2026/02/04 13:58 1/51 DOF603 - Gérer et Stocker les Images Docker

Version : 2024.01

Derniere mise-a-jour : 2024/02/21 13:41

DOF603 - Gérer et Stocker les Images Docker

Contenu du Module

* DOF603 - Gérer et Stocker les Images Docker
o Contenu du Module
o LAB #1 - Re-créer une image officielle docker
= 1.1 - Utilisation d'un Dockerfile
1.2 - FROM
1.3-RUN
1.4 - ENV
1.5 - VOLUME
1.6 - COPY
1.7 - ENTRYPOINT
1.8 - EXPOSE
1.9-CMD
1.10 - Autres Commandes
o LAB #2 - Créer un Dockerfile
= 2.1 - Création et test du script
= 2.2 - Bonnes Pratiques liées au Cache
o LAB #3 - Installer un Registre Privé
= 3.1 - Créer un Registre local,
= 3.2 - Créer un Serveur de Registre Dédié
e Configurer le Client

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 2/51 DOF603 - Gérer et Stocker les Images Docker

LAB #1 - Re-créer une image officielle docker

1.1 - Utilisation d'un Dockerfile

Bien que la compilation des images soient assuré par Docker Hub, il est tout a fait possible de compiler une image “officielle” a partir d'un Dockerfile :

root@debianll:~# mkdir mongodb
root@debianll:~# cd mongodb/
root@debianll:~/mongodb# touch Dockerfile docker-entrypoint.sh

Le Docker file contient les instructions nécessaires pour la contruction de I'image :

root@debianll:~/mongodb# vi Dockerfile
root@debianll:~/mongodb# cat Dockerfile
FROM ubuntu:bionic

add our user and group first to make sure their IDs get assigned consistently, regardless of whatever

dependencies get added
RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \

apt-get update; \

apt-get install -y --no-install-recommends \
ca-certificates \
ig \
numactl \

HEAY

if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \

fi; \

rm -rf /var/lib/apt/lists/*

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 3/51 DOF603 - Gérer et Stocker les Images Docker

grab gosu for easy step-down from root (https://github.com/tianon/gosu/releases)

ENV GOSU VERSION 1.11

grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends \
wget \
HEAN
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \

wget -0 /usr/local/bin/gosu
“https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-$dpkgArch"; \

wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \

export GNUPGHOME="$(mktemp -d)"; \

gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007FOOF88E364FD4036A9C25BF357DD4; \

gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \

command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \

chmod +x /usr/local/bin/gosu; \

gosu --version; \

gosu nobody true; \

\

wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${IJSYAML VERSION}/dist/js-yaml.js"; \
TODO some sort of download verification here

\

apt-get purge -y --auto-remove wget

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 4/51 DOF603 - Gérer et Stocker les Images Docker

RUN mkdir /docker-entrypoint-initdb.d

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \
for key in $GPG KEYS; do \
gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list

Allow build-time overrides (eg. to build image with MongoDB Enterprise version)

Options for MONGO PACKAGE: mongodb-org OR mongodb-enterprise

Options for MONGO REPO: repo.mongodb.org OR repo.mongodb.com

Example: docker build --build-arg MONGO PACKAGE=mongodb-enterprise --build-arg MONGO REPO=repo.mongodb.com .
ARG MONGO PACKAGE=mongodb-org-unstable

ARG MONGO REPO=repo.mongodb.org

ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}

ENV MONGO MAJOR 4.1

ENV MONGO VERSION 4.1.9

bashbrew-architectures:amd64 arm64v8 s390x

RUN echo "deb http://$MONGO REPO/apt/ubuntu bionic/${MONGO PACKAGES%-unstable}/$MONGO MAJOR multiverse" | tee
"/etc/apt/sources.list.d/${MONGO PACKAGES-unstable}.list"

RUN set -x \
&& apt-get update \
&& apt-get install -y \
${MONGO_ PACKAGE}=$MONGO VERSION \
${MONGO_PACKAGE}-server=$MONGO VERSION \
${MONGO PACKAGE} - shel1=$MONGO VERSION \
${MONGO PACKAGE}-mongos=$MONGO VERSION \

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 5/51

DOF603 - Gérer et Stocker les Images Docker

${MONGO PACKAGE}-to0ls=$MONGO VERSION \
& rm -rf /var/lib/apt/lists/* \
& rm -rf /var/lib/mongodb \
&& mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb

VOLUME /data/db /data/configdb

COPY docker-entrypoint.sh /usr/local/bin/
ENTRYPOINT ["docker-entrypoint.sh"]

EXPOSE 27017
CMD ["mongod"]

Le fichier docker-entrypoint.sh sert a lancer le serveur mongodb dans le conteneur :

root@debianll:~/mongodb# vi docker-entrypoint.sh
root@debianll:~/mongodb# cat docker-entrypoint.sh
#!/bin/bash

set -Eeuo pipefail

if ["${1:0:1}" = '-']; then
set -- mongod "$@"
fi

originalArgOne="$1"

allow the container to be started with " --user’

all mongo* commands should be dropped to the correct user

if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0"']; then
if ["$originalArgOne" = 'mongod']; then

find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +

fi

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 6/51 DOF603 - Gérer et Stocker les Images Docker

make sure we can write to stdout and stderr as "mongodb"

(for our "initdb" code later; see "--logpath" below)

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||

ignore errors thanks to https://github.com/docker-library/mongo/issues/149

exec gosu mongodb "$BASH SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any
clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux
if [["$originalArgOne" == mongo*]]; then

numa='numactl --interleave=all'

if $numa true &> /dev/null; then

set -- $numa "$@"

fi

fi

usage: file env VAR [DEFAULT]
ie: file env 'XYZ DB PASSWORD' 'example'
(will allow for "$XYZ DB PASSWORD FILE" to fill in the value of
"$XYZ DB PASSWORD" from a file, especially for Docker's secrets feature)
file env() {
local var="$1"
local fileVar="${var} FILE"
local def="${2:-}"
if ["${'var:-}" 1 & ["${!fileVar:-}" 1; then
echo >&2 "error: both $var and $fileVar are set (but are exclusive)"
exit 1
fi
local val="¢$def"
if ["${!'var:-}" 1; then
val="${!var}"
elif ["${!fileVar:-}" 1; then

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 7/51 DOF603 - Gérer et Stocker les Images Docker

val="%$(< "${!'filevar}")"

fi
export "$var"="$val"
unset "$fileVar"

}

see https://github.com/docker-library/mongo/issues/147 (mongod is picky about duplicated arguments)
_mongod hack have arg() {
local checkArg="$1"; shift
local arg
for arg; do
case "$arg" in
"$checkArg"|"$checkArg"=*)

return 0
esac
done
return 1
}
mongod hack get arg val '--some-arg' "$@"

~mongod hack get arg val() {
local checkArg="$1"; shift
while ["$#" -gt 0]; do
local arg="$1"; shift
case "$arg" in
"$checkArg")
echo "$1"
return 0
"$checkArg"=*)
echo "${arg#$checkArg=}"
return 0

esac

www.ittraining.team - https://ittraining.team/

DOF603 - Gérer et Stocker les Images Docker

2026/02/04 13:58 8/51
done
return 1
}
declare -a mongodHackedArgs
mongod hack ensure arg '--some-arg' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure arg() {
local ensureArg="$1"; shift
mongodHackedArgs=("$@")
if ' mongod hack have arg "$ensureArg" "$@"; then
mongodHackedArgs+=("$ensureArg")

fi
}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

~mongod hack ensure no arg() {
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do
local arg="$1"; shift

if ["$arg" = "$ensureNoArg" 1; then
continue
fi
mongodHackedArgs+=("$arg")
done
}
mongod hack ensure no arg '--some-unwanted-arg' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure no arg val() {
local ensureNoArg="$1"; shift
mongodHackedArgs=()
while ["$#" -gt 0]; do

local arg="$1"; shift
case "$arg" in

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 9/51

DOF603 - Gérer et Stocker les Images Docker

"$ensureNoArg")
shift # also skip the value
continue

"$ensureNoArg"=*)
value is already included

continue
esac
mongodHackedArgs+=("$arg")
done
}
mongod hack ensure arg val '--some-arg' 'some-val' "$@"
set -- "${mongodHackedArgs[@]}"

