2026/02/04 07:54 1/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Version : 2022.01

Derniere mise-a-jour : 2021/12/29 10:32

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des

Conteneurs

Contenu du Module

* DOF104 - Gestion des Volumes, du Réseau et des Ressources
o Contenu du Module
o LAB #1 - Gestion des Volumes
= 1.1 - Gestion Automatique par Docker
= 1.2 - Gestion Manuelle d'un Volume
o LAB #2 - Gestion du Réseau
= 2.1 - L'Approche Réseau Docker
e Bridge
¢ Host
¢ None
e Liens
= 2.2 - Lancer Wordpress dans un container
» 2.3 - Gestion d'une Architecture de Microservices
o LAB #3 - Superviser les Conteneurs
= 3.1 - Les Journaux
= 3.2 - Les Processus
= 3.3 - L'Activité en Continu

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 2/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

LAB #1 - Gestion des Volumes

Lancez un conteneur a partir de la derniere image :

root@debian9:~/mongodb# docker run -d --name mongo2 i2tch/mongodb2
€91a055283f4d67cbd91d11bb3faabf67925893cb18f9cc25023e72e0f7ed85a

1.1 - Gestion Automatique de Volumes par Docker

Vérifiez que le processus est bien démarré dans le conteneur :

root@debian9:~# docker ps

CONTAINER ID IMAGE COMMAND

NAMES

b9773e4aab6d i2tch/mongodb?2 "docker-entrypoint...
27017/tcp mongo2

Identifiez ensuite le point de montage du répertoire /data/db du conteneur :
root@debian9:~# docker inspect mongo2
"Mounts": [

{

"Type": "volume",

CREATED

! 7 hours ago

STATUS PORTS

Up About a minute

"Name": "9c84c2d1a@db811a3c13dce354ba21169f3073513¢c8d025dd96c5f902364d44a",

"Source":

“/var/lib/docker/volumes/9c84c2d1a@db811a3c1l3dce354ba21169f3073513¢c8d025dd96c5f902364d44a/ data",

"Destination": "/data/configdb",
"Driver": "local",

IIModeII: IIII'

"RW": true,

www.ittraining.team - https://ittraining.team/

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

2026/02/04 07:54 3/39
"Propagation": ""
b
{
"Type": "volume",
"Name": "a6177cf4b46089356280f084dd2e272f673aa4a8lacch53f031267fafcee6050",
"Source":

"/var/lib/docker/volumes/a6177cf4b46089356280f084dd2e272f673aad4a8lacch53f031267fafcee6050/ data",
"Destination": "/data/db",
“Driver": "local",
IlModell : n II'
"RW": true,
"Propagation":

}

"Volumes": {
"/data/configdb": {},
"/data/db": {}

b

En regardant le contenu du répertoire /data/db, on constate une arborescence classique de stockage de données de mongodb :

root@debian9:~# ls /var/lib/docker/volumes/a6177cf4b46089356280f084dd2e272f673aa4a8lacch53f031267fafceeb6050/ data
journal 1local.® 1local.ns mongod.lock storage.bson

Arrétez et supprimez le conteneur mongo2 :

root@debian9:~# docker stop mongo2

mongo2

root@debian9:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

ea239635e141 testcache "more /tmp/moment" 6 hours ago Exited (@) 6 hours ago
testl

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54

4/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

21b0490a93dd
myDocker
b9773e4aa06d
mongo2
bdb4bcOf81lde
27017/tcp
f5b45072b831
mongo
9731a48f126a
cocky gates
eacd70596e23
adoring yonath
cffb4456e9c4
i2tch

i2tch/mydocker
i2tch/mongodb2
i2tch/mongodbl
mongol
i2tch/mongodb
nginx

nginx

ubuntu

root@debian9:~# docker rm mongo2

mongo2

root@debian9:~# docker ps -a

CONTAINER ID
PORTS
ea239635e141
testl
21b0490a93dd
myDocker
bdb4bcOf81de
27017 /tcp
f5b45072b831
mongo
9731a48f126a
cocky gates
eacd70596e23
adoring yonath
cffb4456e9c4
i2tch

IMAGE

NAMES
testcache
i2tch/mydocker
i2tch/mongodbl
mongol
i2tch/mongodb
nginx

nginx

ubuntu

"/entrypoint.sh my...
"docker-entrypoint...

"docker-entrypoint...

"bash"

“nginx -g 'daemon ...

“nginx -g 'daemon ...

"/bin/bash"

COMMAND

“more /tmp/moment"

"/entrypoint.sh my...

"docker-entrypoint...

Ilbashll

"nginx -g 'daemon ...

“nginx -g 'daemon ...

