
2026/02/04 09:21 1/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

Version : 2024.01

Dernière mise-à-jour : 2024/02/21 13:42

DOF601 - La Virtualisation par Isolation

Contenu du Module

DOF601 - La Virtualisation par Isolation
Contenu du Module
Présentation de la Virtualisation par Isolation

Historique
Présentation des Namespaces
Présentation des CGroups

LAB #1 - cgroups v1
1.1 - Préparation
1.2 - Présentation
1.3 - Limitation de la Mémoire
1.4 - La Commande cgcreate
1.5 - La Commande cgexec
1.6 - La Commande cgdelete
1.7 - Le Fichier /etc/cgconfig.conf
1.8 - La Commande cgconfigparser

LAB #2 - cgroups v2
2.1 - Préparation
2.2 - Présentation
2.3 - Limitation de la CPU
2.4 - La Commande systemctl set-property

Présentation de Linux Containers
LAB #3 - Travailler avec LXC

3.1 - Installation

2026/02/04 09:21 2/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

3.2 - Création d'un Conteneur Simple
3.3 - Démarrage d'un Conteneur Simple
3.4 - S'attacher à un Conteneur Simple
3.5 - Commandes LXC de Base

La Commande lxc-console
La Commande lxc-stop
La Commande lxc-execute
La Commande lxc-info
La Commande lxc-freeze
La Commande lxc-unfreeze
Autres commandes

3.6 - Création d'un Conteneur Éphémère
La Commande lxc-copy

3.7 - Sauvegarde des Conteneurs
La Commande lxc-snapshot

Présentation de la Virtualisation par Isolation

Un isolateur est un logiciel qui permet d'isoler l'exécution des applications dans des containers, des contextes ou des zones d'exécution.

Historique

1979 - chroot - l'isolation par changement de racine,
2000 - BSD Jails - l'isolation en espace utilisateur,
2004 - Solaris Containers - l'isolation par zones,
2005 - OpenVZ - l'isolation par partitionnement du noyau sous Linux,
2008 - LXC - LinuX Containers - l'isolation en utilisant des namespaces et des CGroups avec liblxc,
2013 - Docker - l'isolation en utilisant des namespaces et des CGroups avec libcontainer,
2014 - LXD - LinuX Container Daemon - l'isolation en utilisant des namespaces et des CGroups avec liblxc.

https://fr.wikipedia.org/wiki/Chroot
https://www.freebsd.org/doc/handbook/jails.html
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://openvz.org/
https://linuxcontainers.org/
https://www.docker.com/get-started
https://linuxcontainers.org/lxd/introduction/

2026/02/04 09:21 3/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

Présentation des Namespaces

Les espaces de noms permettent de regrouper des processus dans un même espace et d'attribuer des droits sur des ressources par espace. Ceci
permet l'exécution de plusieurs init, chacun dans un namespace, afin de recréer un environnement pour les processus qui doivent être isolés.

Présentation des CGroups

LAB #1 - cgroups v1

1.1 - Préparation

Debian 11 utilise cgroups v2 par défault. Pour revenir à l'utilisation de cgroups v1, éditez le fichier /etc/boot/grub et ajoutez la directive
systemd.unified_cgroup_hierarchy=0 à la ligne GRUB_CMDLINE_LINUX_DEFAULT :

root@debian11:~# vi /etc/default/grub
root@debian11:~# cat /etc/default/grub
If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.
For full documentation of the options in this file, see:
info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet systemd.unified_cgroup_hierarchy=0"
GRUB_CMDLINE_LINUX=""

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)

2026/02/04 09:21 4/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal
note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE_RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT_TUNE="480 440 1"

root@debian11:~# grub-mkconfig -o /boot/grub/grub.cfg
Generating grub configuration file ...
Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64
Found initrd image: /boot/initrd.img-5.10.0-13-amd64
done

Redémarrez ensuite votre VM :

root@debian11:~# reboot

1.2 - Présentation

Les Groupes de Contrôles (Control Groups) aussi appelés CGroups, sont une façon de contrôler et de limiter des ressources. Les groupes de contrôle

2026/02/04 09:21 5/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

permettent l'allocation de ressources, même d'une manière dynamique pendant que le système fonctionne, telles le temps processeur, la mémoire
système, la bande réseau, ou une combinaison de ces ressources parmi des groupes de tâches (processus) définis par l'utilisateur et exécutés sur un
système.

Les groupes de contrôle sont organisés de manière hiérarchique, comme des processus. Par contre, la comparaison entre les deux démontre que
tandis que les processus se trouvent dans une arborescence unique descandant tous du processus init et héritant de l'environnement de leurs parents,
les contrôles groupes peuvent être multiples donnant lieu à des arborescences ou hiérarchies multiples qui héritent de certains attributs de leurs
groupes de contrôle parents.

Ces hiérarchies multiples et séparés sont necéssaires parce que chaque hiérarchie est attaché à un ou plusieurs sous-système(s) aussi appelés des
Contrôleurs de Ressources ou simplement des Contrôleurs. Les contrôleurs disponibles sous Debian 11 sont :

blkio - utilisé pour établir des limites sur l'accès des entrées/sorties à partir et depuis des périphériques blocs,
cpu - utilisé pour fournir aux tâches des groupes de contrôle accès au CPU grâce au planificateur,
cpuacct - utilisé pour produire des rapports automatiques sur les ressources CPU utilisées par les tâches dans un groupe de contrôle,
cpuset - utilisé pour assigner des CPU individuels sur un système multicoeur et des noeuds de mémoire à des tâches dans un groupe de
contrôle,
devices - utilisé pour autoriser ou pour refuser l'accès des tâches aux périphériques dans un groupe de contrôle,
freezer - utilisé pour suspendre ou pour réactiver les tâches dans un groupe de contrôle,
memory - utilisé pour établir les limites d'utilisation de la mémoire par les tâches d'un groupe de contrôle et pour génèrer des rapports
automatiques sur les ressources rmémoire utilisées par ces tâches,
net_cls - utilisé pour repèrer les paquets réseau avec un identifiant de classe (classid) afin de permettre au contrôleur de trafic Linux, tc,
d'identifier les paquets provenant d'une tâche particulière d'un groupe de contrôle.
perf_event - utilisé pour permettre le monitoring des CGroups avec l'outil perf,
hugetlb - utilisé pour limiter des ressources sur des pages de mémoire virtuelle de grande taille.

Il est à noter que :

chaque processus du système appartient à un cgroup et seulement à un cgroup à la fois,
tous les threads d'un processus appartiennent au même cgroup,
à la création d'un processus, celui-ci est mis dans le même cgroup que son processus parent,
un processus peut être migré d'un cgroup à un autre cgroup. Par contre, la migration d'un processus n'a pas d'impact sur l'appartenance au
cgroup de ses processus fils.

Commencez par installer le paquet cgroup-tools :

2026/02/04 09:21 6/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# apt -y install cgroup-tools

Pour visualiser les hiérarchies, il convient d'utiliser la commande lssubsys :

root@debian11:~# lssubsys -am
cpuset /sys/fs/cgroup/cpuset
cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct
blkio /sys/fs/cgroup/blkio
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
net_cls,net_prio /sys/fs/cgroup/net_cls,net_prio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb
pids /sys/fs/cgroup/pids
rdma /sys/fs/cgroup/rdma

Sous Debian 11, Systemd organise les processus dans chaque CGroup. Par exemple tous les processus démarrés par le serveur Apache se trouveront
dans le même CGroup, y compris les scripts CGI. Ceci implique que la gestion des ressources en utilisant des hiérarchies est couplé avec
l'arborescence des unités de Systemd.