_mongod hack ensure arg val() {
local ensureArg="$1"; shift
local ensureVal="$1"; shift
~mongod hack ensure no arg val "$ensureArg" "$@"
mongodHackedArgs+=("$ensureArg" "$ensureVal")

}

Jjs escape 'some "string" value'
_js _escape() {

jq --null-input --arg 'str' "$1" '$str'
}

jsonConfigFile="${TMPDIR: -/tmp}/docker-entrypoint-config.json"
tempConfigFile="${TMPDIR: -/tmp}/docker-entrypoint-temp-config.json"

_parse _config() {
if [-s "$tempConfigFile"]; then
return 0
fi

local configPath

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 10/51 DOF603 - Gérer et Stocker les Images Docker

if configPath="$(mongod hack get arg val --config "$@")"; then
if --config is specified, parse it into a JSON file so we can remove a few problematic keys
(especially SSL-related keys)
see https://docs.mongodb.com/manual/reference/configuration-options/
mongo --norc --nodb --quiet --eval "load('/js-yaml.js'); printjson(jsyaml.load(cat($(js escape
"$configPath"))))" > "$jsonConfigFile"
jq 'del(.systemLog, .processManagement, .net, .security)' "$jsonConfigFile" > "$tempConfigFile"

return 0
fi
return 1
}
dbPath=
_dbPath() {

if [-n "$dbPath"]; then
echo "$dbPath"
return

fi

if ! dbPath="$(mongod hack get arg val --dbpath "$@")"; then
if parse config "$@"; then
dbPath="$(jq -r '.storage.dbPath // empty' "$jsonConfigFile")"
fi
fi

if [-z "$dbPath"]; then

if mongod hack have arg --configsvr "$@" || {
_parse config "$@" \
&& clusterRole="$(jq -r '.sharding.clusterRole // empty' "$jsonConfigFile")" \
& ["$clusterRole" = 'configsvr']

}; then
if running as config server, then the default dbpath is /data/configdb
https://docs.mongodb.com/manual/reference/program/mongod/#cmdoption-mongod-configsvr
dbPath=/data/configdb

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 11/51

DOF603 - Gérer et Stocker les Images Docker

}

fi
fi

"${dbPath:=/data/db}"

echo "$dbPath"

if ["$originalArgOne" = 'mongod']; then

file env 'MONGO INITDB ROOT USERNAME'

file env 'MONGO INITDB ROOT PASSWORD'

pre-check a few factors to see if it's even worth bothering with initdb
shouldPerformInitdb=

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]; then

if we have a username/password, let's set "--auth"
~mongod hack ensure arg '--auth' "$@"
set -- "${mongodHackedArgs[@]}"

shouldPerformInitdb="'true'
elif ["$MONGO INITDB ROOT USERNAME"] || ["$MONGO INITDB ROOT PASSWORD"]; then
cat >&2 <<-'EOF'

error: missing 'MONGO INITDB ROOT USERNAME' or 'MONGO INITDB ROOT PASSWORD'

both must be specified for a user to be created
EOF
exit 1
fi

if [-z "$shouldPerformInitdb"]; then

if we've got any /docker-entrypoint-initdb.d/* files to parse later, we should initdb

for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
.sh|.js) # this should match the set of files we check
shouldPerformInitdb="¢f"
break

..
r

for below

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 12/51 DOF603 - Gérer et Stocker les Images Docker

esac
done
fi

check for a few known paths (to determine whether we've already initialized and should thus skip our
initdb scripts)
if [-n "$shouldPerformInitdb"]; then
dbPath="$(dbPath "$@")"
for path in \
"$dbPath/WiredTiger" \
"$dbPath/journal" \
"$dbPath/local.0" \
"$dbPath/storage.bson" \

; do
if [-e "$path"]; then
shouldPerformInitdb=
break
fi
done

fi

if [-n "$shouldPerformInitdb"]; then
mongodHackedArgs=("$@")
if parse config "$@"; then

_mongod_hack ensure arg val --config "$tempConfigFile" "${mongodHackedArgs[@]}"

fi
~mongod hack ensure arg val --bind ip 127.0.0.1 "${mongodHackedArgs[@]}"
~mongod hack ensure arg val --port 27017 "${mongodHackedArgs[@]}"
~mongod hack ensure no arg --bind ip all "${mongodHackedArgs[@]}"

remove "--auth" and "--replSet" for our initial startup (see
https://docs.mongodb.com/manual/tutorial/enable-authentication/#start-mongodb-without-access-control)

https://github.com/docker-1library/mongo/issues/211

~mongod hack ensure no arg --auth "${mongodHackedArgs[@]}"

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 13/51 DOF603 - Gérer et Stocker les Images Docker

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]1; then
_mongod _hack ensure no arg val --replSet "${mongodHackedArgs[@]}"

fi

sslMode="$(mongod hack have arg '--sslPEMKeyFile' "$@" && echo 'allowSSL' || echo 'disabled')" #
"BadValue: need sslPEMKeyFile when SSL is enabled" vs "BadValue: need to enable SSL via the sslMode flag when
using SSL configuration parameters”

_mongod hack ensure arg val --sslMode "$sslMode" "${mongodHackedArgs[@]}"

if stat "/proc/$$/fd/1" > /dev/null && [-w "/proc/$$/fd/1" 1; then
#
https://github.com/mongodb/mongo/blob/38c0eb538d0fd390c6ch9ce9ae9894153f6e8ef5/src/mongo/db/initialize server glo
bal state.cpp#L237-L251
https://github.com/docker-library/mongo/issues/164#issuecomment-293965668
_mongod_hack ensure arg val --logpath "/proc/$$/fd/1" "${mongodHackedArgs[@]}"
else
initdbLogPath="$(dbPath "$@")/docker-initdb.log"
echo >&2 "warning: initdb logs cannot write to '/proc/$$/fd/1', so they are in
'$initdbLogPath' instead"
_mongod_hack ensure arg val --logpath "$initdbLogPath" "${mongodHackedArgs[@]}"
fi
~mongod hack ensure arg --logappend "${mongodHackedArgs[@]}"

pidfile="${TMPDIR: - /tmp}/docker-entrypoint-temp-mongod.pid"

rm -f "$pidfile"

_mongod _hack ensure arg val --pidfilepath "$pidfile" "${mongodHackedArgs[@]}"
"${mongodHackedArgs[@]}" --fork

mongo=(mongo --host 127.0.0.1 --port 27017 --quiet)

check to see that our "mongod" actually did start up (catches "--help", "--version", MongoDB

3.2 being silly, slow prealloc, etc)
https://jira.mongodb.org/browse/SERVER-16292

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 14/51 DOF603 - Gérer et Stocker les Images Docker

tries=30
while true; do
if ! { [-s "$pidfile"] && ps "$(< "$pidfile")" &> /dev/null; }; then
bail ASAP if "mongod" isn't even running
echo >&2
echo >&2 "error: $originalArgOne does not appear to have stayed running --
perhaps it had an error?"

echo >&2
exit 1
fi
if "${mongo[@]}" 'admin' --eval 'quit(0)' &> /dev/null; then
success!
break
fi

((tries--))
if ["$tries" -l1le 0]; then

echo >&2
echo >&2 "error: $originalArgOne does not appear to have accepted connections
quickly enough -- perhaps it had an error?"
echo >&2
exit 1
fi
sleep 1

done

if ["$MONGO INITDB ROOT USERNAME"] && ["$MONGO INITDB ROOT PASSWORD"]1; then
rootAuthDatabase='admin'

