2026/02/04 14:05 1/44 DOEG604 - Volume, Network and Container Management

Version : 2024.01

Last update : 2024/12/17 13:46

DOE604 - Volume, Network and Container Management

Content

e DOE604 - Volume, Network and Resource Management
o Content
o LAB #1 - Volume Management
= 1.1 - Automatic management using Docker
* 1.2 - Manual Volume Management
= 1.3 - Manual management of a Bindmount
o LAB #2 - Network Management
= 2.1 - The Docker Network Approach
e Bridge
e Host
* None
e Links
» 2.2 - Running Wordpress in a container
= 2.3 - Managing a Microservices Architecture
o LAB #3 - Monitoring Containers
» 3.1- Logs
= 3.2 - Processes
» 3.3 - Continuous Activity

LAB #1 - Volume Management

Launch the mongo2 container:

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 2/44 DOEG604 - Volume, Network and Container Management

root@debianll:~# docker start mongo2
mongo2

1.1 - Automatic Volume Management by Docker

Check that the process is started in the container:

root@debianll:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
880733c6bdc3 i2tch/mongodb?2 "docker-entrypoint.s.." 4 days ago Up 43 seconds 27017/tcp mongo2
Then identify the mount point of the /data/db directory of the container:

root@debianll:~# docker inspect mongo2

"Mounts": [
{
"Type": "volume",
"Name": "537cc5d0f0f0aalat9dd959b45fc9fche8467a868b9d61919991366a2813f703",
"Source":

“/var/lib/docker/volumes/537cc5d0f0f0aalaf9dd959b45fc9fcbe8467a868b9d61919991366a2813f703/ data",
"Destination": "/data/db",
“Driver": "local",
"Mode": "",
"RW": true,
"Propagation": ""

"Type": "volume",

"Name": "58795fb69d54b87b11fch6ab752alfal0736e5aa37c8al4b1lc36db1306853a59",

"Source":
“/var/lib/docker/volumes/58795fb69d54b87b11fcb6ab752alfal@736e5aa37c8aldb1c36db1306853a59/ data",

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 3/44 DOEG604 - Volume, Network and Container Management

"Destination": "/data/configdb",
"Driver": "local",

"Mode": "",
"RW": true,
"Propagation":

"Volumes": {
"/data/configdb": {},
"/data/db": {}

b

Looking at the contents of the /data/db directory, we see a classic mongodb data storage tree :

root@debianll:~# 1s
/var/lib/docker/volumes/537cc5d0f0f0aalaf9dd959b45fc9fcbe8467a868b9d61919991366a2813f703/ data
collection-0-2505194079268383602.wt index-5-2505194079268383602.wt storage.bson
collection-2-2505194079268383602.wt index-6-2505194079268383602.wt WiredTiger

collection-4-2505194079268383602.wt journal WiredTigerLAS.wt
diagnostic.data ~mdb_catalog.wt WiredTiger. lock
index-1-2505194079268383602.wt mongod. lock WiredTiger.turtle
index-3-2505194079268383602.wt sizeStorer.wt WiredTiger.wt

Stop and delete the mongo2 container:

root@debianll:~# docker stop mongo2
mongo2

root@debianll:~# docker rm mongo2
mongo2

Now re-create a container from the i2tch/mongodb2 image:

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 4/44 DOEG604 - Volume, Network and Container Management

root@debianll:~# docker run -d --name mongo2 i2tch/mongodb2
1980be05ac73d70979f5e932f1a58b6526ae1001a335fd8ca®lObbfaac48cabe

root@debianll:~# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1980beB5ac73 i2tch/mongodb2 "docker-entrypoint.s.." 5 seconds ago Up 4 seconds 27017/tcp mongo2

Use the docker inspect command again to identify the mount point of the /data/db directory:

root@debianll:~# docker inspect mongo2

"Mounts": [
{
"Type": "volume",
"Name": "2ecledeca3acd9laede62091e0d96252eb31e403a00fef324ca2244b2952bb48",
"Source":

"/var/lib/docker/volumes/2ecledeca3acd9laede62091e0d96252eb31e403a00fef324ca2244b2952bb48/ data",
"Destination": "/data/configdb",
"“Driver": "local",
“Mode": "",
"RW": true,
"Propagation":

"Type": "volume",

“Name": "4abe232050675d853d0ad4d8beefe31f884e1252c985828c3be47a983aac58605",

“Source":
“/var/lib/docker/volumes/4abe232050675d853d0ad4d8beefe31f884e1252¢c985828c3be47a983aac58605/ data",

"“Destination": "/data/db",

"Driver": "local",

“Mode": "",

"RW": true,

"Propagation": "".

}

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

5/44

DOEG604 - Volume, Network and Container Management

1,

Important: Note that the data directory of the previous container,
/var/lib/docker/volumes/537cc5d0f0aa0af9dd959b45fc9fcbhe8467a8
68b9d61919991366a2813f703/ data is not the same as the current

&% container

/var/lib/docker/volumes/4abe232050675d853d0a4d8beefe31f884el
252c985828c3be47a983aac58605/ _data.

As the containers have not been stopped with the -v option, we can see that the directories persist in /var/lib/docker :

root@debianll:~# 1ls -1

total 60

drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
brw------- 1 root
drwx----- X 3 root
-rw------- 1 root

root
root
root
root
root
root
root
root
root

/var/lib/docker/volumes/

4096
4096
4096
4096
4096
4096

Dec
Dec
Dec
Dec
Dec
Dec

15
10
15
10
10
10

14:39 2ecledeca3acd91aede62091e0d96252eb31e403a00fef324ca2244b2952bb48
17:12 396ad783162131dcc92a649366ab79e24720bf866ce6803868e2ba2df8e90074
14:39 4abe232050675d853d0ad4d8beefe31f884e1252c985828c3be47a983aac58605
17:16 537cc5d0f0fPaadat9dd959b45fc9fchbe8467a868b9d61919991366a28131703
17:16 58795fb69d54b87b1l1fcbb6ab752alfal®@736e5aa37c8aldblc36db1306853a59
18:32 7d7b25232f6ec411dc9dfb888048eebbee919eb2cedc301969bc325a8a8d055e

8, 33 Dec 15 09:56 backingFsBlockDev
4096 Dec 10 17:12 f766fb3cdlleee28312b8804c1439cOf7b0a7d58a0ce4d61ba50atl7b7630c8f
65536 Dec 15 14:39 metadata.db

Important : Note that not only does this represent a source of wasted disk
space but also proves that data is not persistent between two instances of

an i2ztch/mongodb2 container. This obviously creates a major problem in

production.