En haut de l'arborescence des unités de Systemd se trouve la tranche root - -.slice, dont dépend :

le system.slice - l'emplacement des services système,
le user.slice - l'emplacement des sessions des utilisateurs,
le machine.slice - l'emplacement des machines virtuelles et conteneurs.

En dessous des tranches peuvent se trouver :

des scopes - des processus crées par fork,
des services - des processus créés par une Unité.

Les slices peuvent être visualisés avec la commande suivante :

2026/02/04 09:21 7/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# systemctl list-units --type=slice
 UNIT LOAD ACTIVE SUB DESCRIPTION
 -.slice loaded active active Root Slice
 system-getty.slice loaded active active system-getty.slice
 system-lvm2\x2dpvscan.slice loaded active active system-lvm2\x2dpvscan.slice
 system-modprobe.slice loaded active active system-modprobe.slice
 system-systemd\x2dcryptsetup.slice loaded active active Cryptsetup Units Slice
 system.slice loaded active active System Slice
 user-1000.slice loaded active active User Slice of UID 1000
 user.slice loaded active active User and Session Slice

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
8 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

L'arborescence des unités de Systemd est la suivante :

root@debian11:~# systemd-cgls
Control group /:
-.slice
├─user.slice
│ └─user-1000.slice
│ ├─user@1000.service …
│ │ ├─app.slice
│ │ │ ├─pulseaudio.service
│ │ │ │ └─974 /usr/bin/pulseaudio --daemonize=no --log-target=journal
│ │ │ ├─pipewire.service
│ │ │ │ ├─973 /usr/bin/pipewire
│ │ │ │ └─984 /usr/bin/pipewire-media-session
│ │ │ └─dbus.service
│ │ │ └─982 /usr/bin/dbus-daemon --session --address=systemd: --nofork --nopidfile --systemd-activation --
syslog-only

2026/02/04 09:21 8/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

│ │ └─init.scope
│ │ ├─958 /lib/systemd/systemd --user
│ │ └─959 (sd-pam)
│ ├─session-3.scope
│ │ ├─ 993 sshd: trainee [priv]
│ │ ├─ 999 sshd: trainee@pts/0
│ │ ├─1000 -bash
│ │ ├─1003 su -
│ │ ├─1004 -bash
│ │ ├─1010 systemd-cgls
│ │ └─1011 less
│ └─session-1.scope
│ ├─578 /bin/login -p --
│ ├─975 -bash
│ ├─986 su -
│ └─987 -bash
├─init.scope
│ └─1 /sbin/init
└─system.slice
 ├─apache2.service
 │ ├─595 /usr/sbin/apache2 -k start
 │ ├─597 /usr/sbin/apache2 -k start
 │ └─598 /usr/sbin/apache2 -k start
 ├─systemd-udevd.service
 │ └─317 /lib/systemd/systemd-udevd
 ├─cron.service
 │ └─491 /usr/sbin/cron -f
 ├─polkit.service
 │ └─495 /usr/libexec/polkitd --no-debug
 ├─rtkit-daemon.service
 │ └─979 /usr/libexec/rtkit-daemon
 ├─auditd.service
 │ └─460 /sbin/auditd
 ├─wpa_supplicant.service

2026/02/04 09:21 9/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

 │ └─498 /sbin/wpa_supplicant -u -s -O /run/wpa_supplicant
 ├─ModemManager.service
 │ └─515 /usr/sbin/ModemManager
 ├─inetd.service
 │ └─694 /usr/sbin/inetd
 ├─systemd-journald.service
 │ └─296 /lib/systemd/systemd-journald
 ├─mdmonitor.service
 │ └─432 /sbin/mdadm --monitor --scan
 ├─ssh.service
 │ └─580 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
lines 1-58
[q]

En utilisant Systemd, plusieurs ressources peuvent être limitées :

CPUShares - par défault 1024,
MemoryLimit - limite exprimée en Mo ou en Go. Pas de valeur par défaut,
BlockIOWeight - valeur entre 10 et 1000. Pas de valeur par défaut,
StartupCPUShares - comme CPUShares mais uniquement appliqué pendant le démarrage,
StartupBlockIOWeight - comme BlockIOWeight mais uniquement appliqué pendant le démarrage,
CPUQuota - utilisé pour limiter le temps CPU, même quand le système ne fait rien.

1.3 - Limitation de la Mémoire

Commencez par créer le script hello-world.sh qui servira à générer un processus pour travailler avec les CGroups :

root@debian11:~# vi hello-world.sh
root@debian11:~# cat hello-world.sh
#!/bin/bash
while [1]; do
 echo "hello world"
 sleep 360

2026/02/04 09:21 10/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

done

Rendez le script exécutable et testez-le :

root@debian11:~# chmod u+x hello-world.sh
root@debian11:~# ./hello-world.sh
hello world
^C

Créez maintenant un CGroup dans le sous-système memory appelé helloworld :

root@debian11:~# mkdir /sys/fs/cgroup/memory/helloworld

Par défaut, ce CGroup héritera de l'ensemble de la mémoire disponible. Pour éviter cela, créez maintenant une limite de 40000000 octets pour ce
CGroup :

root@debian11:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld/memory.limit_in_bytes
root@debian11:~# cat /sys/fs/cgroup/memory/helloworld/memory.limit_in_bytes
39997440

Important - Notez que les 40 000 000 demandés sont devenus 39 997 440
ce qui correspond à un nombre entier de pages mémoire du noyau de 4Ko.
(39 997 440 / 4096 = 9 765).

Lancez maintenant le script helloworld.sh :

root@debian11:~# ./hello-world.sh &
[1] 1073
root@debian11:~# hello world
[Entrée]

2026/02/04 09:21 11/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# ps aux | grep hello-world
root 1073 0.0 0.0 6756 3100 pts/0 S 06:33 0:00 /bin/bash ./hello-world.sh
root 1077 0.0 0.0 6180 712 pts/0 R+ 06:34 0:00 grep hello-world

Notez qu'il n'y a pas de limite de la mémoire, ce qui implique l'héritage par défaut :

root@debian11:~# ps -ww -o cgroup 1073
CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/user.slice/user-1000.slice/ses
sion-3.scope,1:name=systemd:/user.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.
scope

Insérer le PID de notre script dans le CGroup helloworld :

root@debian11:~# echo 1073 > /sys/fs/cgroup/memory/helloworld/cgroup.procs

Notez maintenant l'héritage de la limitation de la mémoire - 5:memory:/helloworld :

root@debian11:~# ps -ww -o cgroup 1073
CGROUP
8:devices:/user.slice,7:pids:/user.slice/user-1000.slice/session-3.scope,5:memory:/helloworld,1:name=systemd:/use
r.slice/user-1000.slice/session-3.scope,0::/user.slice/user-1000.slice/session-3.scope

Constatez ensuite l'occupation mémoire réelle :

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld/memory.usage_in_bytes
274432

Tuez le script hello-world.sh :

root@debian11:~# kill 1073
root@debian11:~# ps aux | grep hello-world
root 1086 0.0 0.0 6180 716 pts/0 S+ 06:37 0:00 grep hello-world