"${mongo[@]}" "$rootAuthDatabase" <<-E0JS
db.createUser({
user: $(_js escape "$MONGO INITDB ROOT USERNAME"),
pwd: $(_js escape "$MONGO INITDB ROOT PASSWORD"),
roles: [{ role: 'root', db: $(js escape "$rootAuthDatabase") } 1

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

15/51 DOF603 - Gérer et Stocker les Images Docker

fi

E0JS
fi

export MONGO INITDB DATABASE="${MONGO INITDB DATABASE:-test}"

echo
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
*.sh) echo "$0: running $f"; . "$f" ;;
*.js) echo "$0: running $f"; "${mongo[@]}" "$MONGO INITDB DATABASE" "$f"; echo ;;
*) echo "$0: ignoring $f" ;;
esac
echo
done

"${mongodHackedArgs[@]}" --shutdown
rm -f "$pidfile"

echo
echo 'MongoDB init process complete; ready for start up.'
echo

MongoDB 3.6+ defaults to localhost-only binding

longer supported

if mongod --help 2>&1 | grep -q -- --bind ip all; then # TODO remove this conditional when 3.4 is no
haveBindIp=
if mongod hack have arg --bind ip "$@" || mongod hack have arg --bind ip all "$@"; then

/dev/null; then

haveBindIp=1
elif parse config "$@" && jq --exit-status '.net.bindIp // .net.bindIpAll' "$jsonConfigFile" >

haveBindIp=1
fi
if [-z "$haveBindIp"]; then

www.ittraining.team - https://ittraining.team/

DOF603 - Gérer et Stocker les Images Docker

2026/02/04 13:58 16/51
so if no "--bind ip" is specified, let's add "--bind ip all"
set -- "$@" --bind ip all

fi
fi

unset "${!MONGO INITDB @}"
fi

rm -f "$jsonConfigFile" "$tempConfigFile"
exec n $@II

Examinons chaque commande dans le Dockerfile :

1.2 - FROM

FROM ubuntu:bionic

Cette ligne définit I'image a partir de laquelle sera construite notre image. Quand l'image n'est construite a partir d'une autre image, la valeur de
FROM est scratch.

1.3 - RUN

RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

RUN set -eux; \
apt-get update; \
apt-get install -y --no-install-recommends \
ca-certificates \

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 17/51 DOF603 - Gérer et Stocker les Images Docker

ig \
numactl \
HEAN
if ! command -v ps > /dev/null; then \
apt-get install -y --no-install-recommends procps; \
fi; \
rm -rf /var/lib/apt/lists/*

RUN set -ex; \
\
apt-get update; \
apt-get install -y --no-install-recommends \
wget \
HEAN
if ! command -v gpg > /dev/null; then \
apt-get install -y --no-install-recommends gnupg dirmngr; \

fi; \
rm -rf /var/lib/apt/lists/*; \
\

dpkgArch="$(dpkg --print-architecture | awk -F- '{ print $NF }')"; \

wget -0 /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch";
\

wget -0 /usr/local/bin/gosu.asc
"https://github.com/tianon/gosu/releases/download/$GOSU VERSION/gosu-$dpkgArch.asc"; \

export GNUPGHOME="$(mktemp -d)"; \

gpg --batch --keyserver pgp.mit.edu --recv-keys B42F6819007FOOF88E364FD4036A9C25BF357DD4; \

gpg --batch --verify /usr/local/bin/gosu.asc /usr/local/bin/gosu; \

command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME" /usr/local/bin/gosu.asc; \

chmod +x /usr/local/bin/gosu; \

gosu --version; \

gosu nobody true; \

\
wget -0 /js-yaml.js "https://github.com/nodeca/js-yaml/raw/${JSYAML VERSION}/dist/js-yaml.js"; \

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 18/51 DOF603 - Gérer et Stocker les Images Docker

TODO some sort of download verification here

\
apt-get purge -y --auto-remove wget

RUN mkdir /docker-entrypoint-initdb.d

RUN set -ex; \
export GNUPGHOME="$(mktemp -d)"; \
for key in $GPG KEYS; do \
gpg --batch --keyserver pgp.mit.edu --recv-keys "$key"; \

done; \
gpg --batch --export $GPG KEYS > /etc/apt/trusted.gpg.d/mongodb.gpg; \
command -v gpgconf && gpgconf --kill all || :; \

rm -r "$GNUPGHOME"; \
apt-key list
RUN set -x \

&& apt-get update \

&& apt-get install -y \
${MONGO PACKAGE}=$MONGO VERSION \
${MONGO PACKAGE}-server=$MONGO VERSION \
${MONGO PACKAGE}-shell=$MONGO VERSION \
${MONGO_PACKAGE}-mongos=$MONGO_ VERSION \
${MONGO_PACKAGE}-tools=$MONGO VERSION \

& rm -rf /var/lib/apt/lists/* \

& rm -rf /var/lib/mongodb \

&& mv /etc/mongod.conf /etc/mongod.conf.orig

RUN mkdir -p /data/db /data/configdb \
&& chown -R mongodb:mongodb /data/db /data/configdb

Cette commande lance un processus dans la construction de I'image. Dans les cas ci-dessus, chaque chaine correspond a la commande passée au shell

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 19/51 DOF603 - Gérer et Stocker les Images Docker

/bin/sh.

Il existe un autre syntaxe de la commande RUN appelé le format exec, a savoir :

RUN ["/bin/bash", "-c", "commande"]

Important : La commande RUN est utilisée pour exécuter une commande
passée en argument lors de la compilation de I'image seulement. Cette
commande ne doit pas donc étre utilisée pour exécuter une commande lors
du lancement du conteneur. La commande utilisée pour accomplir ce
dernier est ENTRYPOINT.

a0
[~

1.4 - ENV

Cette commande permet de fixer la valeur d'une variable d'environnement disponible dans la suite du Dockerfile :

ENV GOSU VERSION 1.11
grab "js-yaml" for parsing mongod's YAML config files (https://github.com/nodeca/js-yaml/releases)
ENV JSYAML VERSION 3.13.0

ENV GPG_KEYS E162F504A20CDF15827F718D4B7C549A058F8B6B
ENV MONGO PACKAGE=${MONGO PACKAGE} MONGO REPO=${MONGO REPO}

ENV MONGO MAJOR 4.1
ENV MONGO VERSION 4.1.95

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 20/51 DOF603 - Gérer et Stocker les Images Docker

et dans les conteneurs générés a partir de I'image construite.

1.5 - VOLUME

VOLUME /data/db /data/configdb

Cette commande expose les répertoires passés en argument afin qu'ils puissent étre mappés vers des répertoires sur la machine héte ou ailleurs, tel
gue nous avons vu avec |'exemple nginx.

1.6 - COPY

COPY docker-entrypoint.sh /usr/local/bin/

Cette commande permet de récupérer les fichiers dans le contexte et de les copier dans I'image.
Attention : tous les fichiers dans le contexte sont inclus dans I'image finale, méme ceux qui sont inutiles.

Il est possible d'exclure des fichiers présents dans le contexte en les mettant dans un fichier appelé .dockerignore placé dans le contexte.

Important - |l existe une autre commande similaire a COPY : ADD. ADD est
/1, une commande qui n'est plus recommendé sauf dans le cas de cas
& spécifiques. Notez que dans le cas de l'utilisation de la commande ADD, si
le fichier source est une archive de type TAR, son contenu sera désarchivé
et copier vers la destination tandis que si le fichier source est référencé par

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 21/51 DOF603 - Gérer et Stocker les Images Docker

un URL, le contenu sera téléchargé puis déposé dans la destination.

1.7 - ENTRYPOINT

ENTRYPOINT ["docker-entrypoint.sh"]

Cette commande stipule la commande qui sera exécutée lors du démarrage du conteneur.