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 6/44 DOEG604 - Volume, Network and Container Management

1.2 - Manual management of a Volume

Stop and delete the mongo2 container then re-create a container with a specific volume to hold the data placed in /data/db of the container by
mongodb :

root@debianll:~# docker stop mongo2
mongo2

root@debianll:~# docker rm mongo2
mongo2

root@debianll:~# docker run -d --name mongo2 -v persistent data:/data/db i2tch/mongodb2
8b2207df56a727a8472b2949d7a83a1925e751ad0216fe98b6a3db83230c0988

root@debianll:~# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
8b2207df56a7 i2tch/mongodb2 "docker-entrypoint.s.." 6 seconds ago Up 6 seconds 27017/tcp mongo2

root@debianll:~# docker logs mongo2

2023-12-15T13:45:40.845+0000 I CONTROL [main] Automatically disabling TLS 1.0, to force-enable TLS 1.0 specify --
sslDisabledProtocols 'none’

2023-12-15T13:45:40.847+0000 I CONTROL [initandlisten] MongoDB starting : pid=1 port=27017 dbpath=/data/db 64-bit
host=8b2207df56a7
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000
2023-12-15T13:45:40.847+0000

CONTROL [initandlisten] db version v4.1.9

CONTROL [initandlisten] git version: a5fa363117062a20d6056c76e0ledb3a08f71b7c
CONTROL [initandlisten] OpenSSL version: OpenSSL 1.1.1 11 Sep 2018

CONTROL [initandlisten] allocator: tcmalloc

CONTROL [initandlisten] modules: none

CONTROL [initandlisten] build environment:

CONTROL [initandlisten] distmod: ubuntul804

CONTROL [initandlisten] distarch: x86 64

CONTROL [initandlisten] target arch: x86 64

CONTROL [initandlisten] options: { net: { bindIp: "*" } }

HHHHHHHHHH

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 7/44 DOEG604 - Volume, Network and Container Management

2023-12-15T13:45:40.847+0000 I STORAGE [initandlisten]

2023-12-15T13:45:40.847+0000 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly
recommended with the WiredTiger storage engine

2023-12-15T13:45:40.847+0000 I STORAGE [initandlisten] ** See http://dochub.mongodb.org/core/prodnotes-filesystem
2023-12-15T13:45:40. 847+0000 I STORAGE [initandlisten] wiredtiger open config:

create,cache size=7485M,session max=20000,eviction=(threads min=4,threads max=4),config base=false,statistics=(fa
st), log=(enabled=true,archive=true, path=journal, compressor=snappy),file manager=(close idle time=100000),statisti
cs log=(wait=0),verbose=(recovery progress),

2023-12-15T13:45:41.621+0000 I STORAGE [initandlisten] WiredTiger message [1702647941:621009][1:0x7f381cfeaad0],
txn-recover: Set global recovery timestamp: (0,0)

2023-12-15T13:45:41.665+0000 I RECOVERY [initandlisten] WiredTiger recoveryTimestamp. Ts: Timestamp(0, 0)
2023-12-15T13:45:41.708+0000 I STORAGE [initandlisten] Timestamp monitor starting

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten]

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** NOTE: This is a development version (4.1.9) of MongoDB.
2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** Not recommended for production.
2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten]

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the
database.

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** Read and write access to data and configuration is
unrestricted.

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten]

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten]

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent hugepage/enabled is
‘always'.

2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2023-12-15T13:45:41.727+0000 I CONTROL [initandlisten]

2023-12-15T13:45:41.728+0000 I STORAGE [initandlisten] createCollection: admin.system.version with provided UUID:

1e149d35-bbda-46a7-bc8e-3a300abb052f
2023-12-15T13:45:41.815+0000 I INDEX [initandlisten] index build: done building index id on ns

admin.system.version

2023-12-15T13:45:41.815+0000 I SHARDING [initandlisten] Marking collection admin.system.version as collection

version:

<unsharded>

2023-12-15T13:45:41.815+0000 I COMMAND [initandlisten] setting featureCompatibilityVersion to 4.2
2023-12-15T13:45:41.819+0000 I SHARDING [initandlisten] Marking collection local.system.replset as collection

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 8/44

DOEG604 - Volume, Network and Container Management

version: <unsharded>

2023-12-15T13:45:41.819+0000 I SHARDING [initandlisten] Marking collection admin.system.roles as collection

version: <unsharded>

2023-12-15T13:45:41.819+0000 I STORAGE [initandlisten] createCollection: local.startup log with generated UUID:

759d58f7-7f35-441f-bd93-f090f4al14427
2023-12-15T13:45:41.856+0000 I INDEX [initandlisten] index build:
local.startup log

done building index id on ns

2023-12-15T13:45:41.856+0000 I SHARDING [initandlisten] Marking collection local.startup log as collection

version: <unsharded>

2023-12-15T13:45:41.856+0000 I FTDC [initandlisten] Initializing full-time diagnostic data capture with directory

'/data/db/diagnostic.data’

2023-12-15T13:45:41.857+0000 I NETWORK [initandlisten] Listening on /tmp/mongodb-27017.sock
2023-12-15T13:45:41.857+0000 I NETWORK [initandlisten] Listening on 0.0.0.0
2023-12-15T13:45:41.857+0000 I SHARDING [LogicalSessionCacheRefresh] Marking collection config.system.sessions as

collection version: <unsharded>

2023-12-15T13:45:41.857+0000 I NETWORK [initandlisten] waiting for connections on port 27017
2023-12-15T13:45:41.857+0000 I STORAGE [LogicalSessionCacheRefresh] createCollection: config.system.sessions with

generated UUID: 6936ac77-1578-4a80-b907-f00774284e52
2023-12-15T13:45:41.894+0000 I INDEX [LogicalSessionCacheRefresh]
config.system.sessions

2023-12-15T13:45:41.932+0000 I INDEX [LogicalSessionCacheRefresh]

properties: { v: 2, key: { lastUse: 1 }, name: "lsidTTLIndex", ns:

1800 } using method: Hybrid

2023-12-15T13:45:41.932+0000 I INDEX [LogicalSessionCacheRefresh]
of RAM

2023-12-15T13:45:41.932+0000 I INDEX [LogicalSessionCacheRefresh]
total records in 0 seconds

2023-12-15T13:45:41.932+0000 I INDEX [LogicalSessionCacheRefresh]
sorter into index in 0 seconds

2023-12-15T13:45:41.933+0000 I INDEX [LogicalSessionCacheRefresh]
on ns config.system.sessions

index build: done building index id on ns

index build: starting on config.system.sessions
"config.system.sessions", expireAfterSeconds:

build may temporarily use up to 500 megabytes
index build: collection scan done. scanned 0
index build: inserted 0 keys from external

index build: done building index lsidTTLIndex

Note that this time, docker has created a persistent_data directory in the /var/lib/docker/volumes/ directory :

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

9/44

DOEG604 - Volume, Network and Container Management

root@debianll:~# ls -1 /var/lib/docker/volumes/

total 68

drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
drwx----- X 3 root
brw------- 1 root
drwx----- X 3 root
drwx----- X 3 root
-rw------- 1 root
drwx----- X 3 root

root
root
root
root
root
root
root
root
root
root
root

4096
4096
4096
4096
4096
4096
8, 33
4096
4096
65536
4096

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

15
10
15
10
10
10
15
10
15
15
15

14
17:
:39
17:
17:
18:
09:
17:
14:

14

14

39
12

16
16
32
56
12
45

145
14:

45

2ecledeca3acd91aede62091e0d96252eb31e403a00fef324ca2244b2952bb48
396ad783162131dcc92a649366ab79e24720bT866ce6803868e2ba2df8e90074
4abe232050675d853d0a4d8beefe31f884e1252c985828c3bed7a983aac58605
537cc5d0f0f0aafat9dd959b45fc9fcbe8467a868b9d61919991366a28131703
58795fb69d54b87b1l1fcbbab752alfal0736e5aa37c8aldblc36db1306853a59
7d7b25232f6ec411dc9dfb888048eebbee919eb2cedc301969bc325a8a8d055e
backingFsBlockDev
f766fb3cdl1leee28312b8804c1439c0f7b0a7d58a0ced4d61ba50afl7b7630c8f
fa3330b3415f534a7d0053ba95d74fe02765cde317cllcac9691c3132cec3d47
metadata.db

persistent data

Stop and delete the mongo2 container then re-create a container using the same specific volume to hold the data placed in /data/db of the container

by mongodb :

root@debianll:~# docker stop mongo2

mongo2

root@debianll:~# docker rm mongo2

mongo2

root@debianll:~# docker run -d --name mongo2 -v persistent data:/data/db i2tch/mongodb2
cc7cc8f3b43346fe47cc5107225b0b98851a73a9b2938530077ca7a3207581a0

root@debianll:~# docker ps
CONTAINER ID IMAGE
cc7cc8f3b433 i2tch/mongodb?2

COMMAND

CREATED STATUS PORTS NAMES

"docker-entrypoint.s.." 18 seconds ago Up 18 seconds 27017/tcp mongo?2

Once again, look for the /data/db mount point using the docker inspect command:

root@debianll:~# docker inspect mongo2

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 10/44 DOEG604 - Volume, Network and Container Management

"Mounts": [

{
"Type": "volume",
“Name": "persistent data",
"Source": "/var/lib/docker/volumes/persistent data/ data",
"Destination": "/data/db",
"Driver": "local",
“Mode": "z",
"RW": true,
“"Propagation”: ""

}

{
“"Type": "volume",
“Name": "cef4abb286alb519e6cdfb4a2327659cd124dc1513ed55288c014e61a8bf27b7",
“Source":

"/var/lib/docker/volumes/cef4abb286alb519e6cdfb4a2327659cd124dc1513ed55288c014e61a8bf27b7/ data",
"Destination": "/data/configdb",
"Driver": "local",
“Mode": "",
"RW": true,
“"Propagation": "".

Important: Note here that using the same directory between the two
| containers makes the data persistent and avoids the creation of orphan

4" . volumes. For more information on volumes, see :
https://docs.docker.com/storage/volumes)/.

To create a volume for use with a container use the docker volume create command:

www.ittraining.team - https://ittraining.team/

https://docs.docker.com/storage/volumes/

2026/02/04 14:05 11/44

DOEG604 - Volume, Network and Container Management

root@debianll:~# docker volume create myvolume
myvolume

To list volumes, use the docker volume Is command:

root@debianll:~# docker volume 1s
DRIVER VOLUME NAME

local
local
local
local
local
local
local
local
local
local
local

2ecledeca3acd91aede62091e0d96252eb31e403a00fef324ca2244b2952bb48
4abe232050675d853d0a4d8beefe31f884e1252¢c985828c3bed7a983aac58605
7d7b25232f6ec411dc9dfb888048eebbee919eb2cedc301969bc325a8a8d055e
396ad783162131dcc92a649366ab79e24720bf866ce6803868e2ba2df8e90074
537cc5d0f0f0aafat9dd959b45fc9fcbe8467a868b9d61919991366a2813F703
58795fb69d54b87bl1fcbbab752alfal0736e5aa37c8aldblc36db1306853a59
cef4abb286alb519e6cdfb4a2327659cd124dc1513ed55288c014e61a8bf27b7
f766fb3cdl1leee28312b8804c1439c0f7b0a7d58a0ced4d61ba50afl7b7630c8f
ta3330b3415f534a7d0053ba95d74fe02765cde317cl1cac9691c3132cec3d47
myvolume

persistent data

Now note the physical location of the created volume:

root@debianll:~# docker volume inspect myvolume

[
{

“CreatedAt": "2023-12-15T14:50:18+01:00",

"Driver": "local",

"Labels": null,

"Mountpoint": "/var/lib/docker/volumes/myvolume/ data",
“Name": "myvolume",

"Options": null,

"Scope": "local"

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 12/44 DOEG604 - Volume, Network and Container Management

Create a file in the /var/lib/docker/volumes/myvolume/_data/ directory :
root@debianll:~# touch /var/lib/docker/volumes/myvolume/ data/test-file
Now start a container that uses this volume:

root@debianll:~# docker run -it --name ubuntu-volume --mount source=myvolume,target=/myvolume ubuntu bash

A2\ Important: Note the use of the -mount option instead of the -volume or -
/ + . voption. Introduced in Docker version 17.06, Docker recommends using
the -mount option rather than the -v option.

Note that test-file is present in the container:

root@ff76d3820051:/# cd myvolume/
root@ff76d3820051: /myvolume# L1s
test-file

Create a second file in the /myvolume directory of the container and exit it:

root@ff76d3820051: /myvolume# touch container volume
root@ff76d3820051: /myvolume# exit

exit

root@debianll:~#

Now check the contents of the /var/lib/docker/volumes/myvolume/_data/ directory:
root@debianll:~# ls -1 /var/lib/docker/volumes/myvolume/ data/

total 0
-rw-r--r-- 1 root root 0 Dec 15 14:55 container volume

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 13/44 DOEG604 - Volume, Network and Container Management

-rw-r--r-- 1 root root 0 Dec 15 14:51 test-file

Important: Note that both files are visible.

2 u
s

root@debianll:~# docker rm ubuntu-volume
ubuntu-volume

root@debianll:~# ls -1 /var/lib/docker/volumes/myvolume/ data/
total O

-rw-r--r-- 1 root root 0 Dec 15 14:55 container_volume
-rw-r--r-- 1 root root 0 Dec 15 14:51 test-file

Important: Note that the two test files are still visible.

Now create a second container by specifying a volume that doesn't exist:

root@debianll:~# docker run -it --rm --name ubuntu-volume --mount source=myvolumel,target=/myvolumel ubuntu bash

root@5547f3231534:/# 1s

bin dev home 1ib32 1ibx32 mnt opt root sbin sys usr
boot etc 1lib 1ib64 media myvolumel proc run srv tmp var
root@554713231534:/# cd myvolumel

root@5547f3231534: /myvolumel# touch file myvolumel

root@5547f3231534: /myvolumel# exit
exit

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 14/44

DOEG604 - Volume, Network and Container Management

root@debianll:~#

Note that Docker has automatically created the volume:

root@debianll:~# docker volume 1s
DRIVER VOLUME NAME

local
local
local
local
local
local
local
local
local
local
local
local

2ecledeca3acd91aede62091e0d96252eb31e403a00fef324ca2244b2952bb48
4abe232050675d853d0ad4d8beefe311884e1252¢c985828c3be47a983aac58605
7d7b25232f6ec411dc9dfb888048eebbee919eb2cedc301969bc325a8a8d055e
396ad783162131dcc92a649366ab79e24720bf866ce6803868e2ba2df8e90074
537cc5d0f0f0aafat9dd959b45fc9fcbe8467a868b9d61919991366a28131703
58795fb69d54b87b11fcbbab752alfal0736e5aa37c8al4b1c36db1306853a59
cef4abb286alb519e6cdfb4a2327659cd124dc1513ed55288c014e61a8bf27b7
f766fb3cd11eee28312b8804c1439c0f7b0a7d58a0ced4d61ba50afl7b7630c8f
fa3330b3415f534a7d0053ba95d74fe02765cde317cllcac9691c3132cec3d47
myvolume

myvolumel

persistent data

root@debianll:~# ls -1 /var/lib/docker/volumes/myvolumel/ data/

total

0

-rw-r--r-- 1 root root root 0@ Dec 15 15:01 file myvolumel

1.3 - Manual management of a Bindmount

Another type of volume that can be used with Docker is the Bindmount. A Bindmount:

e depends on the file structure of the Docker host,
e cannot be controlled by the Docker CLI.