2026/02/04 09:21 12/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

[1]+ Terminated ./hello-world.sh

Créez un second CGroup beaucoup plus restrictif :

root@debian11:~# mkdir /sys/fs/cgroup/memory/helloworld1
root@debian11:~# echo 6000 > /sys/fs/cgroup/memory/helloworld1/memory.limit_in_bytes
root@debian11:~# cat /sys/fs/cgroup/memory/helloworld1/memory.limit_in_bytes
4096

Relancez le script hello-world.sh et insérez-le dans le nouveau CGroup :

root@debian11:~# ./hello-world.sh &
[1] 1089

root@debian11:~# hello world
[Entrée]

root@debian11:~# echo 1089 > /sys/fs/cgroup/memory/helloworld1/cgroup.procs

Attendez la prochaine sortie de hello world sur le canal standard puis constatez que le script s'arrête :

root@debian11:~# ps aux | grep hello-world
root 1100 0.0 0.0 6180 720 pts/0 S+ 06:45 0:00 grep hello-world
[1]+ Killed ./hello-world.sh

Notez la trace dans le fichier /var/log/messages :

root@debian11:~# tail /var/log/messages
May 4 06:44:43 debian11 kernel: [994.012423] workingset_nodereclaim 0
May 4 06:44:43 debian11 kernel: [994.012423] pgfault 0
May 4 06:44:43 debian11 kernel: [994.012423] pgmajfault 0
May 4 06:44:43 debian11 kernel: [994.012423] pgrefill 0
May 4 06:44:43 debian11 kernel: [994.012423] pgscan 0
May 4 06:44:43 debian11 kernel: [994.012423] pgsteal 0

2026/02/04 09:21 13/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

May 4 06:44:43 debian11 kernel: [994.012425] Tasks state (memory values in pages):
May 4 06:44:43 debian11 kernel: [994.012426] [pid] uid tgid total_vm rss pgtables_bytes swapents
oom_score_adj name
May 4 06:44:43 debian11 kernel: [994.012428] [1089] 0 1089 1689 780 53248 0
0 hello-world.sh
May 4 06:44:43 debian11 kernel: [994.012430] oom-
kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=/,mems_allowed=0,oom_memcg=/helloworld1,task_memcg=/hello
world1,task=hello-world.sh,pid=1089,uid=0

1.4 - La Commande cgcreate

Cette commande permet la création d'un CGroup :

root@debian11:~# cgcreate -g memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:47 cgroup.clone_children
--w--w--w- 1 root root 0 May 4 06:47 cgroup.event_control
-rw-r--r-- 1 root root 0 May 4 06:47 cgroup.procs
-rw-r--r-- 1 root root 0 May 4 06:47 memory.failcnt
--w------- 1 root root 0 May 4 06:47 memory.force_empty
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.slabinfo
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.tcp.usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.kmem.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.max_usage_in_bytes

2026/02/04 09:21 14/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.failcnt
-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.memsw.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.memsw.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 May 4 06:47 memory.numa_stat
-rw-r--r-- 1 root root 0 May 4 06:47 memory.oom_control
---------- 1 root root 0 May 4 06:47 memory.pressure_level
-rw-r--r-- 1 root root 0 May 4 06:47 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 May 4 06:47 memory.stat
-rw-r--r-- 1 root root 0 May 4 06:47 memory.swappiness
-r--r--r-- 1 root root 0 May 4 06:47 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:47 memory.use_hierarchy
-rw-r--r-- 1 root root 0 May 4 06:47 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:47 tasks

Il n'existe cependant pas de commande pour affecter une limitation de la mémoire :

root@debian11:~# echo 40000000 > /sys/fs/cgroup/memory/helloworld2/memory.limit_in_bytes

1.5 - La Commande cgexec

Cette commande permet d'insérer la limitation dans le CGroup et de lancer le script en une seule ligne :

root@debian11:~# cgexec -g memory:helloworld2 ./hello-world.sh &
[1] 1106

root@debian11:~# hello world
[Entrée]

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld2/cgroup.procs
1106

2026/02/04 09:21 15/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

1107
root@debian11:~# ps aux | grep 110
root 1106 0.0 0.0 6756 3060 pts/0 S 06:48 0:00 /bin/bash ./hello-world.sh
root 1107 0.0 0.0 5304 508 pts/0 S 06:48 0:00 sleep 360
root 1108 0.0 0.0 0 0 ? I 06:49 0:00 [kworker/1:0-events_freezable]
root 1113 0.0 0.0 6180 652 pts/0 S+ 06:50 0:00 grep 110

1.6 - La Commande cgdelete

Une fois le script terminé, cette commande permet de supprimer le cgroup :

root@debian11:~# kill 1106
root@debian11:~# ps aux | grep 110
root 1107 0.0 0.0 5304 508 pts/0 S 06:48 0:00 sleep 360
root 1108 0.0 0.0 0 0 ? I 06:49 0:00 [kworker/1:0-mm_percpu_wq]
root 1115 0.0 0.0 6180 716 pts/0 R+ 06:51 0:00 grep 110
[1]+ Terminated cgexec -g memory:helloworld2 ./hello-world.sh

root@debian11:~# cgdelete memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
ls: cannot access '/sys/fs/cgroup/memory/helloworld2/': No such file or directory

1.7 - Le Fichier /etc/cgconfig.conf

Afin de les rendre persistants, il convient d'éditer le fichier /etc/cgconfig.conf :

root@debian11:~# vi /etc/cgconfig.conf
root@debian11:~# cat /etc/cgconfig.conf
group helloworld2 {
 cpu {

2026/02/04 09:21 16/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

 cpu.shares = 100;
 }
 memory {
 memory.limit_in_bytes = 40000;
 }
}

Important - Notez la création de deux limitations, une de 40 000 octets
de mémoire et l'autre de 100 cpu.shares. Cette dernière est une valeur
exprimée sur 1 024, où 1 024 représente 100% du temps CPU. La limite
fixée est donc équivalente à 9,77% du temps CPU.

Créez donc les deux CGroups concernés :

root@debian11:~# cgcreate -g memory:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/memory/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:53 cgroup.clone_children
--w--w--w- 1 root root 0 May 4 06:53 cgroup.event_control
-rw-r--r-- 1 root root 0 May 4 06:53 cgroup.procs
-rw-r--r-- 1 root root 0 May 4 06:53 memory.failcnt
--w------- 1 root root 0 May 4 06:53 memory.force_empty
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.slabinfo
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.tcp.usage_in_bytes

2026/02/04 09:21 17/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 May 4 06:53 memory.kmem.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.max_usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.failcnt
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.limit_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.memsw.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.memsw.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 May 4 06:53 memory.numa_stat
-rw-r--r-- 1 root root 0 May 4 06:53 memory.oom_control
---------- 1 root root 0 May 4 06:53 memory.pressure_level
-rw-r--r-- 1 root root 0 May 4 06:53 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 May 4 06:53 memory.stat
-rw-r--r-- 1 root root 0 May 4 06:53 memory.swappiness
-r--r--r-- 1 root root 0 May 4 06:53 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 May 4 06:53 memory.use_hierarchy
-rw-r--r-- 1 root root 0 May 4 06:53 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:53 tasks

root@debian11:~# cgcreate -g cpu:helloworld2

root@debian11:~# ls -l /sys/fs/cgroup/cpu/helloworld2/
total 0
-rw-r--r-- 1 root root 0 May 4 06:54 cgroup.clone_children
-rw-r--r-- 1 root root 0 May 4 06:54 cgroup.procs
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.stat
-rw-r--r-- 1 root root 0 May 4 06:54 cpuacct.usage
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_all
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu_sys
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_percpu_user
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_sys
-r--r--r-- 1 root root 0 May 4 06:54 cpuacct.usage_user
-rw-r--r-- 1 root root 0 May 4 06:54 cpu.cfs_period_us