Deux cas de figure se présentent :

e ENTRYPOINT suivi d'une chaine - un shell est démarré pour exécuter la chaine,
e ENTRYPOINT suivi d'une table JSON (comme ci-dessus) au format ENTRYPOINT [“commande a exécuter”, “parameétres de la commande”].

Dans le fichier docker-entrypoint.sh :

originalArgOne="$1"

allow the container to be started with " --user’
all mongo* commands should be dropped to the correct user
if [["$originalArgOne" == mongo*]] && ["$(id -u)" = '0']; then
if ["$originalArgOne" = 'mongod']; then
find /data/configdb /data/db \! -user mongodb -exec chown mongodb '{}' +
fi

make sure we can write to stdout and stderr as "mongodb"

(for our "initdb" code later; see "--logpath" below)

chown --dereference mongodb "/proc/$$/fd/1" "/proc/$$/fd/2" ||

ignore errors thanks to https://github.com/docker-library/mongo/issues/149

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 22/51 DOF603 - Gérer et Stocker les Images Docker

exec gosu mongodb "$BASH SOURCE" "$@"
fi

you should use numactl to start your mongod instances, including the config servers, mongos instances, and any
clients.
https://docs.mongodb.com/manual/administration/production-notes/#configuring-numa-on-1linux
if [["$originalArgOne" == mongo*]]; then

numa="'numactl --interleave=all'

if $numa true &> /dev/null; then

set -- $numa "$@"

fi

fi

exec ||$@||
si la valeur du parametre passé a entrypoint.sh est mongod, le script affecte I'utilisateur mongodb aux répertoires /data/configdb et /data/db puis

lance mongo sous l'utilisateur mongodb avec des droits réduits (gosu).

Ce fichier finit par “$@" qui indique que si aucune condition n'ait été remplie, la commande est exécutée avec la valeur passée en argument.

Important - Notez que la compilation d'une image se fait a I'intérieur d'un

contexte. Le contexte est le répertoire de build. Dernierement, notez qu'il

& peut y avoir plusieurs ENTRYPOINT dans le fichier Dockerfile mais
uniquement le dernier est pris en compte.

1.8 - EXPOSE

EXPOSE 27017

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 23/51 DOF603 - Gérer et Stocker les Images Docker

Cette commande permet d'exposer un port a I'extérieur du conteneur.

1.9 - CMD

CMD ["mongod"]
Ceci représente la valeur du parametre par défaut si aucun parametre n'est spécifié a la fin de la commande docker run.

1.10 - Autres Commandes

Le Dockerfile peut aussi contenir les commandes suivantes :

e WORKDIR,
o Cette commande fixe le répertoire de travil lors de la compilation d'une image. Elle peut apparaitre plusieurs fois dans le Dockerfile

permettant ainsi I'évolution du répertoire de travail,

o LABEL,
o Cette commande permet de définir des couples clef/valeur a inclure dans les méta-données décrivant I'image lors de sa distribution, par

exemple, la version, la description ou un readme.

Lancez maintenant la compilation de I'image :

root@debianll:~/mongodb# docker build
[+] Building 56.9s (15/15) FINISHED
docker:default

=> [internal] load .dockerignore
0.0s

=> => transferring context: 2B

0.0s

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 24/51 DOF603 - Gérer et Stocker les Images Docker

=> [internal] load build definition from Dockerfile

0.1s

=> => transferring dockerfile: 3.55kB

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:bionic

0.3s

=> [internal] load build context

0.0s

=> => transferring context: 42B

0.0s

=> [1/10] FROM
docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43c98
0.0s

=> CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

0.0s

=> CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
iq numactl ; if ! command -v ps > /dev/null; then ap 0.0s

=> [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if ! command -v

gpg > /dev/null; then apt-get install -y --no-install-r 20.6s

=> [5/10] RUN mkdir /docker-entrypoint-initdb.d

0.5s

=> [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in E162F504A20CDF15827F718D4B7C549A058F8B6B;
do gpg --batch --keyserver pgp.mit.edu --recv-keys "$key 10.4s

=> [7/10] RUN echo "deb http://$MONGO REPO/apt/ubuntu bionic/${MONGO PACKAGES-unstable}/$MONGO MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO PACKAGE%-unstable} 0.5s

=> [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-org-
unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 mong 21.1s

=> [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb

0.5s

=> [10/10] COPY docker-entrypoint.sh /usr/local/bin/

0.1s

=> exporting to image

2.6s

=> => exporting layers

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

25/51

DOF603 - Gérer et Stocker les Images Docker

2.6s

=> => writing image sha256:72fad0b7e0c2206f31al2b7d49f0812c0a594a51el7a8c0e36687f5f626bc735

0.0s

Consultez la liste de images :

root@debianll:~/mongodb# docker images

REPOSITORY TAG

<none> <none>
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

IMAGE ID

72fadOb7e0c2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7ab54a9a43c
5d0da3dc9764

CREATED

About a minute ago

7 hours ago
9 days ago

2 weeks ago
7 months ago
2 years ago

Notez que I'image n'a ni REPOSITORY, ni TAG. Créez donc un TAG :

root@debianll:~/mongodb# docker tag 72f i2tch/mongodbl

root@debianll:~/mongodb# docker images

REPOSITORY TAG

i2tch/mongodbl latest
ittraining/mongodb latest
ubuntu latest
nginx latest
hello-world latest
centos latest

Démarrez un conteneur a partir de I'image i2tch/mongodb1 :

IMAGE ID

72fadOb7e0c2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7a54a9a43c
5d0da3dc9764

CREATED
minutes ago
hours ago
days ago
weeks ago
months ago
years ago

N NN O NN

SIZE
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

SIZE
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

root@debianll:~/mongodb# docker run -d --name mongol i2tch/mongodbl
3c578ea2a0428a07b60dac3b63d806351dffa2bb05224bcf7d12f1189766138e
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime

create failed: runc create failed: unable to start container process: exec: "docker-entrypoint.sh":

executable

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 26/51

DOF603 - Gérer et Stocker les Images Docker

file not found in $PATH: unknown.

root@debianll:~/mongodb# ls -1
total 16

-rw-r--r-- 1 root root 10971 Dec 10 16:57 docker-entrypoint.sh

-rw-r--r-- 1 root root 3514 Dec 10 17:09 Dockerfile

A 0 |
-_—J .

Recompilez donc I'image :

root@debianll:~/mongodb# docker rm mongol
mongol

root@debianll:~/mongodb# chmod +x docker-entrypoint.sh

root@debianll:~/mongodb# docker build .

[+] Building 0.8s (15/15) FINISHED

docker:default

=> [internal] load build definition from Dockerfile
0.1s

=> => transferring dockerfile: 3.55kB

0.0s

=> [internal] load .dockerignore
0.1s

=> => transferring context: 2B
0.0s

=> [internal] load metadata for docker.io/library/ubuntu:bionic

0.3s
=> [1/10] FROM

Important - Notez que le fichier docker-entrypoint.sh n'est pas exécutable

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 27/51 DOF603 - Gérer et Stocker les Images Docker

docker.io/library/ubuntu:bionic@sha256:152dc042452c496007f07ca9127571cb9c29697f42acbfad72324b2bb2e43¢c98
0.0s
=> [internal] load build context

0.0s

=> => transferring context: 11.02kB

0.0s

=> CACHED [2/10] RUN groupadd -r mongodb && useradd -r -g mongodb mongodb

0.0s

=> CACHED [3/10] RUN set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates
jq numactl ; if ! command -v ps > /dev/null; then ap 0.0s

=> CACHED [4/10] RUN set -ex; apt-get update; apt-get install -y --no-install-recommends wget ; if !

command -v gpg > /dev/null; then apt-get install -y --no-ins 0.0s

=> CACHED [5/10] RUN mkdir /docker-entrypoint-initdb.d

0.0s

=> CACHED [6/10] RUN set -ex; export GNUPGHOME="$(mktemp -d)"; for key in
E162F504A20CDF15827F718D4B7C549A058F8B6B; do gpg --batch --keyserver pgp.mit.edu --recv-keys 0.0s

