de la VM Gateway_10.0.2.40_VNC et saisissez l'URL http://127.0.0.1:9090 :

http://127.0.0.1:9090

2026/02/04 14:00 54/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

2026/02/04 14:00 55/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Pour consultez la liste des alertes, cliquez sur le lien Alerts dans le menu en haut de la page :

2026/02/04 14:00 56/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

2026/02/04 14:00 57/57 DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring

www.ittraining.team - https://ittraining.team/

Copyright © 2024 Hugh Norris

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s09

Last update: 2024/12/20 13:54

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:kubernetes:k8s09

	DOF310 - StatefulSets, StorageClass Avancé, Helm Avancé et Monitoring
	Contenu du Module
	Ressources
	Lab #1
	Lab #2
	Lab #3

	StatefulSets
	LAB #1 - Mise en Place d'un StatefulSet Simple
	1.1 - Création du Service et du StatefulSet
	1.2 - Mise en Place d'un Scale Up
	1.3 - Mise en Place d'un Scale Down
	1.4 - Suppression du StatefulSet

	StorageClass Avancé
	LAB #2 - Provisionnement NFS dynamique
	2.1 - Configuration du Serveur NFS
	2.2 - Configuration des Clients NFS
	2.3 - Configuration de K8s
	2.4 - Création d'un PersistentVolumeClaim
	2.5 - Utilisation du PersistentVolumeClaim avec un pod
	2.6 - Création d'un Deuxième PersistentVolumeClaim
	2.7 - Suppression des PersistentVolumeClaims

	Helm Avancé
	LAB #3 - Création d'un Paquet Helm Simple
	3.1 - Le Fichier values.yaml
	3.2 - Les Templates
	3.3 - Installation et Suppression

	Monitoring
	LAB #4 - Mise en Place d'une Solution Prometheus
	4.1 - Déploiement du Stack avec Helm
	4.2 - Consultation des Données avec Grafana
	4.3 - Consultation des Alertes avec le Web UI de Prometheus