2026/02/04 09:21 18/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 May 4 06:54 cpu.cfs_quota_us
-rw-r--r-- 1 root root 0 May 4 06:54 cpu.shares
-r--r--r-- 1 root root 0 May 4 06:54 cpu.stat
-rw-r--r-- 1 root root 0 May 4 06:54 notify_on_release
-rw-r--r-- 1 root root 0 May 4 06:54 tasks

1.8 - La Commande cgconfigparser

Appliquez le contenu du fichier /etc/cgconfig.conf grâce à l'utilisation de la commande cgconfigparser :

root@debian11:~# cgconfigparser -l /etc/cgconfig.conf

root@debian11:~# cat /sys/fs/cgroup/memory/helloworld2/memory.limit_in_bytes
36864

root@debian11:~# cat /sys/fs/cgroup/cpu/helloworld2/cpu.shares
100

LAB #2 - cgroups v2

2.1 - Préparation

Pour revenir à l'utilisation de cgroups v2, éditez le fichier /etc/boot/grub et modifiez la directive systemd.unified_cgroup_hierarchy=0 à
systemd.unified_cgroup_hierarchy=1 dans la ligne GRUB_CMDLINE_LINUX_DEFAULT :

root@debian11:~# vi /etc/default/grub
root@debian11:~# cat /etc/default/grub
If you change this file, run 'update-grub' afterwards to update
/boot/grub/grub.cfg.
For full documentation of the options in this file, see:
info -f grub -n 'Simple configuration'

2026/02/04 09:21 19/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

GRUB_DEFAULT=0
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet systemd.unified_cgroup_hierarchy=1"
GRUB_CMDLINE_LINUX=""

Uncomment to enable BadRAM filtering, modify to suit your needs
This works with Linux (no patch required) and with any kernel that obtains
the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...)
#GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef"

Uncomment to disable graphical terminal (grub-pc only)
#GRUB_TERMINAL=console

The resolution used on graphical terminal
note that you can use only modes which your graphic card supports via VBE
you can see them in real GRUB with the command `vbeinfo'
#GRUB_GFXMODE=640x480

Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux
#GRUB_DISABLE_LINUX_UUID=true

Uncomment to disable generation of recovery mode menu entries
#GRUB_DISABLE_RECOVERY="true"

Uncomment to get a beep at grub start
#GRUB_INIT_TUNE="480 440 1"

root@debian11:~# grub-mkconfig -o /boot/grub/grub.cfg
Generating grub configuration file ...
Found background image: /usr/share/images/desktop-base/desktop-grub.png
Found linux image: /boot/vmlinuz-5.10.0-13-amd64
Found initrd image: /boot/initrd.img-5.10.0-13-amd64
done

2026/02/04 09:21 20/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

Redémarrez ensuite votre VM :

root@debian11:~# reboot

2.2 - Présentation

A l'opposé des cgroups v1, cgroup v2 n'a qu'une seule arborescence ou hiérarchie et donc un seul point de montage. Tous les contrôleurs compatibles
v2 qui ne sont pas liés à une hiérarchie v1 sont automatiquement liés à la hiérarchie v2. Un contrôleur inactif dans la hiérarchie v2 peut être lié à un
autre hiérarchie. La migration d'un contrôleur d'une hiérarchie à une autre hiérarchie n'est possible que dans le cas où le contrôleur est désactivé et
n'est plus référencé dans la hiérarchie d'origine.

Pour vérifier l'utilisation de cgroups v2, il convient de visualiser le point de montage :

root@debian11:~# mount -l | grep cgroup
cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,nsdelegate,memory_recursiveprot)

et de consulter le contenu de ce point de montage :

root@debian11:~# ls -l /sys/fs/cgroup/
total 0
-r--r--r-- 1 root root 0 Jul 6 10:58 cgroup.controllers
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 10:58 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 11:32 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 10:58 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 11:32 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 11:32 cpu.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 cpuset.cpus.effective
-r--r--r-- 1 root root 0 Jul 6 11:32 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 11:32 cpu.stat
drwxr-xr-x 2 root root 0 Jul 6 10:58 dev-hugepages.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 dev-mqueue.mount

2026/02/04 09:21 21/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

drwxr-xr-x 2 root root 0 Jul 6 10:58 init.scope
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.cost.model
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.cost.qos
-rw-r--r-- 1 root root 0 Jul 6 11:32 io.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 io.stat
-r--r--r-- 1 root root 0 Jul 6 11:32 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 11:32 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 11:32 memory.stat
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-fs-fuse-connections.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-config.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-debug.mount
drwxr-xr-x 2 root root 0 Jul 6 10:58 sys-kernel-tracing.mount
drwxr-xr-x 23 root root 0 Jul 6 11:26 system.slice
drwxr-xr-x 4 root root 0 Jul 6 11:30 user.slice

Dans la version 2 de cgroup, certains noms ont changé par rapport à ceux utilisés dans la version 1 :

Version 1 Version 2
CPUShares CPUWeight
StartupCPUShares StartupCPUWeight
MemoryLimit MemoryMax

Commencez par créer le cgroup enfant pids dans le cgroup racine :

root@debian11:~# mkdir /sys/fs/cgroup/pids

Placez le PID du terminal courant dans le fichier cgroup.procs du cgroup enfant :

root@debian11:~# echo $$
1230
root@debian11:~# echo $$ > /sys/fs/cgroup/pids/cgroup.procs

Contrôlez maintenant le contenu du fichier cgroup.procs ainsi que le nombre de PIDs dans le cgroup pids :

2026/02/04 09:21 22/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# cat /sys/fs/cgroup/pids/cgroup.procs
1230
1281

root@debian11:~# cat /sys/fs/cgroup/pids/pids.current
2

Important - Notez que le fichier cgroup.procs contient deux PIDs. Le
premier est celui du Shell tandis que le deuxième est celui de la commande
cat.

Injectez maintenant la valeur de 5 dans le fichier pids.max du cgroup pids :

root@debian11:~# echo 5 > /sys/fs/cgroup/pids/pids.max

Lancez la commande suivante pour créer 6 pids dans le cgroup :

root@debian11:~# for a in $(seq 1 5); do sleep 60 & done
[1] 1290
[2] 1291
[3] 1292
[4] 1293
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: retry: Resource temporarily unavailable
-bash: fork: Resource temporarily unavailable

Important - Notez qu'à la tentative de création du 6ème processus, une

2026/02/04 09:21 23/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

erreur est retournée. Le système tente ensuite 4 fois de plus puis renonce
finalement avec le message d'erreur -bash: fork: Resource temporarily
unavailable.

Dernièrement, essayez de supprimer le cgroup pids :

root@debian11:~# rmdir /sys/fs/cgroup/pids
rmdir: failed to remove '/sys/fs/cgroup/pids': Device or resource busy

Important - Notez qu'il n'est pas possible de supprimer un cgroup tant que
celui-ci contient un processus.