=> CACHED [7/10] RUN echo "deb http://$MONGO_REPO/apt/ubuntu bionic/${MONGO_PACKAGES-unstable}/$MONGO_MAJOR
multiverse" | tee "/etc/apt/sources.list.d/${MONGO PACKAGE%-un 0.0s

=> CACHED [8/10] RUN set -x && apt-get update && apt-get install -y mongodb-org-unstable=4.1.9 mongodb-
org-unstable-server=4.1.9 mongodb-org-unstable-shell=4.1.9 0.0s

=> CACHED [9/10] RUN mkdir -p /data/db /data/configdb && chown -R mongodb:mongodb /data/db /data/configdb
0.0s

=> [10/10] COPY docker-entrypoint.sh /usr/local/bin/

0.2s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:56e5b1fb4284e2474392238ee5f91a5d27d%a4a43fal5f655136ae0283d269c2

0.0s

Important - Notez ici les lignes CACHED. |l est cependant possible de ne
pas utiliser le cache en stipulant -no-cache. Notez aussi I'utilisation de

2 [
-

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

28/51

DOF603 - Gérer et Stocker les Images Docker

[
-

conteneurs temporaires par étape nouvelle avec un commit vers une image
et une suppression dudit conteneur. Dernierement, notez que la
compilation d'une image se fait a I'intérieur d'un contexte. Le contexte
est le répertoire de build. Attention : tous les fichiers dans le contexte
sont inclus dans I'image finale, méme ceux qui sont inutiles.

Consultez la liste des images de nouveau et renommez votre derniere image :

root@debianll:~/mongodb# docker images

REPOSITORY

<none>
i2tch/mongodbl
ittraining/mongodb
ubuntu

nginx

hello-world

centos

TAG

<none>
latest
latest
latest
latest
latest
latest

IMAGE ID

56e5b1fb4284
72fad0b7e0c2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7a54a9%a43c
5d0da3dc9764

CREATED

About a minute ago
5 minutes ago

7 hours ago
9 days ago

2 weeks ago
7 months ago
2 years ago

root@debianll:~/mongodb# docker tag 56e i2tch/mongodb2

root@debianll:~/mongodb# docker images

REPOSITORY
i2tch/mongodb2
i2tch/mongodbl
ittraining/mongodb
ubuntu

nginx

hello-world

centos

TAG

latest
latest
latest
latest
latest
latest
latest

IMAGE ID

56e5b1fb4284
72fadOb7e0c2
fb3c6d5d186a
b6548eacb063
abbd71f48f68
9c7a54a9a43c
5d0da3dc9764

Lancez un conteneur a partir de la derniere image :

root@debianll:~/mongodb# docker run -d --name mongo2 i2tch/mongodb2

CREATED

About a minute ago
5 minutes ago

7 hours ago
9 days ago

2 weeks ago
7 months ago
2 years ago

SIZE
352MB
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

SIZE
352MB
352MB
1.11GB
77.8MB
187MB
13.3kB
231MB

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 29/51

DOF603 - Gérer et Stocker les Images Docker

880733cbhdc33a9a8fabael71e977cf745ea9al1b9cfc914992a2d0d3f8cd9d39

Utilisez la commande docker ps pour visualiser si le processus mongodb est bien démarré :

root@debianll:~/mongodb# docker ps

CONTAINER ID IMAGE COMMAND

NAMES

880733c6bdc3 i2tch/mongodb?2 "docker-entrypoint.s.."
mongo2

885f75b6aa57 ittraining/mongodb "bash"
mongo

04d910a3c93d nginx "/docker-entrypoint..."

:::81->80/tcp quirky moore

Connectez-vous a mongodb a partir de votre machine hote :

root@debianll:~/mongodb# docker inspect mongo2 | grep IP

"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": O,
"IPAddress": "172.17.0.4",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"IPAMConfig": null,
"IPAddress": "172.17.0.4",
"IPPrefixLen": 16,
"IPvbGateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,

root@debianll:~/mongodb# mongo --host 172.17.0.4

CREATED
15 seconds ago
7 hours ago

7 hours ago

STATUS
Up 13 seconds
Up 7 hours

Up 7 hours

PORTS

27017/tcp

0.0.0.0:81->80/tcp,

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 30/51 DOF603 - Gérer et Stocker les Images Docker

MongoDB shell version v4.0.28

connecting to: mongodb://172.17.0.4:27017/7?gssapiServiceName=mongodb

Implicit session: session { "id" : UUID("057eacfe-5b02-4653-9b20-a2a2044cbeba") }

MongoDB server version: 4.1.9

WARNING: shell and server versions do not match

Server has startup warnings:

2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten]

2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten] ** WARNING: Using the XFS filesystem is strongly
recommended with the WiredTiger storage engine

2023-12-10T16:16:13.395+0000 I STORAGE [initandlisten] ** See
http://dochub.mongodb.org/core/prodnotes-filesystem

2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten]

2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** NOTE: This is a development version (4.1.9) of
MongoDB.

2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** Not recommended for production.
2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten]

2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** WARNING: Access control is not enabled for the
database.

2023-12-10T16:16:14.255+0000 I CONTROL [initandlisten] ** Read and write access to data and
configuration is unrestricted.

2023-12-10T16:16:14.255+0000
2023-12-10T16:16:14.256+0000
2023-12-10T16:16:14.256+0000
is 'always'.
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten] ** We suggest setting it to 'never'
2023-12-10T16:16:14.256+0000 I CONTROL [initandlisten]

(=]

CONTROL [initandlisten]
CONTROL [initandlisten]
CONTROL [initandlisten] ** WARNING: /sys/kernel/mm/transparent hugepage/enabled

H H

—

Enable MongoDB's free cloud-based monitoring service, which will then receive and display
metrics about your deployment (disk utilization, CPU, operation statistics, etc).

The monitoring data will be available on a MongoDB website with a unique URL accessible to you
and anyone you share the URL with. MongoDB may use this information to make product
improvements and to suggest MongoDB products and deployment options to you.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 31/51 DOF603 - Gérer et Stocker les Images Docker

To enable free monitoring, run the following command: db.enableFreeMonitoring()
To permanently disable this reminder, run the following command: db.disableFreeMonitoring()

> exit
bye
root@debianll:~/mongodb#

LAB #2 - Créer un Dockerfile

2.1 - Création et test du script

Créez un répertoire nommé myDocker :

root@debianll:~/mongodb# mkdir ~/myDocker
root@debianll:~/mongodb# cd ~/myDocker
root@debianll:~/myDocker#

Créez le fichier myEntrypoint.sh :

root@debianll:~/myDocker# vi myEntrypoint.sh

root@debianll:~/myDocker# cat myEntrypoint.sh
#!/bin/bash
if [-z "$myVariable"]; then
echo "The variable myVariable must have a value"
return 1
fi

while true;
do

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 32/51 DOF603 - Gérer et Stocker les Images Docker

echo $1 \($(date +%H:%M:%S)\);
sleep "$myVariable";
done

Testez ce script :

root@debianll:~/myDocker# myVariable=3 . ./myEntrypoint.sh Hello!
Hello! (18:01:54)

Hello! (18:01:57)

Hello! (18:02:00)

Hello! (18:02:03)

Hello! (18:02:06)

~C

root@debianll:~/myDocker#

Rendez ce script exécutable :

root@debianll:~/myDocker# chmod u+x myEntrypoint.sh
Créez maintenant le fichier Dockerfile dans le répertoire ~/myDocker :
root@debianll:~/myDocker# vi Dockerfile
root@debianll:~/myDocker# cat Dockerfile

FROM centos:latest

MAINTAINER Team IT Training "infos@ittraining.team"
COPY myEntrypoint.sh /entrypoint.sh

ENV myVariable 3

ENTRYPOINT ["/entrypoint.sh"]

CMD ["mycommand"]

Générez maintenant I'image :

root@debianll:~/myDocker# docker build -t i2tch/mydocker .

