
2026/02/04 12:12 1/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Version : 2023.01

Last update : 2023/12/17 05:47

DOE601 - Virtualisation by Isolation

Contents

DOE601 - Virtualisation by Isolation
Contents
Presentation of Virtualisation by Isolation

History
Presentation of Namespaces
Presentation of CGroups

LAB #1 - cgroups v1
1.1 - Preparation
1.2 - Presentation
1.3 - Memory Limitation
1.4 - The cgcreate command
1.5 - The cgexec command
1.6 - The cgdelete command
1.7 - The /etc/cgconfig.conf file
1.8 - The cgconfigparser command

LAB #2 - cgroups v2
2.1 - Preparation
2.2 - Overview
2.3 - Limiting CPU Resources
2.4 - The systemctl set-property command

Introducing Linux Containers
LAB #3 - Working with LXC

3.1 - Installation

2026/02/04 12:12 2/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

3.2 - Creating a Simple Container
3.3 - Starting a Simple Container
3.4 - Attaching to a Simple Container
3.5 - Basic LXC Commands

The lxc-console Command
The lxc-stop Command
The lxc-execute Command
The lxc-info Command
The lxc-freeze Command
The lxc-unfreeze Command
Other Commands

3.6 - Creating an Ephemeral Container
The lxc-copy Command

3.7 - Saving Containers
The lxc-snapshot Command

Introduction to Virtualisation using Isolation

An isolator is a piece of software used to isolate the execution of applications in containers, contexts or execution zones.

History

1979 - chroot - root change isolation,
2000 - BSD Jails - user-space isolation,
2004 - Solaris Containers - zone-based isolation, * 2005 - OpenVZ - kernel partitioning isolation under Linux,
2008 - LXC - LinuX Containers - isolation using namespaces and CGroups with liblxc,
2013 - Docker - isolation using namespaces and CGroups with libcontainer,
2014 - LXD - LinuX Container Daemon - isolation using namespaces and CGroups with liblxc.

https://fr.wikipedia.org/wiki/Chroot
https://www.freebsd.org/doc/handbook/jails.html
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://openvz.org/
https://linuxcontainers.org/
https://www.docker.com/get-started
https://linuxcontainers.org/lxd/introduction/

2026/02/04 12:12 3/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Namespaces presentation

Namespaces allow processes to be grouped together in the same space and rights to resources to be allocated per space. This makes it possible to run
several inits, each in a namespace, in order to recreate an environment for processes that need to be isolated.

CGroups presentation

LAB #1 - cgroups v1

1.1 - Preparation

Debian 11 uses cgroups v2 by default. To revert to using cgroups v1, edit the /etc/boot/grub file and add the
systemd.unified_cgroup_hierarchy=0 directive to the GRUB_CMDLINE_LINUX_DEFAULT line:

root@debian11:~# vi /etc/default/grub
root@debian11:~# cat /etc/default/grub
If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.
For full documentation of the options in this file, see:
info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet systemd.unified_cgroup_hierarchy=0"
GRUB_CMDLINE_LINUX=""

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)

2026/02/04 12:12 4/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal
note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE_RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT_TUNE="480 440 1"

root@debian11:~# grub-mkconfig -o /boot/grub/grub.cfg
Generating grub configuration file ...
Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64
Found initrd image: /boot/initrd.img-5.10.0-13-amd64
done

Then reboot your VM :

root@debian11:~# reboot

1.2 - Overview

Control Groups (Control Groups) also known as CGroups, are a way of controlling and limiting resources. Control groups allow resources to be

2026/02/04 12:12 5/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

allocated, even dynamically while the system is running, such as processor time, system memory, network bandwidth, or a combination of these
resources among user-defined groups of tasks (processes) running on a system.

Control groups are organised hierarchically, like processes. However, comparing the two shows that while processes are in a single tree structure all
descending from the init process and inheriting the environment from their parents, control groups can be multiple giving rise to multiple trees or
hierarchies which inherit certain attributes from their parent control groups.

These multiple and separate hierarchies are necessary because each hierarchy is attached to one or more subsystem(s) also called Resource
Controllers or simply Controllers. The controllers available under Debian 11 are :

blkio - used to set limits on I/O access to and from block devices,
cpu - used to provide tasks in control groups with CPU access through the scheduler,
cpuacct - used to produce automatic reports on CPU resources used by tasks in a control group,
cpuset - used to assign individual CPUs on a multicore system and memory nodes to tasks in a control group,
devices - used to allow or deny task access to devices in a control group,
freezer - used to suspend or reactivate tasks in a control group,
memory - used to set memory usage limits for tasks in a control group and to generate automatic reports on memory resources used by these
tasks,
net_cls - used to track network packets with a class identifier (classid) to allow the Linux traffic controller, tc, to identify packets originating from
a particular control group task.
perf_event - used to allow CGroups to be monitored with the perf tool,
hugetlb - used to limit resources on large virtual memory pages.

Note that :

each process in the system belongs to a cgroup and only to one cgroup at a time,
all threads in a process belong to the same cgroup,
when a process is created, it is placed in the same cgroup as its parent process,
a process can be migrated from one cgroup to another cgroup. However, migrating a process has no impact on the cgroup membership of its
child processes.

Start by installing the cgroup-tools package:

root@debian11:~# apt -y install cgroup-tools

2026/02/04 12:12 6/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

To view the hierarchies, use the lssubsys command:

root@debian11:~# lssubsys -am
cpuset /sys/fs/cgroup/cpuset
cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct
blkio /sys/fs/cgroup/blkio
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
net_cls,net_prio /sys/fs/cgroup/net_cls,net_prio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb
pids /sys/fs/cgroup/pids
rdma /sys/fs/cgroup/rdma

Under Debian 11, Systemd organises processes into each CGroup. For example all processes started by the Apache server will be in the same CGroup,
including CGI scripts. This means that resource management using hierarchies is coupled with Systemd's unit tree.