Déplacez le processus du terminal courant dans le cgroup racine :

root@debian11:~# echo $$ > /sys/fs/cgroup/cgroup.procs

Il est maintenant possible de supprimer le cgroup pids :

root@debian11:~# rmdir /sys/fs/cgroup/pids
root@debian11:~#

2.3 - Limitation de la CPU

Il existe deux façons de limiter les ressources de la CPU :

CPU bandwidth,
un système de limitation basé sur un pourcentage de CPU pour un ou plusieurs processus,

CPU weight,

2026/02/04 09:21 24/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

un système de limitation basé sur la prioritisassion d'un ou de plusieurs processus par rapports aux autres processus.

Dans l'exemple suivant, vous allez mettre en place une limite de type CPU bandwidth.

Commencez par créer un service appelé foo :

root@debian11:~# vi /lib/systemd/system/foo.service
root@debian11:~# cat /lib/systemd/system/foo.service
[Unit]
Description=The foo service that does nothing useful
After=remote-fs.target nss-lookup.target

[Service]
ExecStart=/usr/bin/sha1sum /dev/zero
ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Démarrez et activez le service :

root@debian11:~# systemctl start foo.service
root@debian11:~# systemctl enable foo.service
Created symlink /etc/systemd/system/multi-user.target.wants/foo.service → /lib/systemd/system/foo.service.
root@debian11:~# systemctl status foo.service
● foo.service - The foo service that does nothing useful
 Loaded: loaded (/lib/systemd/system/foo.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2022-07-06 11:41:18 CEST; 19s ago
 Main PID: 997 (sha1sum)
 Tasks: 1 (limit: 19155)
 Memory: 296.0K
 CPU: 19.114s
 CGroup: /system.slice/foo.service
 └─997 /usr/bin/sha1sum /dev/zero

2026/02/04 09:21 25/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

Jul 06 11:41:18 debian11 systemd[1]: Started The foo service that does nothing useful.

Utilisez la commande ps pour voir le pourcentage de la CPU utilisé par ce service :

root@debian11:~# ps -p 997 -o pid,comm,cputime,%cpu
 PID COMMAND TIME %CPU
 997 sha1sum 00:01:33 100

Créez maintenant un autre service dénommé bar :

root@debian11:~# vi /lib/systemd/system/bar.service
root@debian11:~# cat /lib/systemd/system/bar.service
[Unit]
Description=The bar service that does nothing useful
After=remote-fs.target nss-lookup.target

[Service]
ExecStart=/usr/bin/md5sum /dev/zero
ExecStop=/bin/kill -WINCH ${MAINPID}

[Install]
WantedBy=multi-user.target

Démarrez et activez le service :

root@debian11:~# systemctl start bar.service

root@debian11:~# systemctl enable bar.service

Created symlink /etc/systemd/system/multi-user.target.wants/bar.service → /lib/systemd/system/bar.service.

root@debian11:~# systemctl status bar.service
● bar.service - The bar service that does nothing useful
 Loaded: loaded (/lib/systemd/system/bar.service; enabled; vendor preset: enabled)

2026/02/04 09:21 26/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

 Active: active (running) since Wed 2022-07-06 11:45:24 CEST; 15s ago
 Main PID: 1020 (md5sum)
 Tasks: 1 (limit: 19155)
 Memory: 236.0K
 CPU: 15.079s
 CGroup: /system.slice/bar.service
 └─1020 /usr/bin/md5sum /dev/zero

Jul 06 11:45:24 debian11 systemd[1]: Started The bar service that does nothing useful.

Utilisez la commande ps pour voir le pourcentage de la CPU utilisé par ce service :

root@debian11:~# ps -p 1020 -o pid,comm,cputime,%cpu
 PID COMMAND TIME %CPU
 1020 md5sum 00:01:03 99.4

Vérifiez maintenant la présence des contrôleurs cpuset et cpu dans l'arborescence du cgroup racine qui est monté à /sys/fs/cgroup/ :

root@debian11:~# cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma

Activez maintenant les deux contrôleurs cpuset et cpu :

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control
memory pids

root@debian11:~# echo "+cpu" >> /sys/fs/cgroup/cgroup.subtree_control

root@debian11:~# echo "+cpuset" >> /sys/fs/cgroup/cgroup.subtree_control

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control
cpuset cpu memory pids

Créez le cgroup enfant appelé FooBar :

2026/02/04 09:21 27/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# mkdir /sys/fs/cgroup/FooBar/

root@debian11:~# ls -l /sys/fs/cgroup/FooBar/
total 0
-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 12:18 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 12:18 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.max
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 12:18 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 12:18 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 12:18 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 12:18 io.pressure
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.current
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.events
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.high
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.low
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.max
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.min
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.oom.group

2026/02/04 09:21 28/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.stat
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 12:18 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.swap.high
-rw-r--r-- 1 root root 0 Jul 6 12:18 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 12:18 pids.current
-r--r--r-- 1 root root 0 Jul 6 12:18 pids.events
-rw-r--r-- 1 root root 0 Jul 6 12:18 pids.max

Activez les contrôleurs cpuset et cpu pour le cgroup FooBar :

root@debian11:~# echo "+cpu" >> /sys/fs/cgroup/FooBar/cgroup.subtree_control

root@debian11:~# echo "+cpuset" >> /sys/fs/cgroup/FooBar/cgroup.subtree_control

root@debian11:~# cat /sys/fs/cgroup/cgroup.subtree_control /sys/fs/cgroup/FooBar/cgroup.subtree_control
cpuset cpu memory pids
cpuset cpu

Important - Notez qu'il n'est pas possible d'activer les contrôleurs pour un
cgroup enfant si ces mêmes contrôleurs ne sont pas déjà activés pour le
cgroup parent. Notez aussi que dans le cgroup FooBar, les contrôleurs
memory et pids ne sont pas activés.

Créez maintenant le répertoire /sys/fs/cgroup/FooBar/tasks :

root@debian11:~# mkdir /sys/fs/cgroup/FooBar/tasks
root@debian11:~# ls -l /sys/fs/cgroup/FooBar/tasks
total 0
-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.controllers

2026/02/04 09:21 29/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 12:20 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 12:20 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.max
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 12:20 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 12:20 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 12:20 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 12:20 io.pressure
-rw-r--r-- 1 root root 0 Jul 6 12:20 memory.pressure

Important - Le répertoire /sys/fs/cgroup/FooBar/tasks définit un groupe
enfant du cgroup FooBar qui ne concerne que les contrôleurs cpuset et
cpu.

De façon à ce que les deux processus issus des services foo et bar se font concurrence sur la même CPU, injectez la valeur de 1 dans le fichier
/sys/fs/cgroup/FooBar/tasks/cpuset.cpus :

root@debian11:~# echo "1" > /sys/fs/cgroup/FooBar/tasks/cpuset.cpus

2026/02/04 09:21 30/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# cat /sys/fs/cgroup/FooBar/tasks/cpuset.cpus
1

Important - Notez que dans les faits, le contrôleur cpu n'est activé que
dans le cas où le cgroup contient au moins 2 processus qui se font
concurrence sur la même CPU.

Mettez en place une limitation des ressources de la CPU avec la commande suivante :

root@debian11:~# echo "200000 1000000" > /sys/fs/cgroup/FooBar/tasks/cpu.max

Important - Dans la commande ci-dessus, le premier nombre est un quota
en microsecondes pendant lequel les processus dans le cgroup peuvent
s'exécuter dans une période de temps donnée. Le deuxième nombre,
également exprimé en microsecondes, et la période. Autrement dit, les
processus dans le cgroup seront limités à une exécution de 200 000 / 1 000
000 = 0.2 secondes pendant chaque seconde.