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 33/51 DOF603 - Gérer et Stocker les Images Docker

[+] Building 0.8s (7/7) FINISHED
docker:default
=> [internal] load .dockerignore

0.2s

=> => transferring context: 2B

0.0s

=> [internal] load build definition from Dockerfile
0.1s

=> => transferring dockerfile: 211B

0.0s

=> [internal] load metadata for docker.io/library/centos:latest
0.0s

=> [internal] load build context

0.1s

=> => transferring context: 224B

0.0s

=> [1/2] FROM docker.io/library/centos:latest
0.1s

=> [2/2] COPY myEntrypoint.sh /entrypoint.sh
0.2s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:c5a41438d278439fac2cd65d53d87cabc5c771dd9b99bel1913ce049024ebad61
0.0s

=> => naming to docker.io/i2tch/mydocker

0.0s

Lancez le conteneur :
root@debianll:~/myDocker# docker run -it --name myDocker i2tch/mydocker

mycommand (17:05:57)
mycommand (17:06:00)

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 34/51 DOF603 - Gérer et Stocker les Images Docker

mycommand (17:06:03)
~Cmycommand (17:06:06)
mycommand (17:06:09)
mycommand (17:06:12)

~P™Q
root@debianll:~/myDocker#

| Important - Notez que ~C n'a aucun effet. Pour se détacher du conteneur
&% il convient d'utiliser ~P"Q.

Constatez que le conteneur est toujours en cours de fonctionnement :

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

97fe360bbld6 i2tch/mydocker “"/entrypoint.sh myco.." 4 minutes ago Up 4 minutes

myDocker

880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 54 minutes ago Up 54 minutes 27017 /tcp

mongo?2

885f75bb6aa57 ittraining/mongodb “bash" 8 hours ago Up 8 hours

mongo

04d910a3c¢c93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,

:::81->80/tcp quirky moore

root@debianll:~/myDocker# docker logs myDocker | tail
mycommand (17:10:30)

mycommand (17:10:33)
mycommand (17:10:36)
mycommand (17:10:39)
mycommand (17:10:42)
mycommand (17:10:45)

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 35/51 DOF603 - Gérer et Stocker les Images Docker

mycommand (17:10:48)
mycommand (17:10:51)
mycommand (17:10:54)
mycommand (17:10:57)

Arrétez le conteneur :

root@debianll:~/myDocker# docker stop -t 1 myDocker
myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

880733cbbdc3 i2tch/mongodb2 "docker-entrypoint.s.." 55 minutes ago Up 55 minutes 27017/tcp

mongo2

885f75b6aa57 ittraining/mongodb "bash" 8 hours ago Up 8 hours

mongo

04d910a3c93d nginx "/docker-entrypoint..." 8 hours ago Up 8 hours 0.0.0.0:81->80/tcp,

:::81->80/tcp quirky moore
Démarrez le conteneur :

root@debianll:~/myDocker# docker start myDocker
myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

97fe360bbld6 i2tch/mydocker "/entrypoint.sh myco.." 6 minutes ago Up 5 seconds

myDocker

880733c6bdc3 i2tch/mongodb2 "docker-entrypoint.s.." 56 minutes ago Up 56 minutes 27017 /tcp
mongo2

885f75b6aa57 ittraining/mongodb “bash" 8 hours ago Up 8 hours

mongo

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

36/51

DOF603 - Gérer et Stocker les Images Docker

04d910a3c93d
:::81->80/tcp

nginx
quirky moore

Mettez le conteneur en pause :

"/docker-entrypoint...

root@debianll:~/myDocker# docker pause myDocker

myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE

NAMES

97fe360bb1ld6 i2tch/mydocker
myDocker

880733cbbdc3 i2tch/mongodb2
mongo2

885f75b6aa57 ittraining/mongodb
mongo

04d910a3c¢93d nginx

0.0.0.0:81->80/tcp, :::81->80/tcp

Supprimez la pause :

COMMAND
"/entrypoint.sh myco.."
"docker-entrypoint.s.."
"bash"

"/docker-entrypoint..."
quirky moore

root@debianll:~/myDocker# docker unpause myDocker

myDocker

root@debianll:~/myDocker# docker ps

CONTAINER ID IMAGE

NAMES

97fe360bbldé i2tch/mydocker
myDocker

880733c6bdc3 i2tch/mongodb2
mongo2

885f75b6aa57 ittraining/mongodb
mongo

COMMAND
"/entrypoint.sh myco.."
"docker-entrypoint.s.."

"bash"

8 hours ago

CREATED

7 minutes ago
56 minutes ago
8 hours ago

8 hours ago

CREATED
7 minutes ago
57 minutes ago

8 hours ago

Up 8 hours 0.0.0.0:81->80/tcp,

STATUS PORTS
Up 55 seconds (Paused)
Up 56 minutes 27017/tcp
Up 8 hours

Up 8 hours

STATUS PORTS
Up About a minute
Up 57 minutes 27017/tcp

Up 8 hours

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

37/51

DOF603 - Gérer et Stocker les Images Docker

04d910a3c93d
0.0.0.0:81->80/tcp, :::81->80/tcp quirky moore

nginx "/docker-entrypoint...

Lancez maintenant le conteneur avec un parametre :

root@debianll:~/myDocker# docker rm -fv myDocker
myDocker

8 hours ago

Up 8 hours

root@debianll:~/myDocker# docker run -d --name myDocker i2tch/mydocker "Up and Running"
fd5ac836f674fe@bf7b5056e851cd15e4762a5e41b05e00d384bede5234el1f5f

root@debianll:~/myDocker# docker logs myDocker

Up
Up
Up
Up
Up
Up

and
and
and
and
and
and

Running
Running
Running
Running
Running
Running

(17:14:23)
(17
(17:14:29
(17
(17

(17:14:38

root@debianll:~/myDocker#

Changez la valeur de la variable d'environnement myVariable :

root@debianll:~/myDocker# docker rm -fv myDocker
myDocker

root@debianll:~/myDocker# docker run -d --name myDocker --env myVariable=1 i2tch/mydocker
a9e02a8bb39df9d5c84fc1d58643bc38c228b0562731792e2356a801b50a9%9al4

root@debianll:
mycommand (17:

mycommand (17
mycommand (17:
mycommand (17
mycommand (17

:15:36

:15:38
:15:39

~/myDocker# docker logs myDocker

15:35)

)
15:37)
)
)

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 38/51

DOF603 - Gérer et Stocker les Images Docker

mycommand (17:15:40)
mycommand (17:15:41)
root@debianll:~/myDocker#

2.2 - Bonnes Pratiques liées au Cache

Opérations Non-ldempotentes

Créez un répertoire bestp ainsi que le fichier Dockerfile suivant :

root@debianll:~/myDocker# cd
root@debianll:~# mkdir bestp
root@debianll:~# cd bestp
root@debianll:~/bestp# vi Dockerfile
root@debianll:~/bestp# cat Dockerfile
FROM ubuntu:latest

RUN date +%N > /tmp/moment

ENTRYPOINT ["more"]

CMD ["/tmp/moment"]

Le fichier Dokerfile contient une opération non idempotente.

contexte.