At the top of the Systemd unit tree is the root slice - -.slice, on which depends :

the system.slice - the location of system services,
the user.slice - the location of user sessions,
the machine.slice - the location of virtual machines and containers.

Below the slices you can find :

scopes - processes created by fork,
services - processes created by a Unit.

Slices can be viewed with the following command:

root@debian11:~# systemctl list-units --type=slice
 UNIT LOAD ACTIVE SUB DESCRIPTION
 -.slice loaded active active Root Slice
 system-getty.slice loaded active active system-getty.slice

2026/02/04 12:12 7/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 system-lvm2\x2dpvscan.slice loaded active active system-lvm2\x2dpvscan.slice
 system-modprobe.slice loaded active active system-modprobe.slice
 system-systemd\x2dcryptsetup.slice loaded active active Cryptsetup Units Slice
 system.slice loaded active active System Slice
 user-1000.slice loaded active active User Slice of UID 1000
 user.slice loaded active active User and Session Slice

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
8 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

The Systemd unit tree is as follows:

root@debian11:~# systemd-cgls
Control group /:
-.slice
├─user.slice
│ └─user-1000.slice
│ ├─user@1000.service …
│ │ ├─app.slice
│ │ │ ├─pulseaudio.service
│ │ │ │ └─974 /usr/bin/pulseaudio --daemonize=no --log-target=journal
│ │ │ ├─pipewire.service
│ │ │ │ ├─973 /usr/bin/pipewire
│ │ │ │ └─984 /usr/bin/pipewire-media-session
│ │ │ └─dbus.service
│ │ │ └─982 /usr/bin/dbus-daemon --session --address=systemd: --nofork --nopidfile --systemd-activation --
syslog-only
│ │ └─init.scope
│ │ ├─958 /lib/systemd/systemd --user
│ │ └─959 (sd-pam)
│ ├─session-3.scope

2026/02/04 12:12 8/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

│ │ ├─ 993 sshd: trainee [priv]
│ │ ├─ 999 sshd: trainee@pts/0
│ │ ├─1000 -bash
│ │ ├─1003 su -
│ │ ├─1004 -bash
│ │ ├─1010 systemd-cgls
│ │ └─1011 less
│ └─session-1.scope
│ ├─578 /bin/login -p --
│ ├─975 -bash
│ ├─986 su -
│ └─987 -bash
├─init.scope
│ └─1 /sbin/init
└─system.slice
 ├─apache2.service
 │ ├─595 /usr/sbin/apache2 -k start
 │ ├─597 /usr/sbin/apache2 -k start
 │ └─598 /usr/sbin/apache2 -k start
 ├─systemd-udevd.service
 │ └─317 /lib/systemd/systemd-udevd
 ├─cron.service
 │ └─491 /usr/sbin/cron -f
 ├─polkit.service
 │ └─495 /usr/libexec/polkitd --no-debug
 ├─rtkit-daemon.service
 │ └─979 /usr/libexec/rtkit-daemon
 ├─auditd.service
 │ └─460 /sbin/auditd
 ├─wpa_supplicant.service
 │ └─498 /sbin/wpa_supplicant -u -s -O /run/wpa_supplicant
 ├─ModemManager.service
 │ └─515 /usr/sbin/ModemManager
 ├─inetd.service

2026/02/04 12:12 9/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 │ └─694 /usr/sbin/inetd
 ├─systemd-journald.service
 │ └─296 /lib/systemd/systemd-journald
 ├─mdmonitor.service
 │ └─432 /sbin/mdadm --monitor --scan
 ├─ssh.service
 │ └─580 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
lines 1-58
[q]

Using Systemd, several resources can be limited:

CPUShares - default 1024,
MemoryLimit - limit expressed in MB or GB. No default value,
BlockIOWeight - value between 10 and 1000. No default value,
StartupCPUShares - like CPUShares but only applied during startup,
StartupBlockIOWeight - like BlockIOWeight but only applied during startup,
CPUQuota - used to limit CPU time, even when the system is not doing anything.

1.3 - Memory limiting

Start by creating the hello-world.sh script that will be used to generate a process to work with CGroups:

root@debian11:~# vi hello-world.sh
root@debian11:~# cat hello-world.sh
#!/bin/bash
while [1]; do
 echo "hello world"
 sleep 360
done

Make the script executable and test it :

2026/02/04 12:12 10/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# chmod u+x hello-world.sh
root@debian11:~# ./hello-world.sh
hello world
^C

Now create a CGroup in the memory subsystem called helloworld :

root@debian11:~# mkdir /sys/fs/cgroup/memory/helloworld

By default, this CGroup will inherit all available memory. To avoid this, now create a 40000000 byte limit for this CGroup:

root@debian11:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld/memory.limit_in_bytes
root@debian11:~# cat /sys/fs/cgroup/memory/helloworld/memory.limit_in_bytes
39997440

Important - Note that the 40,000,000 requested has become 39,997,440
which corresponds to an integer number of kernel memory pages of 4KB. (
39 997 440 / 4096 = 9 765).

Now run the helloworld.sh script:

root@debian11:~# ./hello-world.sh &
[1] 1073
root@debian11:~# hello world
[Entrée]

root@debian11:~# ps aux | grep hello-world
root 1073 0.0 0.0 6756 3100 pts/0 S 06:33 0:00 /bin/bash ./hello-world.sh
root 1077 0.0 0.0 6180 712 pts/0 R+ 06:34 0:00 grep hello-world

Note that there is no memory limit, which implies inheritance by default:

2026/02/04 12:12 11/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# ps -ww -o cgroup 1073
CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/user.slice/user-1000.slice/ses
sion-3.scope,1:name=systemd:/user.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.
scope

Insert the PID of our script in the helloworld CGroup :

root@debian11:~# echo 1073 > /sys/fs/cgroup/memory/helloworld/cgroup.procs

Now note the inheritance of the memory limitation - 5:memory:/helloworld :

root@debian11:~# ps -ww -o cgroup 1073
CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/helloworld,1:name=systemd:/use
r.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.scope

Then note the actual memory consumption :