To create a Bindmount, start by creating the bindmount directory in /root and place the test_bindfile in it:

root@debianll:~# mkdir bindmount

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 15/44 DOEG604 - Volume, Network and Container Management

root@debianll:~# touch bindmount/test bind
Mount the Bindmount inside a container and create the container_bind file:

root@debianll:~# docker run -it --name ubuntu-volume --mount type=bind,source=/root/bindmount,target=/bindmount
ubuntu bash

root@lcd3cc50e6cO:/# 1s
bin boot etc 1lib 1ib64 media opt root sbin sys usr
bindmount dev home 1ib32 1ibx32 mnt proc run srv tmp var

root@lcd3cc50e6c0:/# cd bindmount/

root@lcd3cc50e6c0:/bindmount# 1s
test bind

root@lcd3cc50e6c0:/bindmount# touch container bind

root@lcd3cc50e6c0:/bindmount# 1s
container bind test bind

root@lcd3cc50e6c0:/bindmount# exit
exit
root@debianll:~#

Check for the presence of the files in the /root/bindmount directory:

root@debianll:~# ls -1 bindmount/

total ©

-rw-r--r-- 1 root root 0 Dec 15 15:27 container bind
-rw-r--r-- 1 root root 0 Dec 15 15:25 test bind

root@debianll:~# docker rm ubuntu-volume
ubuntu-volume

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 16/44

DOEG604 - Volume, Network and Container Management

root@debianll:~# 1ls -1 bindmount/

total

0

-rw-r--r-- 1 root root 0 Dec 15 15:27 container bind
-rw-r--r-- 1 root root 0 Dec 15 15:25 test bind

Note that the Docker CLI has no knowledge of this mount point:

root@debianll:~# docker volume 1s
DRIVER VOLUME NAME

local
local
local
local
local
local
local
local
local
local
local
local

2ecledeca3acd91aede62091e0d96252eb31e403a00fef324ca2244b2952bb48
4abe232050675d853d0a4d8beefe31f884e1252¢c985828c3bed47a983aac58605
7d7b25232f6ec411dc9dfb888048eebbee919eb2cedc301969bc325a8a8d055e
396ad783162131dcc92a649366ab79e24720bf866ce6803868e2ba2df8e90074
537cc5d0f0f0aafat9dd959b45fc9fcbe8467a868b9d61919991366a2813F703
58795fb69d54b87bl1fcbbab752alfal0736e5aa37c8aldblc36db1306853a59
cef4abb286alb519e6cdfb4a2327659cd124dc1513ed55288c014e61a8bf27b7
f766Tb3cdlleee28312b8804c1439c0f7b0a7d58a0cedd61ba50atl7b7630c8f
fa3330b3415f534a7d0053ba95d74fe02765cde317cl1lcac9691c3132cec3d47
myvolume

myvolumel

persistent data

LAB #2 - Network Management

2.1 - The Docker Network Approach

Docker provides three default networks:

root@debianll:~# docker network 1s
NETWORK ID NAME DRIVER SCOPE
2473b0d9324a bridge bridge local

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 17/44 DOEG604 - Volume, Network and Container Management

b0a285caf920 host host local
a2da9933cdce none null local
Bridge

This type of network is limited to containers on a single host running Docker. Containers can only communicate with each other and they are not
accessible from the outside. In order for containers on the network to communicate or be accessible from the outside world, port mapping must be
configured.

By default Docker works in Bridge or (Bridge) mode and creates an intermediate interface for this purpose called dockerO :

root@debianll:~# ip addr show docker0
3: docker®: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue state UP group default
link/ether 02:42:07:¢9:88:32 brd ff:ff:ff:ff.ff:.ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid 1ft forever preferred 1ft forever
inet6 fe80::42:7ff:fec9:8832/64 scope link
valid lft forever preferred lft forever

Boot a container named resotest from a CentOS image :

root@debianll:~# docker run -itd --name=resotest centos
2126924504d8dedb920728cc7c2a6¢c73e87f8c5¢c3d13cl7c4fcc2bfe8ff93cc9

Then run the docker network inspect bridge command from the Debian_9 host virtual machine:

root@debianll:~# docker network inspect bridge
[
{
“Name": "bridge",
"Id": "2473b0d9324a421018cdf501060801d34c599991bed76751ae328bc68126a180",
"Created": "2023-12-15T09:56:50.183135221+01:00",

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 18/44 DOEG604 - Volume, Network and Container Management

"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b,
“ConfigOnly": false,
"Containers": {
"2126924504d8dedb920728cc7c2a6¢c73e87f8c5¢c3d13cl7cd4fcc2bfe8ff93cc9": {
"Name": "resotest",
"EndpointID": "e9aeObal5d4588571fe77a%9a8e1564e€92620f9532bed8ee38d060b954116b20c",
"MacAddress": "02:42:ac:11:00:03",
"IPv4Address": "172.17.0.3/16",
"IPvbAddress": ""
b
"cc7cc8f3b43346fed47cc5107225b0b98851a73a9b2938530077ca7a3207581a0": {
“Name": "mongo2",
"EndpointID": "d9f30326f473f12a45f6aacf97cee0f12c9c545e45ed7808b0cha809fa48ae9a",
"MacAddress": "02:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",
"IPvbAddress": ""

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 19/44 DOEG604 - Volume, Network and Container Management

}

}I

"Options": {
“com.docker.network.bridge.default bridge": "true",
"com.docker.network.bridge.enable icc": "true",
"com.docker.network.bridge.enable ip masquerade": "true",
"com.docker.network.bridge.host binding ipv4": "0.0.0.0",
“com.docker.network.bridge.name": "docker0",
“com.docker.network.driver.mtu": "1500"

}l
"Labels": {}

™ Important: Note here that the mongo2 and resotest containers do not
| have the same address as the dockerO interface on the host machine.

£.% . However, the addresses are in the same segment - 172.17.0.0/16
indicated by the “Subnet” output: “172.17.0.0/16".

You can disconnect a container from the network using the following command:
root@debianll:~# docker network disconnect bridge resotest

root@debianll:~# docker network inspect bridge
[
{

"Name": "bridge",
"Id": "2473b0d9324a421018cdf501060801d34c599991bed76751ae328bc68126a180",
"Created": "2023-12-15T09:56:50.183135221+01:00",
"Scope": "local",
“Driver": "bridge",

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 20/44

DOEG604 - Volume, Network and Container Management

"EnableIPv6": false,

"IPAM": {
"Driver": "default",
"Options": null,
“"Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"
}
]
b

"Internal": false,

"Attachable": false,

“Ingress": false,

“ConfigFrom": {
"Network": ""

b

"ConfigOnly": false,

"Containers": {

"cc7cc8f3b43346Te47cc5107225b0b98851a73a9b2938530077ca7a3207581a0" :

“Name": "mongo2",

"EndpointID": "d9f30326f473f1l2a45f6aacf97cee0f12c9c545e45ed7808b0cha809fa48ae9a",

"MacAddress": "02:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",

"IPvbAddress": ""
}

b
"Options": {

"com.docker.network.bridge.default bridge":

“com.
com.
"com.
“com.
com.

docker.
docker.
.network
docker.
docker.

docker

network
network

network
network

.bridge.
.bridge.
.bridge.
.bridge.
.driver.

enable icc": "true",
enable ip masquerade": "true",
host binding ipv4": "0.0.0.0",
name": "docker@",

mtu": "1500"

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 21/44

DOEG604 - Volume, Network and Container Management

b,
"Labels": {}

]