Important : Une opération idempotente est une opération qui aboutit
systématiqguement au méme résultat quand elle est lancée dans le méme

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 39/51 DOF603 - Gérer et Stocker les Images Docker

Compilez I'image :

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.9s (6/6) FINISHED

docker:default

=> [internal] load build definition from Dockerfile

0.2s

=> => transferring dockerfile: 123B

0.0s

=> [internal] load .dockerignore

0.1s

=> => transferring context: 2B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> [1/2] FROM docker.io/library/ubuntu:latest
0.1s

=> [2/2] RUN date +%N > /tmp/moment

0.4s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:842ab4a40890alb5fe7a3af5a41513cb6edd5fd2da503b82¢c375f350671b62707
0.0s

=> => naming to docker.io/library/testcache
0.0s

Exécuter maintenant un premier conteneur a partir de I'image compilée :

root@debianll:~/bestp# docker run --name testl -it testcache
771723987

Supprimez maintenant le conteneur et relancez la compilation de I'image :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 40/51 DOF603 - Gérer et Stocker les Images Docker

root@debianll:~/bestp# docker rm testl
testl

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.3s (6/6) FINISHED

docker:default

=> [internal] load .dockerignore

0.1s

=> => transferring context: 2B

0.0s

=> [internal] load build definition from Dockerfile
0.1s

=> => transferring dockerfile: 123B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> [1/2] FROM docker.io/library/ubuntu:latest

0.0s

=> CACHED [2/2] RUN date +%N > /tmp/moment

0.0s

=> exporting to image

0.0s

=> => exporting layers

0.0s

=> => writing image sha256:842ab4a40890alb5fe7a3af5a41513c6edd5fd2da503b82¢c3751350671b62707
0.0s

=> => naming to docker.io/library/testcache

0.0s

Lancez un conteneur a partir de I'image re-compilée :

root@debianll:~/bestp# docker run --name testl -it testcache
771723987

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 41/51

DOF603 - Gérer et Stocker les Images Docker

Important - Notez que les deux sorties des conteneurs sont identiques
malgré le fait que la valeur de la commande date aurait du modifier le
/1 résultat obtenu lors de I'exécution du deuxieme conteneur. La raison que
£.% . cecin'est pas le cas est |'utilisation dans la deuxiéme compilation du cache.
Si cette commande avait été quelque chose de plus importante telle apt-
get upgrade, le résultat pourrait étre génant !

Pour contourner ce probleme, il est possible d'utiliser I'option -no-cache. Malheureusement ceci produirait une compilation complete a chaque fois,
méme pour les opérations idempotentes. Il est donc conseillé de combiner les opérations non-idempotentes avec des opérations idempotentes dans la

méme ligne de commande afin d'invalider le cache pour cette ligne de commande seulement :

root@debianll:~/bestp# vi Dockerfile

root@debianll:~/bestp# cat Dockerfile
FROM ubuntu:latest
RUN date +%N > /tmp/moment \

&& echo "V1.1" > /tmp/version
ENTRYPOINT ["more"]
CMD ["/tmp/moment"]

Supprimez maintenant le conteneur et relancez la compilation de I'image :

root@debianll:~/bestp# docker rm testl
testl

root@debianll:~/bestp# docker build -t testcache .
[+] Building 0.7s (6/6) FINISHED

docker:default

=> [internal] load .dockerignore

0.1s
=> => transferring context: 2B

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 42/51 DOF603 - Gérer et Stocker les Images Docker

0.0s

=> [internal] load build definition from Dockerfile

0.1s

=> => transferring dockerfile: 159B

0.0s

=> [internal] load metadata for docker.io/library/ubuntu:latest
0.0s

=> CACHED [1/2] FROM docker.io/library/ubuntu:latest

0.0s

=> [2/2] RUN date +%N > /tmp/moment && echo "V1.1" > /tmp/version
0.4s

=> exporting to image

0.1s

=> => exporting layers

0.1s

=> => writing image sha256:5a36blc7ec76e7bde962c41f5f5dccllae0ce3968e4953fbababcc8b7b282dab
0.0s

=> => naming to docker.io/library/testcache

0.0s
Lancez un conteneur a partir de I'image re-compilée :

root@debianll:~/bestp# docker run --name testl -it testcache
063819144

LAB #3 - Installer un Registre Privé

3.1 - Installer un Registre Local

Pour installer un registre privé, il convient d'utiliser une image publique de docker :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

43/51

DOF603 - Gérer et Stocker les Images Docker

root@debianll:~/bestp# cd ..

root@debianll:~# docker run -d --name registry -p 88:5000 registry:latest
Unable to find image 'registry:latest' locally
latest: Pulling from library/registry

c926b61bad3b:
5501dced60f8:
e875fe5eb6b9c:
21f4bf2f86€9:
98513cca25bb:

Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete

Digest: sha256:0a182cb82c93939407967d6d71d6caflldcef0e5689c6afe2d60518e3b34ab86

Status: Downloaded newer image for registry:latest
272df4a849bcbc58a70d6c8ele74751f24e485fd8ad6817427ef180b9f28b5f8

Utilisez maintenant lynx a partir d'un terminal de votre machine hote Docker pour vérifier que le registre est actif :

root@debianll:~# lynx --dump http://localhost:88/v2

{}root@debianll:~#

Important - Notez |la réponse du serveur est {} soit une liste JSON vide.

Renommez I'image i2tch/mydocker afin de pointer vers le nouveau registre :

root@debianll:~# docker tag i2tch/mydocker localhost:88/mydocker

Envoyez votre image localhost:88/mydocker sur ce nouveau registre :

root@debianll:~# docker push localhost:88/mydocker
Using default tag: latest
The push refers to repository [localhost:88/mydocker]
f981bd64e799: Pushed

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 44/51 DOF603 - Gérer et Stocker les Images Docker

74ddd0ec08fa: Pushed
latest: digest: sha256:32f7al1ld8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61lc3 size: 736

Constatez maintenant la présence de I'image dans le registre :

root@debianll:~# lynx --dump http://localhost:88/v2/mydocker/tags/list
{"name":"mydocker","tags":["latest"]}

3.2 - Créer un Serveur de Registre Dédié

Actuellement, le registre privé créé ci-dessus n'est pas accessible a partir du réseau local car il est référencé par localhost. Il convient donc maintenant
de mettre en place un serveur dédié.

Connectez-vous a la VM CentOS_10.0.2.45_SSH a partir de votre VM Debian_10.0.2.46_SSH :

root@debianll:~# ssh -1 trainee 10.0.2.45
trainee@l0.0.2.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Wed Nov 15 05:24:16 2023 from 10.0.2.1
[trainee@centos8 ~]%

Devenez root :
[trainee@centos8 ~]$ su -
Password: fenestros
[root@centos8 ~]#

Modifiez le nom d'ho6te de la machine :

[root@centos8 ~]# nmcli general hostname myregistry.i2tch. loc
[root@centos8 ~]# hostname

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 45/51

DOF603 - Gérer et Stocker les Images Docker

myregistry.i2tch.loc
Editez le fichier /etc/hosts et changez I'entrée pour I'adresse IP 10.0.2.61 :
[root@centos8 ~1# vi /etc/hosts

[root@centos8 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

2ol localhost localhost.localdomain localhost6 localhost6.localdomain6
10.0.2.45 myregistry.i2tch.loc
10.0.2.46 debianll.i2tch.loc

Créez maintenant un certificat auto-signé avec openssl :
[root@centos8 ~]# cd /
[root@centos8 /]# vi myconfig.cnf

[root@centos8 /]# cat myconfig.cnf
[req 1]

distinguished name = dn

x509 extensions = extensions
prompt = no

[extensions]
subjectAltName = DNS:i2tch.loc,DNS:myregistry.i2tch.loc

[dn]
0.DC = loc
1.DC = i2tch

commonName = i2tch. loc

[root@centos8 ~]# mkdir certs && openssl req -config myconfig.cnf -newkey rsa:4096 -nodes -sha256 -keyout

certs/domain.key -x509 -days 365 -out certs/domain.crt
Generating a RSA private key

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 46/51 DOF603 - Gérer et Stocker les Images Docker

[root@centos8 /]# 1s certs/
domain.crt domain.key

Déconnectez-vous de la VM Cent0S8_10.0.2.45 SSH :

[root@centos8 /]# exit
logout
[trainee@centos8 ~]$ exit

logout
Connection to 10.0.2.45 closed.