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld/memory.usage_in_bytes
274432

Kill the hello-world.sh script:

root@debian11:~# kill 1073
root@debian11:~# ps aux | grep hello-world
root 1086 0.0 0.0 6180 716 pts/0 S+ 06:37 0:00 grep hello-world
[1]+ Terminated ./hello-world.sh

Create a second, much more restrictive CGroup:

root@debian11:~# mkdir /sys/fs/cgroup/memory/helloworld1
root@debian11:~# echo 6000 > /sys/fs/cgroup/memory/helloworld1/memory.limit_in_bytes

2026/02/04 12:12 12/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld1/memory.limit_in_bytes
4096

Relaunch the hello-world.sh script and insert it into the new CGroup:

root@debian11:~# ./hello-world.sh &
[1] 1089

root@debian11:~# hello world
[Entrée]

root@debian11:~# echo 1089 > /sys/fs/cgroup/memory/helloworld1/cgroup.procs

Wait for the next hello world output on the STDOut and then notice that the script stops:

root@debian11:~# ps aux | grep hello-world
root 1100 0.0 0.0 6180 720 pts/0 S+ 06:45 0:00 grep hello-world
[1]+ Killed ./hello-world.sh

Note the contents of the /var/log/messages file:

root@debian11:~# tail /var/log/messages
May 4 06:44:43 debian11 kernel: [994.012423] workingset_nodereclaim 0
May 4 06:44:43 debian11 kernel: [994.012423] pgfault 0
May 4 06:44:43 debian11 kernel: [994.012423] pgmajfault 0
May 4 06:44:43 debian11 kernel: [994.012423] pgrefill 0
May 4 06:44:43 debian11 kernel: [994.012423] pgscan 0
May 4 06:44:43 debian11 kernel: [994.012423] pgsteal 0
May 4 06:44:43 debian11 kernel: [994.012425] Tasks state (memory values in pages):
May 4 06:44:43 debian11 kernel: [994.012426] [pid] uid tgid total_vm rss pgtables_bytes swapents
oom_score_adj name
May 4 06:44:43 debian11 kernel: [994.012428] [1089] 0 1089 1689 780 53248 0
0 hello-world.sh
May 4 06:44:43 debian11 kernel: [994.012430] oom-

2026/02/04 12:12 13/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=/,mems_allowed=0,oom_memcg=/helloworld1,task_memcg=/hello
world1,task=hello-world.sh,pid=1089,uid=0

1.4 - The cgcreate command

This command is used to create a CGroup:

root@debian11:~# cgcreate -g memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:47 cgroup.clone_children
--w--w--w- 1 root root 0 May 4 06:47 cgroup.event_control
-rw-r--r-- 1 root root 0 May 4 06:47 cgroup.procs
-rw-r--r-- 1 root root 0 May 4 06:47 memory.failcnt
--w------- 1 root root 0 May 4 06:47 memory.force_empty
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.slabinfo
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.max_usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.memsw.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 May 4 06:47 memory.numa_stat

2026/02/04 12:12 14/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 May 4 06:47 memory.oom_control
---------- 1 root root 0 May 4 06:47 memory.pressure_level
-rw-r--r-- 1 root root 0 May 4 06:47 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.stat
-rw-r--r-- 1 root root 0 May 4 06:47 memory.swappiness
-r--r--r-- 1 root root 0 May 4 06:47 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.use_hierarchy
-rw-r--r-- 1 root root 0 May 4 06:47 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:47 tasks

However, there is no command to assign a memory limit:

root@debian11:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld2/memory.limit_in_bytes

1.5 - The cgexec Command

This command inserts the limit into the CGroup and runs the script in a single line:

root@debian11:~# cgexec -g memory:helloworld2 ./hello-world.sh &
[1] 1106

root@debian11:~# hello world
[Entrée]

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld2/cgroup.procs
1106
1107
root@debian11:~# ps aux | grep 110
root 1106 0.0 0.0 6756 3060 pts/0 S 06:48 0:00 /bin/bash ./hello-world.sh
root 1107 0.0 0.0 5304 508 pts/0 S 06:48 0:00 sleep 360
root 1108 0.0 0.0 0 0 ? I 06:49 0:00 [kworker/1:0-events_freezable]
root 1113 0.0 0.0 6180 652 pts/0 S+ 06:50 0:00 grep 110

2026/02/04 12:12 15/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

1.6 - The cgdelete Command

Once the script has completed, this command deletes the cgroup:

root@debian11:~# kill 1106
root@debian11:~# ps aux | grep 110
root 1107 0.0 0.0 5304 508 pts/0 S 06:48 0:00 sleep 360
root 1108 0.0 0.0 0 0 ? I 06:49 0:00 [kworker/1:0-mm_percpu_wq]
root 1115 0.0 0.0 6180 716 pts/0 R+ 06:51 0:00 grep 110
[1]+ Terminated cgexec -g memory:helloworld2 ./hello-world.sh

root@debian11:~# cgdelete memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
ls: cannot access '/sys/fs/cgroup/memory/helloworld2/': No such file or directory

1.7 - The /etc/cgconfig.conf file

In order to make them persistent, the /etc/cgconfig.conf file needs to be edited:

root@debian11:~# vi /etc/cgconfig.conf
root@debian11:~# cat /etc/cgconfig.conf
group helloworld2 {
 cpu {
 cpu.shares = 100;
 }
 memory {
 memory.limit_in_bytes = 40000;
 }
}

2026/02/04 12:12 16/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Important - Note the creation of two limits, one of 40,000 bytes of
memory and the other of 100 cpu.shares. The latter is a value expressed
over 1,024, where 1,024 represents 100% of CPU time. The limit set is
therefore equivalent to 9.77% of CPU time.