Now create your own bridged network called my-bridged-network :

root@debianll:~# docker network create -d bridge --subnet 172.25.0.0/16 --gateway 172.25.0.1 my-bridged-network

4d26¢1192dd7b25¢c3¢c787ef41b7bfb94d0eb989d230133906db6d54ed9c128cc

root@debianll:~# docker network 1s
NETWORK ID NAME

2473b0d9324a bridge

b0a285caf920 host

4d26¢1192dd7 my-bridged-network
a2da9933cdce none

Obviously, this network is currently empty:

root@debianll:~# docker network inspect my-bridged-network

[
{

DRIVER
bridge
host
bridge
null

"Name": "my-bridged-network",

"Id": "4d26c1192dd7b25c3c787ef41b7bTb94d0eb989d230133906db6d54ed9c128cc"
“Created": "2023-12-15T15:34:02.824127656+01:00",

"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": {},

"Config": [

{

“Subnet": "172.25.0.0/16",

SCOPE
local
local
local
local

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 22/44

DOEG604 - Volume, Network and Container Management

“Gateway": "172.25.0.1"

]
}'

"Internal": false,

"Attachable": false,

"Ingress": false,

“ConfigFrom": {
"Network": ""

IE

"ConfigOnly": false,

"Containers": {},

"Options": {},

"Labels": {}

]

Now run two containers and look at the network information :

root@debianll:~# docker run -itd --name=centosl centos

cb2875ab1059e€66308228d9179b810db748ad287453¢cf758206a7025f57b0176

root@debianll:~# docker run -itd --name=centos2 centos

fc417b22a20d319de674889962452bfe453ced1fc389410b2250551865¢ch817f

root@debianll:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centosl
{"bridge": {"IPAMConfig":null,"Links":null, "Aliases":null, "NetworkID":"2473b0d9324a421018cdf501060801d34c599991bed

76751ae328bc68126a180", "EndpointID":

"a0e5d6714652be807583fbab5a76bf1la0462200aa198c92ab29845f88c45d559", "Gateway":"172.

17.0.1","IPAddress":"172.17.0.3","IPPrefixLen":16, "IPv6Gateway":"", "GlobalIPv6Address":"", "GlobalIPv6PrefixLen":0

, "MacAddress":"02:42:ac:11:00:03","DriverOpts":null}}

root@debianll:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centos2
{"bridge":{"IPAMConfig":null, "Links":null, "Aliases":null, "NetworkID":"2473b0d93243421018cdf501060801d34c599991bed

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 23/44 DOEG604 - Volume, Network and Container Management

76751ae328bc68126a180", "EndpointID":
"15ed4b05703524164015b12683e€a01729dd26a7dfe68ab638383ea075d8d1428", "Gateway":"172.
17.0.1","IPAddress":"172.17.0.4" ,"IPPrefixLen":16, "IPv6Gateway":"","GlobalIPv6Address":"","GlobalIPv6PrefixLen":0
, "MacAddress":"02:42:ac:11:00:04","DriverOpts":null}}

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4

Put the centosl1 container in the my-bridged-network :

root@debianll:~# docker network connect my-bridged-network centosl

root@debianll:~# docker network inspect my-bridged-network
[
{
"Name": "my-bridged-network",
"Id": "4d26c¢1192dd7b25c3c787ef41b7bfb94d0eb989d230f33906db6d54ed9c128cc",
“Created": "2023-12-15T15:34:02.824127656+01:00",
"Scope": "local",
“Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},
“"Config": [
{
"Subnet": "172.25.0.0/16",
"Gateway": "172.25.0.1"

}'

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 24/44

DOEG604 - Volume, Network and Container Management

]

"Internal": false,

"Attachable": false,

“Ingress": false,

“ConfigFrom": {
"Network": ""

b,

"ConfigOnly": false,

"Containers": {

"cb2875ab1059e66308228d9179b810db748ad287453¢cf758206a7025f57b0176" :
“Name": "centosl",
"EndpointID": "a7de8c07d195168c20548b33b506073caad3cl6770f330a2e576aedcda25662c",
"MacAddress": "02:42:ac:19:00:02",
"IPv4Address": "172.25.0.2/16",

"IPvbAddress": ""
}
I
"Options": {},
"Labels": {}

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3172.25.0.2

F u
_a

Do the same for the centos2 container:

Important: Note that the centos1 container is in two networks.

root@debianll:~# docker network connect my-bridged-network centos2

root@debianll:~# docker network inspect my-bridged-network

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 25/44 DOEG604 - Volume, Network and Container Management

[

“Name": "my-bridged-network",
"Id": "4d26¢1192dd7b25c3c787ef41b7bfb94d0eb989d230f33906db6d54ed9c128cc",
"Created": "2023-12-15T15:34:02.824127656+01:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": {},
"Config": [
{
"Subnet": "172.25.0.0/16",
"Gateway": "172.25.0.1"

]
b
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
b,
"ConfigOnly": false,
"Containers": {
"cb2875ab1059e66308228d9179b810db748ad287453cf758206a7025f57b0176": {
"Name": "centosl",
"EndpointID": "a7de8c07d195168c20548b33b506073caal3cl6770f330a2e576aedcda25662c",
"MacAddress": "02:42:ac:19:00:02",
"IPv4Address": "172.25.0.2/16",
"IPvbAddress": ""
by
"fc417b22a20d3f9de674889962452bfe453ced1fc389410b225055f865¢ch817F": {

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 26/44 DOEG604 - Volume, Network and Container Management

"Name": "centos2",
"EndpointID": "8467b7d4233dbf855d0538dbc9b1fe718874434913baae403391b3da8lcchb92b",

"MacAddress": "02:42:ac:19:00:03",
"TPv4Address": "172.25.0.3/16",

"IPvbAddress": ""
}
b
"Options": {},
"Labels": {}

]

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

Connect to the centosl container by running bash :

root@debianll:~# docker exec -it centosl bash
[root@cb2875ab1059 /]1#

Check that the network is working:

[root@cb2875ab1059 /]# ping 172.25.0.3

PING 172.25.0.3 (172.25.0.3) 56(84) bytes of data.

64 bytes from 172.25.0.3: icmp seqg=1 ttl=64 time=0.140 ms

64 bytes from 172.25.0.3: icmp seq=2 ttl=64 time=0.099 ms

~C

--- 172.25.0.3 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1021ms
rtt min/avg/max/mdev = 0.099/0.119/0.140/0.023 ms

The possible options for network management are vast. Here are two more examples.

It is possible to add a DNS server address when launching a container:

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 27/44 DOEG604 - Volume, Network and Container Management

[root@cbhb2875ab1059 /]1# exit
exit

root@debianll:~# docker stop mongo2
mongo2

root@debianll:~# docker rm mongo2
mongo2

root@debianll:~# docker run -it --name mongo2 --dns 8.8.8.8 i2tch/mongodb2 bash

root@aa2717305397:/# cat /etc/resolv.conf
nameserver 8.8.8.8

Or pass an entry for the /etc/hosts file:

root@aa2717305397: /# exit
exit

root@debianll:~# docker stop mongo2
mongo2

root@debianll:~# docker rm mongo2
mongo2

root@debianll:~# docker run -it --name mongo2 --add-host mickeymouse:127.0.0.1 i2tch/mongodb2 bash
root@519423c7fb32:/# cat /etc/hosts

127.0.0.1 localhost
! localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

0
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
127.0.0.1 mickeymouse

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 28/44 DOEG604 - Volume, Network and Container Management

172.17.0.2 519423c7fb32

root@519423c7ftb32:/# exit
exit
root@debianll:~#

Host

This type of network is used in cases where the network does not need to be isolated from the host while isolating other aspects of the container.
Containers use the same interface as the host by taking the same IP address as the host machine.