root@debianll:~#

Re-connectez-vous a la VM Cent0S8_10.0.2.45 SSH :

root@debianll:~# ssh -1 trainee 10.0.2.45

trainee@l0.0.2.45's password: trainee
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Fri Dec 15 01:07:37 2023 from 10.0.2.46
[trainee@centos8 ~]$

Devenez root :
[trainee@myregistry ~]$ su -
Password: fenestros

[root@myregistry ~]#

Créez un conteneur en mode sécurisé avec TLS a partir de I'image registry :

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 47/51 DOF603 - Gérer et Stocker les Images Docker

[root@myregistry ~]# docker run -d -p 5000:5000 --name registry -v /certs:/certs -e
REGISTRY HTTP TLS CERTIFICATE=/certs/domain.crt -e REGISTRY HTTP TLS KEY=/certs/domain.key registry:latest
Unable to find image 'registry:latest' locally

latest: Pulling from library/registry

c926b61bad3b: Pull complete

5501dced60f8: Pull complete

e875fe5e6b9c: Pull complete

21f4bf2f8619: Pull complete

98513cca25bb: Pull complete

Digest: sha256:0a182cb82c93939407967d6d71d6caflldcef0e5689c6afe2d60518e3b34ab86
Status: Downloaded newer image for registry:latest
bf0d4fe9fcb121f9c2d9e85b812bb54b01397602efOdcefdfc71327acf832fec

[root@myregistry ~]# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bfod4fe9fcbl registry:latest "/entrypoint.sh /etc.." 47 seconds ago Up 44 seconds
0.0.0.0:5000->5000/tcp, :::5000->5000/tcp registry

90267aac9800 hello-world “/hello" 15 hours ago Exited (@) 15 hours ago

eloquent chatelet
Envoyez une copie du fichier /certs/domain.crt vers le répertoire /tmp de la machine virtuelle Debian11l_10.0.2.46 en le renommant ca.crt :

[root@myregistry ~]# scp /certs/domain.crt trainee@l0.0.2.46:/tmp/ca.crt
The authenticity of host '10.0.2.46 (10.0.2.46)' can't be established.

ECDSA key fingerprint is SHA256:JFem/QUXFwOaDA0ST0S3vs0GsSD11wP0zabybTGO7/8.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.0.2.46' (ECDSA) to the list of known hosts.
trainee@l0.0.2.46's password:

domain.crt

100% 2053 2.9MB/s 00:00

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58

48/51

DOF603 - Gérer et Stocker les Images Docker

Configurer le Client

Sortez de la VM CentOS8_10.0.2.45 SSH :

[root@myregistry ~]# exit

logout

[trainee@myregistry ~]$ exit

logout

Connection to 10.0.2.45 closed.

root@debianll:~#

Supprimez le conteneur registry :

root@debianll:~# docker rm -f registry

registry

ainsi que I'image du registry :

root@debianll:~# docker rmi registry:latest
registry:latest
registry@sha256:0a182cb82c¢93939407967d6d71d6caflldcef0e5689cbafe2d60518e3b34ab86

Untagged:
Untagged:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:

sha256:
sha256:
sha256:
sha256:
sha256:
sha256:

909c3ff012b7f9fc4b802b73f250ad45e4ffa385299b71fdd6813f70a6711792
577c3b283118ca6108a6a8c8a0al0eff666dec82c482dd239dfed49f31553df6
2babacf6ed95c86cfb2c830693135513bc019a0cOcf8f2c58990bc215995699f
65920463e77382a5che8da3e814c4449fc665487c8a9fadac27179e809f5ba2e
54501ccbeaec2665849d200fc4ablab7254ff0f3bd31ab673879fe321fa2ad7f
9fe9a137fd002363ac64f5af66146702432b638a83eedc5b620c40a9e433e813

Renommez I'image i2tch/mydocker afin de pointer vers le serveur de registre :

root@debianll:~# docker tag i2tch/mydocker myregistry.i2tch.loc:5000/mydocker

root@debianll:~# docker images

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 49/51 DOF603 - Gérer et Stocker les Images Docker
REPOSITORY TAG IMAGE ID CREATED SIZE
testcache latest 5a36blc7ec76 4 days ago 77.8MB
<none> <none> 842ab4a40890 4 days ago 77 .8MB
i2tch/mydocker latest c5a41438d278 4 days ago 231MB
localhost:88/mydocker latest c5a41438d278 4 days ago 231MB
myregistry.i2tch.loc:5000/mydocker latest c5a41438d278 4 days ago 231MB
i2tch/mongodb2 latest 56e5b1fb4284 4 days ago 352MB
i2tch/mongodbl latest 72fad0b7e0c2 4 days ago 352MB
ittraining/mongodb latest fb3c6d5d186a 5 days ago 1.11GB
ubuntu latest b6548eacbh063 2 weeks ago 77 .8MB
nginx latest abbd71f48f68 3 weeks ago 187MB
hello-world latest 9c7a54a%9a43c 7 months ago 13.3kB
centos latest 5d0da3dc9764 2 years ago 231MB

Editez le fichier /etc/hosts afin de pointer le 10.0.2.45 vers le nom myregistry.i2tch.loc :

root@debianll:~# vi /etc/hosts

root@debianll:~# cat /etc/hosts

127.0.0.1 localhost
10.0.2.46 debianll.i2tch. loc debianll
10.0.2.45 myregistry.i2tch.loc myregistry

The following lines are desirable for IPv6 capable hosts
N localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Déplacez le fichier /tmp/ca.crt vers le répertoire /etc/docker/certs.d/myregistry:5000/ :

root@debianll:~# mkdir -p /etc/docker/certs.d/myregistry:5000

root@debianll:~# mv /tmp/ca.crt /etc/docker/certs.d/myregistry:5000/

www.ittraining.team - https://ittraining.team/

50/51

DOF603 - Gérer et Stocker les Images Docker

2026/02/04 13:58

Créez le fichier /etc/docker/daemon.json pour accepter le certificat auto-signé :

root@debianll:~# vi /etc/docker/daemon.json

root@debianll:~# cat /etc/docker/daemon.json
{"insecure-registries" ["myregistry.i2tch.loc:5000"]}

Re-démarrez le service docker :
root@debianll:~# systemctl restart docker

Testez la réponse du registre :

root@debianll:~# curl -k https://myregistry:5000/v2/
{}root@debianll:~#

Finalement, envoyez I'image au registre :

root@debianll:~# docker push myregistry.i2tch.loc:5000/mydocker

Using default tag: latest

The push refers to repository [myregistry.i2tch.loc:5000/mydocker]

f981bd64e799: Pushed
Pushed

74dddOec08fa:
latest: digest: sha256:32f7al11ld8a8523bb5b4ac0986844d569ca96df4d1875e7e678a885ee3a3c61lc3 size: 736

Copyright © 2024 Hugh Norris.

www.ittraining.team - https://ittraining.team/

2026/02/04 13:58 51/51 DOF603 - Gérer et Stocker les Images Docker

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:drf02

Last update: 2024/02/21 13:41

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:drf02

	DOF603 - Gérer et Stocker les Images Docker
	Contenu du Module
	LAB #1 - Re-créer une image officielle docker
	1.1 - Utilisation d'un Dockerfile
	1.2 - FROM
	1.3 - RUN
	1.4 - ENV
	1.5 - VOLUME
	1.6 - COPY
	1.7 - ENTRYPOINT
	1.8 - EXPOSE
	1.9 - CMD
	1.10 - Autres Commandes

	LAB #2 - Créer un Dockerfile
	2.1 - Création et test du script
	2.2 - Bonnes Pratiques liées au Cache
	Opérations Non-Idempotentes

	LAB #3 - Installer un Registre Privé
	3.1 - Installer un Registre Local
	3.2 - Créer un Serveur de Registre Dédié
	Configurer le Client