Now create the two CGroups required:

root@debian11:~# cgcreate -g memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:53 cgroup.clone_children
--w--w--w- 1 root root 0 May 4 06:53 cgroup.event_control
-rw-r--r-- 1 root root 0 May 4 06:53 cgroup.procs
-rw-r--r-- 1 root root 0 May 4 06:53 memory.failcnt
--w------- 1 root root 0 May 4 06:53 memory.force_empty
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.slabinfo
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.max_usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.memsw.usage_in_bytes

2026/02/04 12:12 17/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 May 4 06:53 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 May 4 06:53 memory.numa_stat
-rw-r--r-- 1 root root 0 May 4 06:53 memory.oom_control
---------- 1 root root 0 May 4 06:53 memory.pressure_level
-rw-r--r-- 1 root root 0 May 4 06:53 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.stat
-rw-r--r-- 1 root root 0 May 4 06:53 memory.swappiness
-r--r--r-- 1 root root 0 May 4 06:53 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.use_hierarchy
-rw-r--r-- 1 root root 0 May 4 06:53 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:53 tasks

root@debian11:~# cgcreate -g cpu:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/cpu/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:54 cgroup.clone_children
-rw-r--r-- 1 root root 0 May 4 06:54 cgroup.procs
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.stat
-rw-r--r-- 1 root root 0 May 4 06:54 cpuacct.usage
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_all
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu_sys
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu_user
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_sys
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_user
-rw-r--r-- 1 root root 0 May 4 06:54 cpu.cfs_period_us
-rw-r--r-- 1 root root 0 May 4 06:54 cpu.cfs_quota_us
-rw-r--r-- 1 root root 0 May 4 06:54 cpu.shares
-r--r--r-- 1 root root 0 May 4 06:54 cpu.stat
-rw-r--r-- 1 root root 0 May 4 06:54 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:54 tasks

2026/02/04 12:12 18/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

1.8 - The cgconfigparser command

Apply the contents of the /etc/cgconfig.conf file using the cgconfigparser command:

root@debian11:~# cgconfigparser -l /etc/cgconfig.conf

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld2/memory.limit_in_bytes
36864

root@debian11:~# cat /sys/fs/cgroup/cpu/helloworld2/cpu.shares
100

LAB #2 - cgroups v2

2.1 - Preparation

To revert to using cgroups v2, edit the /etc/boot/grub file and change the systemd.unified_cgroup_hierarchy=0 directive to
systemd.unified_cgroup_hierarchy=1 in the GRUB_CMDLINE_LINUX_DEFAULT line:

root@debian11:~# vi /etc/default/grub
root@debian11:~# cat /etc/default/grub
If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.
For full documentation of the options in this file, see:
info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet systemd.unified_cgroup_hierarchy=1"
GRUB_CMDLINE_LINUX=""

2026/02/04 12:12 19/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)
#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal
note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE_RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT_TUNE="480 440 1"

root@debian11:~# grub-mkconfig -o /boot/grub/grub.cfg
Generating grub configuration file ...
Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64
Found initrd image: /boot/initrd.img-5.10.0-13-amd64
done

Then reboot your VM :

root@debian11:~# reboot

2026/02/04 12:12 20/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

2.2 - Presentation

Unlike cgroup v1, cgroup v2 has only one tree or hierarchy and therefore only one mount point. All v2-compatible controllers that are not linked to a v1
hierarchy are automatically linked to the v2 hierarchy. An inactive controller in the v2 hierarchy can be linked to another hierarchy. Migration of a
controller from one hierarchy to another is only possible if the controller is deactivated and no longer referenced in the original hierarchy.

To check that cgroups v2 is being used, the mount point should be viewed:

root@debian11:~# mount -l | grep cgroup
cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,nsdelegate,memory_recursiveprot)

and view the contents of this mount point:

root@debian11:~# ls -l /sys/fs/cgroup/
total 0
-r--r--r-- 1 root root 0 Jul 6 10:58 cgroup.controllers
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 10:58 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 11:32 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 10:58 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 11:32 cpu.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 cpuset.cpus.effective
-r--r--r-- 1 root root 0 Jul 6 11:32 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 11:32 cpu.stat
drwxr-xr-x 2 root root 0 Jul 6 10:58 dev-hugepages.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 dev-mqueue.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 init.scope
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.cost.model
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.cost.qos
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 io.stat

2026/02/04 12:12 21/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 Jul 6 11:32 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 11:32 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 memory.stat
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-fs-fuse-connections.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-config.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-debug.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-tracing.mount
drwxr-xr-x 23 root root 0 Jul 6 11:26 system.slice
drwxr-xr-x 4 root root 0 Jul 6 11:30 user.slice

In version 2 of cgroup, some names have changed from those used in version 1:

Version 1 Version 2
CPUShares CPUWeight
StartupCPUShares StartupCPUWeight
MemoryLimit MemoryMax

Start by creating the child cgroup pids in the root cgroup:

root@debian11:~# mkdir /sys/fs/cgroup/pids

Place the PID of the current terminal in the cgroup.procs file of the child cgroup:

root@debian11:~# echo $$
1230
root@debian11:~# echo $$ > /sys/fs/cgroup/pids/cgroup.procs

Now check the contents of the cgroup.procs file as well as the number of PIDs in the pids cgroup:

root@debian11:~# cat /sys/fs/cgroup/pids/cgroup.procs
1230
1281

2026/02/04 12:12 22/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# cat /sys/fs/cgroup/pids/pids.current
2

Important - Note that the cgroup.procs file contains two PIDs. The first is
from the Shell while the second is from the cat command.

Now inject the value of 5 into the pids.max file of the cgroup pids :

root@debian11:~# echo 5 > /sys/fs/cgroup/pids/pids.max

Run the following command to create 6 pids in the cgroup:

root@debian11:~# for a in $(seq 1 5); do sleep 60 & done
[1] 1290
[2] 1291
[3] 1292
[4] 1293
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: Resource temporarily unavailable

Important - Note that when attempting to create the 6th process, an error
is returned. The system then tries 4 more times and finally gives up with
the error message -bash: fork: Resource temporarily unavailable.