In the case of the virtual machine, the IP address of the interface connected to the local network is 10.0.2.46 :

root@debianll:~# ip addr show ens18
2: ens1l8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000
link/ether 56:a3:fd:18:02:6d brd ff:ff:ff:ff:ff:ff
altname enp0s18
inet 10.0.2.46/24 brd 10.0.2.255 scope global noprefixroute ensl8
valid lft forever preferred lft forever
inet6 fe80::54a3:fdff:fel8:26d/64 scope link noprefixroute
valid 1ft forever preferred 1ft forever

Boot a container from the centos image in a host network :

root@debianll:~# docker run -it --rm --network host --name centos3 centos bash

[root@debianll /]# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid lft forever preferred 1ft forever
inet6 ::1/128 scope host
valid lft forever preferred lft forever

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 29/44 DOEG604 - Volume, Network and Container Management

2: ensl8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000
link/ether 56:a3:fd:18:02:6d brd ff:ff:ff:ff.ff.ff
altname enp0s18
inet 10.0.2.46/24 brd 10.0.2.255 scope global noprefixroute ensl8
valid 1ft forever preferred 1ft forever
inet6 fe80::54a3:fdff:fel8:26d/64 scope link noprefixroute
valid lft forever preferred lft forever
3: dockerO: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue state UP group default
link/ether 02:42:07:¢9:88:32 brd ff:ff:ff:ff.ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid lft forever preferred 1ft forever
inet6 fe80::42:7ff:fec9:8832/64 scope link
valid lft forever preferred lft forever
102: br-4d26c1192dd7: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:2d:69:ac:d5 brd ff:ff:ff:ff.ff:ff
inet 172.25.0.1/16 brd 172.25.255.255 scope global br-4d26¢1192dd7
valid lft forever preferred 1ft forever
inet6 fe80::42:2dff:fe69:acd5/64 scope link
valid lft forever preferred lft forever
104: vethc5ca04a@ifl03: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue master docker® state UP group
default
link/ether 42:98:9a:1c:41:76 brd ff:ff:ff:ff:ff:ff link-netnsid 2
inet6 fe80::4098:9aff:felc:4176/64 scope link
valid lft forever preferred lft forever
106: veth6a46250@if105: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue master docker® state UP group
default
link/ether 5e:9d:9a:86:23:b0 brd ff:ff:ff:ff:ff:ff link-netnsid 3
inet6 fe80::5c9d:9aff:fe86:23b0/64 scope link
valid lft forever preferred lft forever
108: vethc5ccfca@ifl07: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc noqueue master br-4d26c1192dd7 state UP
group default
link/ether f2:37:cb:08:ff:8f brd ff:ff:ff:ff:ff:ff link-netnsid 2
inet6 fe80::f037:cbff:fe®@8:ff8f/64 scope link
valid lft forever preferred 1ft forever

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 30/44 DOEG604 - Volume, Network and Container Management

110: vetha87ff61@if109: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc noqueue master br-4d26c1192dd7 state UP
group default
link/ether 2e:e0:2d:5c:5d:c7 brd ff:ff:ff:ff:ff:ff link-netnsid 3
inet6 fe80::2ce0:2dff:fe5c:5dc7/64 scope link
valid 1ft forever preferred 1ft forever

[root@debianll /]# hostname
debianll

[root@debianll /]# exit
exit
root@debianll:~#

The purpose of this type of network is to allow access to services in the container directly from the IP address of the Docker host. For example, a nginx
in the container could be reached directly on 10.0.2.46:80 without needing to go through port exposure.

For this reason, in the case of the -p option used in the host network, this option is not taken into account and produces the warning WARNING:

Published ports are discarded when using host network mode. The major use of the host network is therefore in the case where multiple ports
in the container need to be reachable.

/. Important: Note that the host type network only works on Linux. It is
/& therefore incompatible with Docker Desktop for Mac, Docker Desktop for
Windows and Docker EE for Windows Server.

None

This type of network is mainly used when using a network plugin available in the Docker Hub.

It is therefore possible to launch a completely watertight container using the none network:

www.ittraining.team - https://ittraining.team/

https://hub.docker.com/search/?category=network&q=&type=plugin

2026/02/04 14:05 31/44 DOEG604 - Volume, Network and Container Management

root@debianll:~# docker stop mongo2

mongo2

root@debianll:~# docker rm mongo2

mongo2

root@debianll:~# docker run -it --name mongo2 --network none i2tch/mongodb2 bash
root@sbfbf0306ad7: /#

===Lin ks:::

The mechanism of links between containers is very powerful and makes it easy to reach another container, provided
that the two containers are on the same network. Create a container called **centos3** which is linked to the
centos2 container which it also knows under the alias **alias**:

<code>

root@332aa9930f30: /# exit

exit

root@debian9:~# docker run -itd --name centos3 --link centos2:alias centos
6a315259b2946c3bf2bb69f608cbe910d87edaadedb4f805e7ad4dbf6afleb916

root@debian9:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

6a2315259h294 centos “/bin/bash" 33 seconds ago Up 32 seconds

centos3

332229930130 i2tch/mongodb?2 "docker-entrypoint..." 3 minutes ago Exited (127) 39 seconds ago
mongo2

aaed3bc8e404 centos "/bin/bash" 16 minutes ago Up 16 minutes

centos?

9f36a628c72b centos “/bin/bash" 16 minutes ago Up 16 minutes

centosl

2169360fcbfd centos "/bin/bash" 20 minutes ago Up 20 minutes

resotest

€a239635e141 testcache "“more /tmp/moment" 7 hours ago Exited (@) 7 hours ago

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 32/44

DOEG604 - Volume, Network and Container Management

testl

21b0490a93dd i2tch/mydocker “/entrypoint.sh my..."
myDocker

bdb4bcOf81de i2tch/mongodbl "docker-entrypoint..."
27017 /tcp mongol

f5b45072b831 i2tch/mongodb "bash"

mongo

9731a48f126a nginx “nginx -g 'daemon ..."
cocky gates

eacd70596e23 nginx “nginx -g 'daemon ..."
adoring yonath

cffb4456e9c4 ubuntu "/bin/bash"

i2tch

root@debianll:~# docker exec -it centos3 bash

[root@57e92a8b25d7 /]# ping centos2

PING alias (172.17.0.4) 56(84) bytes of data.