Ajoutez maintenant les processus des services foo et bar au cgroup FooBar :

echo "997" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs

echo "1020" > /sys/fs/cgroup/FooBar/tasks/cgroup.procs

Vérifiez la prise en compte par le système de la commande précédente :

root@debian11:~# cat /proc/997/cgroup /proc/1020/cgroup
0::/FooBar/tasks

2026/02/04 09:21 31/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

0::/FooBar/tasks

Dernièrement, utilisez la commande top pour constater que la consommation de la CPU et limitée à 20% sur l'ensemble des processus du cgroup
FooBar et que ces 20% sont répartis en parts égales sur les deux processus foo et bar :

top - 12:36:33 up 1:37, 2 users, load average: 0.01, 0.70, 1.39
Tasks: 154 total, 3 running, 151 sleeping, 0 stopped, 0 zombie
%Cpu(s): 2.5 us, 0.0 sy, 0.0 ni, 97.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 16007.9 total, 15503.7 free, 203.6 used, 300.6 buff/cache
MiB Swap: 975.0 total, 975.0 free, 0.0 used. 15536.4 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 997 root 20 0 5312 572 508 R 10.0 0.0 50:12.26 sha1sum
 1020 root 20 0 5308 508 444 R 10.0 0.0 47:00.56 md5sum

2.4 - La Commande systemctl set-property

Comme déjà vu, systemd organise les processus dans des slices, par exemple les utilisateurs sont regroupés dans /sys/fs/cgroup/user.slice :

root@debian11:~# ls -l /sys/fs/cgroup/user.slice
total 0
-r--r--r-- 1 root root 0 Jul 6 16:13 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 10:58 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 16:13 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 15:05 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 16:13 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.max

2026/02/04 09:21 32/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.pressure
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus
-r--r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus.effective
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.cpus.partition
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpuset.mems
-r--r--r-- 1 root root 0 Jul 6 16:13 cpuset.mems.effective
-r--r--r-- 1 root root 0 Jul 6 10:58 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.weight
-rw-r--r-- 1 root root 0 Jul 6 16:13 cpu.weight.nice
-rw-r--r-- 1 root root 0 Jul 6 16:13 io.pressure
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.current
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.events
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.high
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.low
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.max
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.min
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.oom.group
-rw-r--r-- 1 root root 0 Jul 6 16:13 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.stat
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 16:13 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 16:13 memory.swap.high
-rw-r--r-- 1 root root 0 Jul 6 10:58 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 16:13 pids.current
-r--r--r-- 1 root root 0 Jul 6 16:13 pids.events
-rw-r--r-- 1 root root 0 Jul 6 10:58 pids.max
drwxr-xr-x 8 root root 0 Jul 6 15:22 user-1000.slice
drwxr-xr-x 5 root root 0 Jul 6 11:41 user-113.slice

et les processus d'un utilisateur spécifique dans un slice dénommé user-UID.slice :

root@debian11:~# ls -l /sys/fs/cgroup/user.slice/user-1000.slice

2026/02/04 09:21 33/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

total 0
-r--r--r-- 1 root root 0 Jul 6 16:14 cgroup.controllers
-r--r--r-- 1 root root 0 Jul 6 11:30 cgroup.events
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.freeze
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.max.depth
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.max.descendants
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.procs
-r--r--r-- 1 root root 0 Jul 6 16:14 cgroup.stat
-rw-r--r-- 1 root root 0 Jul 6 15:05 cgroup.subtree_control
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.threads
-rw-r--r-- 1 root root 0 Jul 6 16:14 cgroup.type
-rw-r--r-- 1 root root 0 Jul 6 16:14 cpu.pressure
-r--r--r-- 1 root root 0 Jul 6 11:30 cpu.stat
-rw-r--r-- 1 root root 0 Jul 6 16:14 io.pressure
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.events
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.events.local
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.high
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.low
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.max
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.min
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.numa_stat
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.oom.group
-rw-r--r-- 1 root root 0 Jul 6 16:14 memory.pressure
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.stat
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.current
-r--r--r-- 1 root root 0 Jul 6 16:14 memory.swap.events
-rw-r--r-- 1 root root 0 Jul 6 16:14 memory.swap.high
-rw-r--r-- 1 root root 0 Jul 6 11:30 memory.swap.max
-r--r--r-- 1 root root 0 Jul 6 16:14 pids.current
-r--r--r-- 1 root root 0 Jul 6 16:14 pids.events
-rw-r--r-- 1 root root 0 Jul 6 11:30 pids.max
drwxr-xr-x 2 root root 0 Jul 6 14:56 session-13.scope
drwxr-xr-x 2 root root 0 Jul 6 15:22 session-15.scope

2026/02/04 09:21 34/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

drwxr-xr-x 2 root root 0 Jul 6 11:30 session-4.scope
drwxr-xr-x 2 root root 0 Jul 6 12:12 session-6.scope
drwxr-xr-x 4 trainee trainee 0 Jul 6 11:30 user@1000.service
drwxr-xr-x 2 root root 0 Jul 6 11:41 user-runtime-dir@1000.service

De ce fait, il est possible d'utiliser systemd pour la mise en place des limitations des ressources en utilisant la commande systemd set-property :

CPU

root@debian11:~# systemctl set-property user-1000.slice CPUQuota=40%
root@debian11:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/cpu.max
40000 100000

Mémoire

root@debian11:~# systemctl set-property user-1000.slice MemoryMax=1G
root@debian11:~# cat /sys/fs/cgroup/user.slice/user-1000.slice/memory.max
1073741824

Important - Notez que l'utilisation de MemoryMax met en place un hard
limit. Il est aussi possible de mettre en place un soft limit en utilisant
MemoryHigh.

Présentation de Linux Containers

2026/02/04 09:21 35/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

LAB #3 - Travailler avec LXC

3.1 - Installation

Les outils indispensables à l'utilisation des Linux Containers sous Debian sont inclus dans le paquet lxc :

root@debian11:~# apt install lxc
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no longer required:
 libopengl0 linux-headers-5.10.0-15-amd64 linux-headers-5.10.0-15-common
Use 'apt autoremove' to remove them.
The following additional packages will be installed:
 arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info
 fakechroot genisoimage libaio1 libdistro-info-perl libfakechroot liblxc1
 libpam-cgfs lxc-templates lxcfs mmdebstrap qemu-utils rsync uidmap uuid-runtime
Suggested packages:
 ubuntu-archive-keyring squid-deb-proxy-client shunit2 wodim cdrkit-doc btrfs-progs
 lvm2 python3-lxc qemu-user-static apt-transport-tor binfmt-support perl-doc proot
 qemu-user squashfs-tools-ng qemu-block-extra
The following packages will be REMOVED:
 busybox
The following NEW packages will be installed:
 arch-test bridge-utils busybox-static cloud-image-utils debootstrap distro-info
 fakechroot genisoimage libaio1 libdistro-info-perl libfakechroot liblxc1
 libpam-cgfs lxc lxc-templates lxcfs mmdebstrap qemu-utils rsync uidmap
 uuid-runtime
0 upgraded, 21 newly installed, 1 to remove and 5 not upgraded.
Need to get 6,127 kB of archives.
After this operation, 33.2 MB of additional disk space will be used.
Do you want to continue? [Y/n] y