Lastly, try deleting the pids cgroup:

2026/02/04 12:12 23/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# rmdir /sys/fs/cgroup/pids
rmdir: failed to remove '/sys/fs/cgroup/pids': Device or resource busy

Important - Note that it is not possible to remove a cgroup as long as it
contains a process.

Move the current terminal process into the root cgroup:

root@debian11:~# echo $$ > /sys/fs/cgroup/cgroup.procs

It is now possible to delete the pids cgroup:

root@debian11:~# rmdir /sys/fs/cgroup/pids
root@debian11:~#

2.3 - Limiting CPU Resources

There are two ways to limit CPU resources:

CPU bandwidth,
a limiting system based on a percentage of CPU for one or more processes,

CPU weight,
a limiting system based on the prioritisassion of one or more processes relative to other processes.

In the following example, you are going to set up a CPU bandwidth type limit.

Start by creating a service called foo :

root@debian11:~# vi /lib/systemd/system/foo.service
root@debian11:~# cat /lib/systemd/system/foo.service

2026/02/04 12:12 24/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

[Unit]
Description=The foo service that does nothing useful
After=remote-fs.target nss-lookup.target

[Service]
ExecStart=/usr/bin/sha1sum /dev/zero
ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Start and enable the service:

root@debian11:~# systemctl start foo.service
root@debian11:~# systemctl enable foo.service
Created symlink /etc/systemd/system/multi-user.target.wants/foo.service → /lib/systemd/system/foo.service.
root@debian11:~# systemctl status foo.service
● foo.service - The foo service that does nothing useful
 Loaded: loaded (/lib/systemd/system/foo.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2022-07-06 11:41:18 CEST; 19s ago
 Main PID: 997 (sha1sum)
 Tasks: 1 (limit: 19155)
 Memory: 296.0K
 CPU: 19.114s
 CGroup: /system.slice/foo.service
 └─997 /usr/bin/sha1sum /dev/zero

Jul 06 11:41:18 debian11 systemd[1]: Started The foo service that does nothing useful.

Use the ps command to see the percentage of CPU used by this service :

root@debian11:~# ps -p 997 -o pid,comm,cputime,%cpu
 PID COMMAND TIME %CPU

2026/02/04 12:12 25/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 997 sha1sum 00:01:33 100

Now create another service called bar :

root@debian11:~# vi /lib/systemd/system/bar.service
root@debian11:~# cat /lib/systemd/system/bar.service
[Unit]
Description=The bar service that does nothing useful
After=remote-fs.target nss-lookup.target

[Service]
ExecStart=/usr/bin/md5sum /dev/zero
ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Start and enable the service:

root@debian11:~# systemctl start bar.service

root@debian11:~# systemctl enable bar.service

Created symlink /etc/systemd/system/multi-user.target.wants/bar.service → /lib/systemd/system/bar.service.

root@debian11:~# systemctl status bar.service
● bar.service - The bar service that does nothing useful
 Loaded: loaded (/lib/systemd/system/bar.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2022-07-06 11:45:24 CEST; 15s ago
 Main PID: 1020 (md5sum)
 Tasks: 1 (limit: 19155)
 Memory: 236.0K
 CPU: 15.079s
 CGroup: /system.slice/bar.service

2026/02/04 12:12 26/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 └─1020 /usr/bin/md5sum /dev/zero

Jul 06 11:45:24 debian11 systemd[1]: Started The bar service that does nothing useful.

Use the ps command to see the percentage of CPU used by this service :

root@debian11:~# ps -p 1020 -o pid,comm,cputime,%cpu
 PID COMMAND TIME %CPU
 1020 md5sum 00:01:03 99.4

Now check for the presence of the cpuset and cpu controllers in the root cgroup tree, which is mounted at /sys/fs/cgroup/ :

root@debian11:~# cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma

Now enable the two controllers cpuset and cpu :

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control
memory pids

root@debian11:~# echo "+cpu" >> /sys/fs/cgroup/cgroup.subtree_control

root@debian11:~# echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree_control

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control
cpuset cpu memory pids

Create the child cgroup called FooBar :

root@debian11:~# mkdir /sys/fs/cgroup/FooBar/

root@debian11:~# ls -l /sys/fs/cgroup/FooBar/
total 0
-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.controllers

2026/02/04 12:12 27/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.max
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 12:18 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 12:18 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 12:18 io.pressure
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.current
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.events
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.high
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.low
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.max
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.min
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.oom.group
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.stat
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.swap.high

2026/02/04 12:12 28/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 12:18 pids.current
-r--r--r-- 1 root root 0 Jul 6 12:18 pids.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 pids.max

Enable the cpuset and cpu controllers for the FooBar cgroup:

root@debian11:~# echo "+cpu" >> /sys/fs/cgroup/FooBar/cgroup.subtree_control

root@debian11:~# echo "+cpuset" >> /sys/fs/cgroup/FooBar/cgroup.subtree_control

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control /sys/fs/cgroup/FooBar/cgroup.subtree_control
cpuset cpu memory pids
cpuset cpu

Important - Note that it is not possible to enable controllers for a child
cgroup if those same controllers are not already enabled for the parent
cgroup. Also note that in the FooBar cgroup, the memory and pids
controllers are not enabled.

Now create the /sys/fs/cgroup/FooBar/tasks directory:

root@debian11:~# mkdir /sys/fs/cgroup/FooBar/tasks
root@debian11:~# ls -l /sys/fs/cgroup/FooBar/tasks
total 0
-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.procs

2026/02/04 12:12 29/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.max
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 12:20 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 12:20 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 12:20 io.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:20 memory.pressure

Important - The /sys/fs/cgroup/FooBar/tasks directory defines a child
group of the FooBar cgroup that only affects the cpuset and cpu
controllers.