64 bytes from alias (172.17.0.4): icmp seqg=1 ttl=64 time=0.146
64 bytes from alias (172.17.0.4): icmp seq=2 ttl=64 time=0.088
64 bytes from alias (172.17.0.4): icmp seqg=3 ttl=64 time=0.081
64 bytes from alias (172.17.0.4): icmp seqg=4 ttl=64 time=0.070
~C

--- alias ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3079ms
rtt min/avg/max/mdev = 0.070/0.096/0.146/0.030 ms

—~ o~ o~ o~

[root@57e92a8b25d7 /1# cat /etc/hosts

127.0.0.1 localhost

N localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ffe0::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

ms
ms
ms
ms

7 hours ago

18 hours

19 hours

19 hours

19 hours

20 hours

ago

ago

ago

ago

ago

Exited (137) 6 hours ago
Created

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (@) 19 hours ago

Exited (@) 20 hours ago

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 33/44 DOEG604 - Volume, Network and Container Management

172.17.0.4 alias fc417b22a20d centos2
172.17.0.2 57e92a8b25d7

[root@57e92a8b25d7 /]# exit
exit
root@debianll:~#

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos3
172.17.0.2

Note, however, that the link is unidirectional:
root@debianll:~# docker exec -it centos2 bash

[root@fc417b22a20d /1# ping centos3
ping: centos3: Name or service not known

[root@fc417b22a20d /1# ping 172.17.0.2

PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp seqg=1 ttl=64 time=0.097 ms

64 bytes from 172.17.0.2: icmp seq=2 ttl=64 time=0.082 ms

64 bytes from 172.17.0.2: icmp seq=3 ttl=64 time=0.125 ms

~C

--- 172.17.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2029ms
rtt min/avg/max/mdev = 0.082/0.101/0.125/0.019 ms

In the case above, centos2 can reach centos3 using the IP address 172.17.0.2 because centos2 is in both networks with IP addresses 172.17.0.4
and 172.25.0.3:

[root@fc417b22a20d /]# exit
exit

root@debianll:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 34/44 DOEG604 - Volume, Network and Container Management

172.17.0.4172.25.0.3

2.2 - Launching Wordpress in a container

Create the ~/wordpress directory and place yourself in it:
root@debianll:~# mkdir ~/wordpress && cd ~/wordpress
Create a container called wordpressdb from the mariadb:latest image:

root@debianll:~/wordpress# docker run -e MYSQL ROOT PASSWORD=fenestros -e MYSQL DATABASE=wordpress --name
wordpressdb -v "$PwWD/database":/var/lib/mysql -d mysql:latest

Unable to find image 'mysqgl:latest' locally

latest: Pulling from library/mysql

e9f2695d7e5b: Pull complete

80c6055edb33: Pull complete

C646ab461d8b: Pull complete

012006c6a591: Pull complete

929d5fa34b95: Pull complete

17e0243877fa: Pull complete

1850b459cd2f: Pull complete

8dceaed53baf: Pull complete

197b834ealcd: Pull complete

8df78c25b227: Pull complete

Digest: sha256:ceb98918916bd5261b3e9866ac8271d75d276b8a4db56f1dc190770342a77a9b
Status: Downloaded newer image for mysql:latest
db3732939266ed8a112857db9c970ca39571785e62db74175bda9be5a0f9d726

Check that the container is working:

root@debianll:~/wordpress# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

35/44 DOEG604 - Volume, Network and Container Management

NAMES
db3732939266
wordpressdb
57€92a8b25d7
centos3
fc417b22a20d
centos?2
cb2875ab1059
centosl
2126924504d8
resotest

mysql: latest "docker-entrypoint.s.." About a minute ago Up 52 seconds 3306/tcp, 33060/tcp
centos “/bin/bash" 12 minutes ago Up 12 minutes
centos "/bin/bash" 25 minutes ago Up 25 minutes
centos “/bin/bash" 26 minutes ago Up 25 minutes
centos “/bin/bash" 29 minutes ago Up 29 minutes

Create a container called wordpress linked to the wordpressdb container:

root@debianll:~/wordpress# docker run -e WORDPRESS DB USER=root -e WORDPRESS DB PASSWORD=fenestros --name
wordpress --link wordpressdb:mysql -p 10.0.2.46:80:80 -v "$PWD/html":/var/www/html -d wordpress

Unable to find image 'wordpress:latest' locally

latest: Pulling from library/wordpress

1f7ce2fadbab:
48824c101cba:
249ff3a7bbeb:
aabd47f22b64:
851cb5d3b62c:
090f07e09d3e:
74f97600920f:
f48a91994636:
108b4c09lefa:
941753607622
5d0ecllef45d:
87757e6fac28:
899a04597fc2:
44506e60b7cl:
305eccl1d68f5:
adebcb47406¢:

Already exists
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 36/44 DOEG604 - Volume, Network and Container Management

8d4e2943ab66: Pull complete

cab275157cee: Pull complete

b12b496¢c1035: Pull complete

5bc81c9fd938: Pull complete

e737031fb816: Pull complete

Digest: sha256:3a2a8b925c86967a43027ec3bald46e1859delfadf0f535dd9b40f4d39f8b9caa
Status: Downloaded newer image for wordpress:latest
63fec083f4dbbb6al7563d9c6bd4aefce2430abeaba2172997038c8fb6edabab78

Check that the container is working:

root@debianll:~/wordpress# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

63fec083f4d6 wordpress "docker-entrypoint.s.." About a minute ago Up About a minute
10.0.2.46:80->80/tcp wordpress

db3732939266 mysql:latest "docker-entrypoint.s.." 6 minutes ago Up 6 minutes 3306/tcp,
33060/tcp wordpressdb

57e92a8b25d7 centos "/bin/bash" 18 minutes ago Up 18 minutes

centos3

fc417b22a20d centos "/bin/bash" 31 minutes ago Up 31 minutes

centos?2

cb2875ab1059 centos “/bin/bash" 31 minutes ago Up 31 minutes

centosl

2126924504d8 centos "/bin/bash" 35 minutes ago Up 35 minutes

resotest

Check that Wordpress is working:

root@debianll:~/wordpress# lynx --dump http://10.0.2.46
WordPress
Select a default language [English (United States)]

Continue

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 37/44

DOEG604 - Volume, Network and Container Management

root@debianll:~/wordpress#

root@debianll:~/wordpress# cd -
/root
root@debianll:~#

2.3 - Managing a Microservices Architecture

You are going to set up a simple application in the form of microservices, developed by Docker and called demo-voting-app, :

voting-app
Python

n-memaory DB
Redis

Worker
NET

result-app
Nodels

db
PostgressQL

]

In this application, the voting-app container allows you to vote for cats or dogs. This application runs under Python and provides an HTML interface:

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 38/44 DOEG604 - Volume, Network and Container Management

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

&« C @ Monsécurisé * & o @m a8 o M

i Applications [§ HowtoCreate an & Telafriend W izchEurope (B S Mes ressources ENI 2 Suggested Namir B Ssimple-HelpSerw & WirtualBowes - Fre: & \irtualBoo Virtual L

Cats vs Dogs!

During the vote, the result of the vote is stored in Redis in an in-memory database. The result is then passed to the Worker container, which runs
under .NET and updates the persistent database in the db container, which runs under PostgreSQL.