2026/02/04 09:21 36/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

L'installation de ce paquet va créer les répertoires /usr/share/lxc/config contenant les fichiers de configurations des gabarits ainsi que le répertoire
/usr/share/lxc/templates contenant fichiers de gabarits pour la création des conteneurs :

root@debian11:~# ls /usr/share/lxc
config hooks lxc.functions lxc-patch.py selinux templates

root@debian11:~# ls /usr/share/lxc/config
alpine.common.conf gentoo.moresecure.conf slackware.userns.conf
alpine.userns.conf gentoo.userns.conf sparclinux.common.conf
archlinux.common.conf nesting.conf sparclinux.userns.conf
archlinux.userns.conf oci.common.conf ubuntu-cloud.common.conf
centos.common.conf opensuse.common.conf ubuntu-cloud.lucid.conf
centos.userns.conf opensuse.userns.conf ubuntu-cloud.userns.conf
common.conf openwrt.common.conf ubuntu.common.conf
common.conf.d oracle.common.conf ubuntu.lucid.conf
common.seccomp oracle.userns.conf ubuntu.userns.conf
debian.common.conf plamo.common.conf userns.conf
debian.userns.conf plamo.userns.conf voidlinux.common.conf
fedora.common.conf sabayon.common.conf voidlinux.userns.conf
fedora.userns.conf sabayon.userns.conf
gentoo.common.conf slackware.common.conf

root@debian11:~# ls /usr/share/lxc/templates
lxc-alpine lxc-cirros lxc-gentoo lxc-oracle lxc-sparclinux
lxc-altlinux lxc-debian lxc-local lxc-plamo lxc-sshd
lxc-archlinux lxc-download lxc-oci lxc-pld lxc-ubuntu
lxc-busybox lxc-fedora lxc-openmandriva lxc-sabayon lxc-ubuntu-cloud
lxc-centos lxc-fedora-legacy lxc-opensuse lxc-slackware lxc-voidlinux

3.2 - Création d'un Conteneur Simple

Créez un conteneur simple en utilisant la commande suivante :

2026/02/04 09:21 37/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-create -n lxc-bb -t busybox

Important - Notez l'utilisation de l'option -n qui permet d'associer un nom
au conteneur ainsi que l'option -t qui indique le gabarit à utiliser. Notez
aussi que le gabarit est référencé par le nom du fichier dans le répertoire
/usr/share/lxc/templates sans son préfix lxc-.

Le backingstore (méthode de stockage) utilisé par défaut est dir ce qui implique que le rootfs du conteneur se trouve sur disque dans le répertoire
/var/lib/lxc/ :

root@debian11:~# ls /var/lib/lxc/
lxc-bb

root@debian11:~# ls /var/lib/lxc/lxc-bb/
config rootfs

root@debian11:~# ls /var/lib/lxc/lxc-bb/rootfs
bin dev etc home lib lib64 mnt proc root sbin selinux sys tmp usr var

Il est à noter que LXC peut également utiliser des backingstores de type :

ZFS
Brtfs
LVM
Loop
rbd (CephFS)

3.3 - Démarrage d'un Conteneur Simple

Pour démarrer le conteneur, il convient d'utiliser la commande lxc-start :

2026/02/04 09:21 38/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian9:~# lxc-start --name lxc-bb

3.4 - S'attacher à un Conteneur Simple

Pour s'attacher au conteneur démarré, il convient d'utiliser la commande lxc-attach :

root@debian11:~# lxc-start --name lxc-bb

root@debian11:~# lxc-attach --name lxc-bb
lxc-attach: lxc-bb: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open terminal
multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ # which passwd
/bin/passwd
~ #

Important - Notez l'absence de la commande passwd dans le conteneur,
ce qui explique l'erreur lors de la création de celui-ci.

Pour sortir du conteneur, il convient d'utiliser la commande exit ou bien la combinaison de touches <Ctrl+d> :

~ # [Ctrl+d]
~ # root@debian11:~#

Le fait de sortir du conteneur ne l'arrête pas pour autant, comme il peut être constaté par l'utilisation de la commande lxc-ls :

2026/02/04 09:21 39/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

~ # root@debian11:~# [Enter]

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb RUNNING 0 - 10.0.3.48 - false - - -

3.5 - Commandes LXC de Base

La Commande lxc-console

Pour lancer une console attachée à un TTY dans le conteneur, il convient d'utiliser la commande lxc-console :

root@debian11:~# lxc-console --name lxc-bb

Connected to tty 1
Type <Ctrl+a q> to exit the console, <Ctrl+a Ctrl+a> to enter Ctrl+a itself

lxc-bb login:

Pour sortir de la console, il faut utiliser la combinaison de touches <Ctrl+a> <q> :

lxc-bb login: [Ctrl+a] [q] root@debian11:~#

La Commande lxc-stop

Pour arrêter le conteneur, utilisez la commande lxc-stop :

2026/02/04 09:21 40/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-stop --name lxc-bb

root@debian11:~# lxc-ls --running

root@debian11:~#

La Commande lxc-execute

La commande lxc-execute démarre un conteneur (qui doit être créé mais arrêté), exécute la commande passée en argument grâce aux caractères –
puis arrête le conteneur :

root@debian11:~# lxc-execute -n lxc-bb -- uname -a
Linux lxc-bb 5.10.0-24-amd64 #1 SMP Debian 5.10.179-5 (2023-08-08) x86_64 GNU/Linux

root@debian11:~# lxc-ls --running

root@debian11:~#

La Commande lxc-info

Cette commande donne des informations sur un conteneur :

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: STOPPED

2026/02/04 09:21 41/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

La Commande lxc-freeze

La commande lxc-freeze met en pause tous les processus du conteneur :

root@debian11:~# lxc-start -n lxc-bb

root@debian11:~# lxc-ls --running
lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: RUNNING
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB
 RX bytes: 3.88 KiB
 Total bytes: 5.10 KiB

root@debian11:~# lxc-freeze -n lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: FROZEN
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB
 RX bytes: 4.06 KiB
 Total bytes: 5.28 KiB

root@debian11:~#

2026/02/04 09:21 42/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

La Commande lxc-unfreeze

La commande lxc-unfreeze annule l'effet d'une commande lxc-freeze précédente :

root@debian11:~# lxc-unfreeze -n lxc-bb

root@debian11:~# lxc-info -n lxc-bb
Name: lxc-bb
State: RUNNING
PID: 28581
IP: 10.0.3.65
Link: vethcJlTVk
 TX bytes: 1.22 KiB
 RX bytes: 4.47 KiB
 Total bytes: 5.69 KiB

Autres Commandes

Les autres commandes dont il faut avoir une connaissance sont :

Commande Description
lxc-destroy Permet de détruire complètement un conteneur

lxc-autostart Permet de rebooter, tuer ou arrêter les conteneurs dont le drapeau lxc.start.auto est fixé dans le fichier
/var/lib/<nom_conteneur>/config

lxc-cgroup Permet de manipuler à chaud les CGroups pour un conteneur donné
lxc-device Permet de rajouter à chaud les devices à un conteneur
lxc-usernsexec Permet d'exécuter des commandes en tant que root dans un conteneur non-privilégié
lxc-wait Permet d'attendre à ce qu'un conteneur ait atteint un certain état avant de continuer

3.6 - Création d'un Conteneur Éphémère

2026/02/04 09:21 43/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

Par défaut les conteneurs LXC sont permanents. Il est possible de créer un conteneur éphémère, c'est-à-dire un conteneur où toutes les données sont
détruites à l'arrêt de celui-ci, en utilisant la commande lxc-copy ainsi que l'option de cette commande –epheremal ou -e.