So that the two processes from the foo and bar services compete on the same CPU, inject the value of 1 into the
/sys/fs/cgroup/FooBar/tasks/cpuset.cpus file:

root@debian11:~# echo "1" > /sys/fs/cgroup/FooBar/tasks/cpuset.cpus

root@debian11:~# cat /sys/fs/cgroup/FooBar/tasks/cpuset.cpus
1

Set up CPU resource limit with the following command:

2026/02/04 12:12 30/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# echo "200000 1000000" > /sys/fs/cgroup/FooBar/tasks/cpu.max

Important - In the above command, the first number is a quota in
microseconds for which processes in the cgroup can run in a given period
of time. The second number, also in microseconds, is the period. In other
words, processes in the cgroup will be limited to running 200,000 /
1,000,000 = 0.2 seconds during each second.

Now add the foo and bar service processes to the FooBar cgroup:

echo "997" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs

echo "1020" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs

Check that the previous command has been taken into account by the system:

root@debian11:~# cat /proc/997/cgroup /proc/1020/cgroup
0::/FooBar/tasks
0::/FooBar/tasks

Lastly, use the top command to see that CPU consumption and limited to 20% on all processes in the FooBar cgroup and that this 20% is divided
equally between the two foo and bar processes :

top - 12:36:33 up 1:37, 2 users, load average: 0.01, 0.70, 1.39
Tasks: 154 total, 3 running, 151 sleeping, 0 stopped, 0 zombie
%Cpu(s): 2.5 us, 0.0 sy, 0.0 ni, 97.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 16007.9 total, 15503.7 free, 203.6 used, 300.6 buff/cache
MiB Swap: 975.0 total, 975.0 free, 0.0 used. 15536.4 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 997 root 20 0 5312 572 508 R 10.0 0.0 50:12.26 sha1sum

2026/02/04 12:12 31/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 1020 root 20 0 5308 508 444 R 10.0 0.0 47:00.56 md5sum

2.4 - The systemctl set-property Command

As already seen, systemd organizes processes into slices, for example users are grouped into /sys/fs/cgroup/user.slice :

root@debian11:~# ls -l /sys/fs/cgroup/user.slice
total 0
-r--r--r-- 1 root root 0 Jul 6 16:13 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 10:58 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 16:13 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 15:05 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.max
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 16:13 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 10:58 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 16:13 io.pressure
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.current
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.events
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.high

2026/02/04 12:12 32/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.low
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.max
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.min
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.oom.group
-rw-r--r-- 1 root root 0 Jul 6 16:13 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.stat
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 16:13 memory.swap.high
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 16:13 pids.current
-r--r--r-- 1 root root 0 Jul 6 16:13 pids.events
-rw-r--r-- 1 root root 0 Jul 6 10:58 pids.max
drwxr-xr-x 8 root root 0 Jul 6 15:22 user-1000.slice
drwxr-xr-x 5 root root 0 Jul 6 11:41 user-113.slice

and the processes of a specific user in a slice named user-UID.slice :

root@debian11:~# ls -l /sys/fs/cgroup/user.slice/user-1000.slice
total 0
-r--r--r-- 1 root root 0 Jul 6 16:14 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 11:30 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 16:14 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 15:05 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 16:14 cpu.pressure
-r--r--r-- 1 root root 0 Jul 6 11:30 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 16:14 io.pressure

2026/02/04 12:12 33/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 Jul 6 16:14 memory.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.events
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.high
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.low
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.max
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.min
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.oom.group
-rw-r--r-- 1 root root 0 Jul 6 16:14 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.stat
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 16:14 memory.swap.high
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 16:14 pids.current
-r--r--r-- 1 root root 0 Jul 6 16:14 pids.events
-rw-r--r-- 1 root root 0 Jul 6 11:30 pids.max
drwxr-xr-x 2 root root 0 Jul 6 14:56 session-13.scope
drwxr-xr-x 2 root root 0 Jul 6 15:22 session-15.scope
drwxr-xr-x 2 root root 0 Jul 6 11:30 session-4.scope
drwxr-xr-x 2 root root 0 Jul 6 12:12 session-6.scope
drwxr-xr-x 4 trainee trainee 0 Jul 6 11:30 user@1000.service
drwxr-xr-x 2 root root 0 Jul 6 11:41 user-runtime-dir@1000.service

Because of this, it is possible to use systemd to set resource limits using the systemd set-property command:

CPU

root@debian11:~# systemctl set-property user-1000.slice CPUQuota=40%
root@debian11:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/cpu.max
40000 100000

2026/02/04 12:12 34/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Memory

root@debian11:~# systemctl set-property user-1000.slice MemoryMax=1G
root@debian11:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/memory.max
1073741824

Important - Note that using MemoryMax sets up a hard limit. It is also
possible to set up a soft limit by using MemoryHigh.

Introduction to Linux Containers

LAB #3 - Working with LXC

3.1 - Installation

The essential tools for using Linux Containers under Debian are included in the lxc package:

root@debian11:~# apt install lxc
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no longer required:
 libopengl0 linux-headers-5.10.0-15-amd64 linux-headers-5.10.0-15-common
Use 'apt autoremove' to remove them.
The following additional packages will be installed:
 arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info
 fakechroot genisoimage libaio1 libdistro-info-perl libfakechroot liblxc1

2026/02/04 12:12 35/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 libpam-cgfs lxc-templates lxcfs mmdebstrap qemu-utils rsync uidmap uuid-runtime
Suggested packages:
 ubuntu-archive-keyring squid-deb-proxy-client shunit2 wodim cdrkit-doc btrfs-progs
 lvm2 python3-lxc qemu-user-static apt-transport-tor binfmt-support perl-doc proot
 qemu-user squashfs-tools-ng qemu-block-extra
The following packages will be REMOVED:
 busybox
The following NEW packages will be installed:
 arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info
 fakechroot genisoimage libaio1 libdistro-info-perl libfakechroot liblxc1
 libpam-cgfs lxc lxc-templates lxcfs mmdebstrap qemu-utils rsync uidmap
 uuid-runtime
0 upgraded, 21 newly installed, 1 to remove and 5 not upgraded.
Need to get 6,127 kB of archives.
After this operation, 33.2 MB of additional disk space will be used.
Do you want to continue? [Y/n] y