The result-app application running in NodeJS then reads the table from the PostgreSQL database and displays the result in HTML format:

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 39/44 DOEG604 - Volume, Network and Container Management

[4 Cats w5 Dogs! ® [0 Cats vs Dogs - Result W [4 Cats ws Dogs! *® [0 Cats vs Dogs - Result ® o+ - ¢ D
€ 3 C O @ Nonsécurisé | [FREEEEIEL: &« pmamBEBO0 &
it applications [4 HowtoCreate an Q Tel a friend W iZuch Europe (BL2 m Mes ressources EMI 32 Suggested Momine = Simple-Help Serve B WirbaalBoxes - Freo e ‘irtual8oo Virtual 2 >

CATS

100.0%

This application can be set up under docker with the following commands:

root@debianll:~# docker run -d --name=redis redis
Unable to find image 'redis:latest' locally
latest: Pulling from library/redis

1f7ce2fadbab: Already exists

4827€9d1e197: Pull complete

5845062cfda9: Pull complete

44d659adcf8b: Pull complete

b6962d83313d: Pull complete

5d29cf86ecab: Pull complete

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

40/44

DOEG604 - Volume, Network and Container Management

4f4fb700ef54: Pull complete
3a2d9f90268c: Pull complete

Digest: sha256:396b0f027ba2f33bt385771a621b58c1fd834fd2c522¢35¢c981d24fc17863c2f
Status: Downloaded newer image for redis:latest
227554e3e4c¢198272cbf21dd468e7cf78d4a75ad5ed000a9df364aa98726bc86

root@debianll:~# docker run -d --name=db -e POSTGRES PASSWORD=postgres -e POSTGRES USER=postgres postgres:9.4

Unable to find image 'postgres:9.4' locally
from library/postgres

9.4: Pulling

619014d83c02:
7ec0feb6664f6:
9ca7ba8f7764:
9e1155d037e2:
febcfb718870:
8c78c79412b5:
5a35744405c5:
27717922067 :
36f0c5255550:
dbf0a396f422:
ec4cObea33e5:
e8dd33ebabdl:
51c81b3b2c20:
2a03dd76f5d7:
Digest: sha256:42a7a6a647a602efa9592edd1f56359800d079b93fa52c5d92244c58ac4a2ab9
Status: Downloaded newer image for postgres:9.4
5083545dchf88ed9d1e605d306fe8dba86dflcl30fcc843e7fba30eadd524545

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete
complete

root@debianll:~# docker run -d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp vote

Unable to find image 'dockersamples/examplevotingapp vote:latest' locally
latest: Pulling from dockersamples/examplevotingapp vote

a378f10b3218: Pull complete
cllbdfacfd25: Pull complete
64fc9a66a5d8: Pull complete
5146634606ba: Pull complete

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

41/44

DOEG604 - Volume, Network and Container Management

479celf6823a:
070425b38bdc:
ce42fc94cbff:
6bad37ec452b:
edf50al7349a:
db9bdfb7847f:
Digest: sha256:797919beacc239d80f6c568el70ad4bePabafdOff0567e89d45f1dc3350b87f7
Status: Downloaded newer image for dockersamples/examplevotingapp vote:latest
81le6fch9f6920c048b3062e3da8e7e48b0475e5de3059ff3e5e63cbf73cb5feb

Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete

root@debianll:~# docker run -d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp result

Unable to find image 'dockersamples/examplevotingapp result:latest' locally
latest: Pulling from dockersamples/examplevotingapp result

a378f10b3218: Already exists
bc194d4002b7:
231a505b2fbc:
71731700a241:
9c2ee871f3d2:
a5ec303d8450:
0548d3f3cdbd:
c33ac9356¢9f:
495a50ede288:
66140bd7f458:
4d77129208cd:
Digest: sha256:0b8fel5d93c08b9b90ad2ebab2af526clbee8bc9fabl62a6b93b3186aala5faf
Status: Downloaded newer image for dockersamples/examplevotingapp result:latest
33a264a36bdc63ba7c0ade3412e437d20357b1142a02e26b6f6ccfbdaaabbcf2

root@debianll:~# docker run -d --name=worker --link db:db --link redis:redis
dockersamples/examplevotingapp worker

Unable to find image 'dockersamples/examplevotingapp worker:latest' locally
latest: Pulling from dockersamples/examplevotingapp worker

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete
complete
complete
complete
complete

e67fdae35593: Pull complete
0ab66724116f: Pull complete

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05

42/44

DOEG604 - Volume, Network and Container Management

l4ccddebblbc:
5e265b51b431:
9ac34f7bdal5:
17081859ccl4:
Digest: sha256:bfa42cb2a0200cef7d384635225ca670f08c063341fc401bd27bae67babafcO4
Status: Downloaded newer image for dockersamples/examplevotingapp worker:latest

Pull complete
Pull complete
Pull complete
Pull complete

cf27130654d2c527f30cled4b80a517ab589dc1579c30af7bd4e53eba746354a

root@debianll:~# docker ps

CONTAINER ID

PORTS

cf27f30654d2 dockersamples/examplevotingapp worker "dotnet Worker.dll"
worker

33a264a36bdc dockersamples/examplevotingapp result "/usr/bin/tini -- no..
seconds 0.0.0.0:5001->80/tcp, :::5001->80/tcp result

81le6fch9f692 dockersamples/examplevotingapp vote “gunicorn app:app -b..
seconds 0.0.0.0:5000->80/tcp, :::5000->80/tcp vote

5083545dcbf8 postgres:9.4 "docker-entrypoint.s..
minute 5432/tcp db

227554e3e4cl redis "docker-entrypoint.s..
minute 6379/tcp redis

63fec083f4d6 wordpress "docker-entrypoint.s..
minutes 10.0.2.46:80->80/tcp wordpress

db3732939266 mysql: latest "docker-entrypoint.s..
minutes 3306/tcp, 33060/tcp wordpressdb
57e92a8b25d7 centos "/bin/bash"

minutes centos3

fc417b22a20d centos "/bin/bash"

hour centos?2

cb2875ab1059 centos “/bin/bash"

hour centosl

2126924504d8 centos “/bin/bash"

hour resotest

IMAGE

COMMAND

CREATED

7 seconds ago

31 seconds ago

55 seconds ago
About a minute ago
About a minute ago
43 minutes ago

48 minutes ago

59 minutes ago
About an hour ago
About an hour ago

About an hour ago

STATUS

Up
Up
Up
Up
Up
Up
Up
Up
Up
Up

Up

3 seconds

26

50

About

About

42

48

59

About

About

About

an

an

an

www.ittraining.team - https://ittraining.team/

2026/02/04 14:05 43/44 DOEG604 - Volume, Network and Container Management

This solution uses a Bridge type network. This type of network is limited to containers on a single host running Docker. Containers can only
communicate with each other and they are not accessible from the outside. In order for containers on the network to communicate or be accessible

from the outside world, port mapping must be configured.

LAB #3 - Supervising Containers

3.1 - The logs

View the logs of a container:

root@debianll:~# docker logs mongo2
root@sbfbf0306ad7:/# ip a

bash: ip: command not found
root@sbfbf0306ad7:/# ip addr

bash: ip: command not found
root@bfbf0306ad7:/# exit

exit

3.2 - Processes

View the processes in a container :

root@debianll:~# docker top centos3

uIbD PID PPID C STIME TTY
TIME CMD

root 818263 818243 0 15:49 pts/0
00:00:00 /bin/bash

www.ittraining.team - https://ittraining.team/

44/44

DOEG604 - Volume, Network and Container Management

2026/02/04 14:05

3.3 - Continuous Activityu

To see the activity of a container, use the following command:

root@debianll:~# docker stats centos3

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM %
57e92a8b25d7 centos3 0.00% 880KiB / 15.62GiB 0.01%
~C

root@debianll:~#

Copyright © 2024 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:

NET I/0
4.72kB / 854B

https://ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre03

Last update: 2024/12/17 13:46

BLOCK I/O PIDS
6B / 4.1kB 1

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:en:dre03

	DOE604 - Volume, Network and Container Management
	Content
	LAB #1 - Volume Management
	1.1 - Automatic Volume Management by Docker
	1.2 - Manual management of a Volume
	1.3 - Manual management of a Bindmount

	LAB #2 - Network Management
	2.1 - The Docker Network Approach
	Bridge
	Host
	None

	2.2 - Launching Wordpress in a container
	2.3 - Managing a Microservices Architecture

	LAB #3 - Supervising Containers
	3.1 - The logs
	3.2 - Processes
	3.3 - Continuous Activityu