La Commande lxc-copy

Notez que le conteneur d'origine doit être arrêté lors de l'utilisation de la commande lxc-copy :

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb RUNNING 0 - 10.0.3.65 - false
root@debian11:~# lxc-copy -e -N lxc-bb-eph -n lxc-bb

root@debian11:~# lxc-ls -f --running

root@debian11:~#

Arrêtez donc le conteneur lxc-bb puis créez la copie :

root@debian11:~# lxc-stop -n lxc-bb

root@debian11:~# lxc-ls -f --running

root@debian11:~# lxc-copy -e -N lxc-bb-eph -n lxc-bb
Created lxc-bb-eph as clone of lxc-bb

root@debian11:~# lxc-ls -f --running
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb-eph RUNNING 0 - 10.0.3.21 - false

Attachez-vous au conteneur lxc-bb-eph :

root@debian11:~# lxc-ls -f --running

2026/02/04 09:21 44/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
lxc-bb-eph RUNNING 0 - 10.0.3.21 - false
root@debian11:~# lxc-attach lxc-bb-eph
lxc-attach: lxc-bb-eph: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ #

Créez un fichier de contrôle appelé testdata :

~ # ls -l
total 0

~ # pwd
/root

~ # echo "test" > testdata

~ # ls -l
total 4
-rw-r--r-- 1 root root 5 Aug 20 09:10 testdata

~ #

Déconnectez-vous du conteneur puis attachez-vous de nouveau :

~ # exit

root@debian11:~# lxc-attach -n lxc-bb-eph
lxc-attach: lxc-bb-eph: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open

2026/02/04 09:21 45/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ # ls -l
total 4
-rw-r--r-- 1 root root 5 Aug 20 09:10 testdata

~ #

Important - Notez que le fichier testdata est toujours présent.

Déconnectez-vous de nouveau et arrêtez le conteneur :

~ # exit

root@debian11:~# lxc-stop -n lxc-bb-eph

root@debian11:~# lxc-ls
lxc-bb

root@debian11:~# lxc-start -n lxc-bb-eph
lxc-start: lxc-bb-eph: tools/lxc_start.c: main: 268 No container config specified

root@debian11:~#

Important - Notez que le conteneur lxc-bb-eph a été détruit.

2026/02/04 09:21 46/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

3.7 - Sauvegarde des Conteneurs

Un conteneur LXC peut être sauvegardé de trois façons différentes :

utiliser la commande tar ou cpio pour créer un archive du répertoire rootfs et du fichier config associés au conteneur
utiliser la commande lxc-copy sans l'option -e
utiliser la commande lxc-snapshot

La Commande lxc-snapshot

Cette commande permet de gérer des instantanées des conteneurs. A noter que les conteneurs doivent être arrêtés avant de prendre une instantanée
:

root@debian11:~# lxc-ls -f --running

root@debian11:~# lxc-snapshot -n lxc-bb

root@debian11:~#

Les snapshots sont stockés dans le sous-répertoire snaps du répertoire /var/lib/lxc/<nom_conteneur>/. Le premier s'appelle snap0 :

root@debian11:~# ls -l /var/lib/lxc/lxc-bb
total 12
-rw-r----- 1 root root 1276 Aug 20 10:01 config
drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
drwxr-xr-x 3 root root 4096 Aug 20 12:35 snaps

root@debian11:~# ls -l /var/lib/lxc/lxc-bb/snaps/
total 4
drwxrwx--- 3 root root 4096 Aug 20 12:35 snap0

root@debian11:~# ls -l /var/lib/lxc/lxc-bb/snaps/snap0/

2026/02/04 09:21 47/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

total 12
-rw-r----- 1 root root 1284 Aug 20 12:35 config
drwxr-xr-x 17 root root 4096 Aug 20 10:38 rootfs
-rw-r--r-- 1 root root 19 Aug 20 12:35 ts

L'horodatage de la création du snapshot est stocké dans le fichier ts :

root@debian11:~# cat /var/lib/lxc/lxc-bb/snaps/snap0/ts
2023:08:20 12:35:35root@debian11:~#

En comparant la taille du rootfs du conteneur d'origine ainsi que de son snapshot, on peut constater que les deux sont identiques :

root@debian11:~# du -sh /var/lib/lxc/lxc-bb/rootfs/
2.1M /var/lib/lxc/lxc-bb/rootfs/

root@debian11:~# du -sh /var/lib/lxc/lxc-bb/snaps/snap0/rootfs/
2.1M /var/lib/lxc/lxc-bb/snaps/snap0/rootfs/

Pour restaurer un conteneur identique à l'original, il convient d'utiliser de nouveau la commande lxc-snapshot :

root@debian11:~# lxc-snapshot -r snap0 -n lxc-bb -N lxc-bb-snap0

root@debian11:~# lxc-ls
lxc-bb lxc-bb-snap0

root@debian11:~# lxc-start -n lxc-bb-snap0

root@debian11:~# lxc-attach -n lxc-bb-snap0
lxc-attach: lxc-bb-snap0: terminal.c: lxc_terminal_create_native: 924 No space left on device - Failed to open
terminal multiplexer device

BusyBox v1.30.1 (Debian 1:1.30.1-6+b3) built-in shell (ash)
Enter 'help' for a list of built-in commands.

2026/02/04 09:21 48/48 DOF601 - La Virtualisation par Isolation

www.ittraining.team - https://ittraining.team/

~ # exit

root@debian11:~#

Copyright © 2024 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:drf00

Last update: 2024/02/21 13:42

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:docker3:drf00

	DOF601 - La Virtualisation par Isolation
	Contenu du Module
	Présentation de la Virtualisation par Isolation
	Historique

	Présentation des Namespaces
	Présentation des CGroups
	LAB #1 - cgroups v1
	1.1 - Préparation
	1.2 - Présentation
	1.3 - Limitation de la Mémoire
	1.4 - La Commande cgcreate
	1.5 - La Commande cgexec
	1.6 - La Commande cgdelete
	1.7 - Le Fichier /etc/cgconfig.conf
	1.8 - La Commande cgconfigparser

	LAB #2 - cgroups v2
	2.1 - Préparation
	2.2 - Présentation
	2.3 - Limitation de la CPU
	2.4 - La Commande systemctl set-property
	CPU
	Mémoire

	Présentation de Linux Containers
	LAB #3 - Travailler avec LXC
	3.1 - Installation
	3.2 - Création d'un Conteneur Simple
	3.3 - Démarrage d'un Conteneur Simple
	3.4 - S'attacher à un Conteneur Simple
	3.5 - Commandes LXC de Base
	La Commande lxc-console
	La Commande lxc-stop
	La Commande lxc-execute
	La Commande lxc-info
	La Commande lxc-freeze
	La Commande lxc-unfreeze
	Autres Commandes

	3.6 - Création d'un Conteneur Éphémère
	La Commande lxc-copy

	3.7 - Sauvegarde des Conteneurs
	La Commande lxc-snapshot