Installing this package will create the /usr/share/lxc/config directory containing the template configuration files and the /usr/share/lxc/templates
directory containing template files for creating containers :

root@debian11:~# ls /usr/share/lxc
config hooks lxc.functions lxc-patch.py selinux templates

root@debian11:~# ls /usr/share/lxc/config
alpine.common.conf gentoo.moresecure.conf slackware.userns.conf
alpine.userns.conf gentoo.userns.conf sparclinux.common.conf
archlinux.common.conf nesting.conf sparclinux.userns.conf
archlinux.userns.conf oci.common.conf ubuntu-cloud.common.conf
centos.common.conf opensuse.common.conf ubuntu-cloud.lucid.conf
centos.userns.conf opensuse.userns.conf ubuntu-cloud.userns.conf
common.conf openwrt.common.conf ubuntu.common.conf
common.conf.d oracle.common.conf ubuntu.lucid.conf
common.seccomp oracle.userns.conf ubuntu.userns.conf
debian.common.conf plamo.common.conf userns.conf

2026/02/04 12:12 36/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

debian.userns.conf plamo.userns.conf voidlinux.common.conf
fedora.common.conf sabayon.common.conf voidlinux.userns.conf
fedora.userns.conf sabayon.userns.conf
gentoo.common.conf slackware.common.conf

root@debian11:~# ls /usr/share/lxc/templates
lxc-alpine lxc-cirros lxc-gentoo lxc-oracle lxc-sparclinux
lxc-altlinux lxc-debian lxc-local lxc-plamo lxc-sshd
lxc-archlinux lxc-download lxc-oci lxc-pld lxc-ubuntu
lxc-busybox lxc-fedora lxc-openmandriva lxc-sabayon lxc-ubuntu-cloud
lxc-centos lxc-fedora-legacy lxc-opensuse lxc-slackware lxc-voidlinux

3.2 - Creating a Simple Container

Create a simple container using the following command:

root@debian11:~# lxc-create -n lxc-bb -t busybox

Important - Note the use of the -n option which allows a name to be
associated with the container as well as the -t option which indicates the
template to be used. Note also that the template is referenced by the name
of the file in the /usr/share/lxc/templates directory without its lxc- prefix.

The backingstore (storage method) used by default is dir which implies that the rootfs of the container is located on disk in the /var/lib/lxc/
directory :

root@debian11:~# ls /var/lib/lxc/
lxc-bb

root@debian11:~# ls /var/lib/lxc/lxc-bb/

2026/02/04 12:12 37/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

config rootfs

root@debian11:~# ls /var/lib/lxc/lxc-bb/rootfs
bin dev etc home lib lib64 mnt proc root sbin selinux sys tmp usr var

Note that LXC can also use backingstores of the following types:

ZFS,
Brtfs,
LVM,
Loop,
rbd (CephFS).

3.3 - Starting a Simple Container

To start the container, the lxc-start command should be used:

root@debian9:~# lxc-start --name lxc-bb

3.4 - Attaching to a Simple Container

To attach to the started container, the lxc-attach command should be used:

root@debian11:~# lxc-start --name lxc-bb

root@debian11:~# lxc-attach --name lxc-bb
lxc-attach: lxc-bb: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open terminal
multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)

2026/02/04 12:12 38/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Enter 'help' for a list of built-in commands.

~ # which passwd
/bin/passwd
~ #

Important - Note the absence of the passwd command in the container,
which explains the error when creating it.

To exit the container, use the exit command or the <Ctrl+d> key combination:

~ # [Ctrl+d]
~ # root@debian11:~#

Exiting the container does not stop it, as can be seen by using the lxc-ls command:

~ # root@debian11:~# [Enter]

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb RUNNING 0 - 10.0.3.48 - false - - -

3.5 - Basic LXC commands

The lxc-console Command

2026/02/04 12:12 39/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

To launch a console attached to a TTY in the container, the lxc-console command should be used:

root@debian11:~# lxc-console --name lxc-bb

Connected to tty 1
Type <Ctrl+a q> to exit the console, <Ctrl+a Ctrl+a> to enter Ctrl+a itself

lxc-bb login:

To exit the console, use the key combination <Ctrl+a> <q> :

lxc-bb login: [Ctrl+a] [q] root@debian11:~#

The lxc-stop Command

To stop the container, use the lxc-stop command :

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-stop --name lxc-bb

root@debian11:~# lxc-ls --running

root@debian11:~#

The lxc-execute command

The lxc-execute command starts a container (which must be created but stopped), executes the command passed as an argument using the –
characters and then stops the container :

2026/02/04 12:12 40/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-execute -n lxc-bb -- uname -a
Linux lxc-bb 5.10.0-24-amd64 #1 SMP Debian 5.10.179-5 (2023-08-08) x86_64 GNU/Linux

root@debian11:~# lxc-ls --running

root@debian11:~#

The lxc-info command

This command gives information about a container :

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: STOPPED

The lxc-freeze Command

The lxc-freeze command pauses all processes in the container :

root@debian11:~# lxc-start -n lxc-bb

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: RUNNING
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB

2026/02/04 12:12 41/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

 RX bytes: 3.88 KiB
 Total bytes: 5.10 KiB

root@debian11:~# lxc-freeze -n lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: FROZEN
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB
 RX bytes: 4.06 KiB
 Total bytes: 5.28 KiB

root@debian11:~#

The lxc-unfreeze Command

The lxc-unfreeze command cancels the effect of a previous lxc-freeze command :

root@debian11:~# lxc-unfreeze -n lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: RUNNING
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB
 RX bytes: 4.47 KiB
 Total bytes: 5.69 KiB

2026/02/04 12:12 42/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

Other commands

The other commands you need to know about are :

Command Description
lxc-destroy Allows you to completely destroy a container
lxc-autostart Allows you to reboot, kill or stop containers whose flag lxc.start.auto is set in the /var/lib/<container_name>/config file
lxc-cgroup Enables hot manipulation of CGroups for a given container
lxc-device Enables hot addition of devices to a container
lxc-usernsexec Allows you to execute commands as root in a non-privileged container
lxc-wait Allows you to wait until a container has reached a certain state before continuing

3.6 - Creating an Ephemeral Container

By default, LXC containers are permanent. It is possible to create an ephemeral container, i.e. one in which all data is destroyed when the container is
shut down, using the lxc-copy command and the –epheremal or -e option to this command.

The lxc-copy command

Note that the original container must be stopped when using the lxc-copy command:

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb RUNNING 0 - 10.0.3.65 - false
root@debian11:~# lxc-copy -e -N lxc-bb-eph -n lxc-bb

root@debian11:~# lxc-ls -f --running

root@debian11:~#

So stop the lxc-bb container and then create the copy:

2026/02/04 12:12 43/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-stop -n lxc-bb

root@debian11:~# lxc-ls -f --running

root@debian11:~# lxc-copy -e -N lxc-bb-eph -n lxc-bb
Created lxc-bb-eph as clone of lxc-bb

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb-eph RUNNING 0 - 10.0.3.21 - false

Attach to the lxc-bb-eph container:

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb-eph RUNNING 0 - 10.0.3.21 - false
root@debian11:~# lxc-attach lxc-bb-eph
lxc-attach: lxc-bb-eph: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ #

Create a control file called testdata :

~ # ls -l
total 0

~ # pwd
/root

2026/02/04 12:12 44/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

~ # echo "test" > testdata

~ # ls -l
total 4
-rw-r--r-- 1 root root 5 Aug 20 09:10 testdata

~ #

Disconnect from the container and then re-attach:

~ # exit

root@debian11:~# lxc-attach -n lxc-bb-eph
lxc-attach: lxc-bb-eph: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ # ls -l
total 4
-rw-r--r-- 1 root root 5 Aug 20 09:10 testdata

~ #

Important - Note that the testdata file is still present.

Log out again and shut down the container:

~ # exit

2026/02/04 12:12 45/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-stop -n lxc-bb-eph

root@debian11:~# lxc-ls
lxc-bb

root@debian11:~# lxc-start -n lxc-bb-eph
lxc-start: lxc-bb-eph: tools/lxc_start.c: main: 268 No container config specified

root@debian11:~#

Important - Note that the lxc-bb-eph container has been destroyed.

3.7 - Saving Containers

An LXC container can be backed up in three different ways:

use the tar or cpio command to create an archive of the rootfs directory and config file associated with the container,
use the lxc-copy command without the -e option,
use the lxc-snapshot command.

The lxc-snapshot command

This command is used to manage container snapshots. Note that containers must be stopped before taking a snapshot:

root@debian11:~# lxc-ls -f --running

root@debian11:~# lxc-snapshot -n lxc-bb

2026/02/04 12:12 46/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~#

Snapshots are stored in the snaps subdirectory of the /var/lib/lxc/<container_name>/ directory. The first one is called snap0 :

root@debian11:~# ls -l /var/lib/lxc/lxc-bb
total 12
-rw-r----- 1 root root 1276 Aug 20 10:01 config
drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
drwxr-xr-x 3 root root 4096 Aug 20 12:35 snaps

root@debian11:~# ls -l /var/lib/lxc/lxc-bb/snaps/
total 4
drwxrwx--- 3 root root 4096 Aug 20 12:35 snap0

root@debian11:~# ls -l /var/lib/lxc/lxc-bb/snaps/snap0/
total 12
-rw-r----- 1 root root 1284 Aug 20 12:35 config
drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
-rw-r--r-- 1 root root 19 Aug 20 12:35 ts

The snapshot creation timestamp is stored in the ts file:

root@debian11:~# cat /var/lib/lxc/lxc-bb/snaps/snap0/ts
2023:08:20 12:35:35root@debian11:~#

Comparing the size of the rootfs of the original container as well as its snapshot, we can see that both are identical:

root@debian11:~# du -sh /var/lib/lxc/lxc-bb/rootfs/
2.1M /var/lib/lxc/lxc-bb/rootfs/

root@debian11:~# du -sh /var/lib/lxc/lxc-bb/snaps/snap0/rootfs/
2.1M /var/lib/lxc/lxc-bb/snaps/snap0/rootfs/

To restore a container identical to the original, use the lxc-snapshot command again:

2026/02/04 12:12 47/47 DOE601 - Virtualisation by Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-snapshot -r snap0 -n lxc-bb -N lxc-bb-snap0

root@debian11:~# lxc-ls
lxc-bb lxc-bb-snap0

root@debian11:~# lxc-start -n lxc-bb-snap0

root@debian11:~# lxc-attach -n lxc-bb-snap0
lxc-attach: lxc-bb-snap0: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ # exit

root@debian11:~#

Copyright © 2023 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre08

Last update: 2023/12/17 05:47

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre08

	DOE601 - Virtualisation by Isolation
	Contents
	Introduction to Virtualisation using Isolation
	History

	Namespaces presentation
	CGroups presentation
	LAB #1 - cgroups v1
	1.1 - Preparation
	1.2 - Overview
	1.3 - Memory limiting
	1.4 - The cgcreate command
	1.5 - The cgexec Command
	1.6 - The cgdelete Command
	1.7 - The /etc/cgconfig.conf file
	1.8 - The cgconfigparser command

	LAB #2 - cgroups v2
	2.1 - Preparation
	2.2 - Presentation
	2.3 - Limiting CPU Resources
	2.4 - The systemctl set-property Command
	CPU
	Memory

	Introduction to Linux Containers
	LAB #3 - Working with LXC
	3.1 - Installation
	3.2 - Creating a Simple Container
	3.3 - Starting a Simple Container
	3.4 - Attaching to a Simple Container
	3.5 - Basic LXC commands
	The lxc-console Command
	The lxc-stop Command
	The lxc-execute command
	The lxc-info command
	The lxc-freeze Command
	The lxc-unfreeze Command
	Other commands

	3.6 - Creating an Ephemeral Container
	The lxc-copy command

	3.7 - Saving Containers
	The lxc-snapshot command