"/bin/bash"

6 hours ago
7 hours ago
18 hours ago
18 hours ago
18 hours ago
19 hours ago

19 hours ago

CREATED

6 hours ago
6 hours ago
18 hours ago
18 hours ago
18 hours ago
19 hours ago

19 hours ago

Exited (137) 6 hours ago
Exited (@) 10 seconds ago
Created

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (0) 19 hours ago

Exited (@) 19 hours ago

STATUS

Exited (@) 6 hours ago
Exited (137) 6 hours ago
Created

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (@) 19 hours ago

Exited (@) 19 hours ago

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54

5/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Re-créez maintenant un conteneur a partir de I'image i2tch/mongodb?2 :

root@debian9:~# docker run -d --name mongo2 i2tch/mongodb2

a8382642c4e849337e12a60419b10163ea21251dfcc2c6050284ca3eed7fal3d

root@debian9
CONTAINER ID
PORTS
a8382642c4e8
mongo2
ea239635e141
testl
21b0490a93dd
myDocker
bdb4bcOf81de
27017/tcp
f5b45072b831
mongo
9731a48f126a
cocky gates
eacd70596e23
adoring yona
cffb4456e9c4
i2tch

Utilisez de nouveau la commande docker inspect pour identifier le point de montage du répertoire /data/db :

root@debian9:~# docker inspect mongo2

“Mou

:~# docker ps -a
IMAGE
NAMES
i2tch/mongodb2

testcache
i2tch/mydocker
i2tch/mongodbl
mongol
i2tch/mongodb
nginx

nginx

th
ubuntu

nts": [
{

"Type": "volume",

COMMAND

"docker-entrypoint...

“more /tmp/moment"

"/entrypoint.sh my...

"docker-entrypoint...

"bash"

“nginx -g 'daemon ...

“nginx -g 'daemon ...

"/bin/bash"

CREATED

12 seconds ago

6 hours ago
6 hours ago
18 hours ago
18 hours ago
18 hours ago
19 hours ago

19 hours ago

STATUS

Exited (100) 11 seconds ago
Exited (@) 6 hours ago
Exited (137) 6 hours ago
Created

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (@) 19 hours ago

Exited (@) 19 hours ago

"Name": "76dccOcche6604278cf8e8da0398a807f5d0719087f17c227c8504be24456d43",

"Source":

"/var/lib/docker/volumes/76dccOccbe6604278cf8e8da0398a807f5d0719087117c227c8504be24456d43/ data",

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 6/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"Destination": "/data/db",

"Driver": "local",
"Mode": "",
"RW": true,
"Propagation": ""
b
{

“Type": "volume",

"Name": "3bf724ceb38ce0792469d7e403f05b6794f27e0aa72bda51a8ab75b2df5ae87c",

“Source":
"/var/lib/docker/volumes/3bf724ceb38ce0792469d7e403f05b6794f27e0aa72bda51a8ab75b2df5ae87¢c/ data",

"Destination": "/data/configdb",

"Driver": "local",

“Mode": "",

"RW": true,

"Propagation":

Important : Notez que le répertoire des données du précédent conteneur,

_ /var/lib/docker/volumes/a6177cf4b46089356280f084dd2e272f673aad4a8lacch53f031267fafcee6050/ data n'est pas le méme

& » que le conteneur courant
/var/lib/docker/volumes/76dcc0Ocche6604278cf8e8da0398a807f5d0719087f17c227c8504be24456d43/ data.

Les conteneurs n'ayant pas été arrétés avec I'option -v, on peut constater que les répertoires persistent dans /var/lib/docker :

root@debian9:~# ls -1 /var/lib/docker/volumes/

total 52

drwxr-xr-x 3 root root 4096 Sep 7 09:43 3bf724ceb38ce0792469d7e403f05b6794f27e0aa72bda51a8ab75b2df5ae87c
drwxr-xr-x 3 root root 4096 Sep 6 16:07 46d11d005d05757609ff76159ce0992d210089c5247fa54b024706a20b0de501
drwxr-xr-x 3 root root 4096 Sep 7 09:43 76dccOccbe6604278cf8e8da0398a807f5d0719087117c227c8504be24456d43

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 7/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

02:33 9c84c2d1a®db811a3c13dce354ba21169f3073513c8d025dd96c5f902364d44a
02:33 a6177cf4b46089356280T084dd2e272f673aa4a8lacch53f031267fafcee6050
1
0

drwxr-xr-x 3 root root 4096 Sep 7
drwxr-xr-x 3 root root 4096 Sep 7
drwxr-xr-x 3 root root 4096 Sep 6
-rwW------- 1 root root 32768 Sep 7

6:07 cc38fa97138adc55976aa16993d8920c5f7da922ad1b2a07936d30cc82d59138
9:43 metadata.db

. Important : Notez que non-seulement ceci représente une source de perte d'espace disque mais prouve aussi que les données ne sont
-~ pas persistantes entre deux instances d'un conteneur d'i2ztch/mongodb?2. Ceci crée bien évidement un probleme important en
production.

1.2 - Gestion Manuelle d'un Volume

Arrétez et supprimez le conteneur mongo2 puis re-créez un conteneur avec un volume spécifique pour contenir les données placées dans /data/db du
conteneur par mongodb :

root@debian9:~# docker stop mongo2

mongo2

root@debian9:~# docker rm mongo2

mongo2

root@debian9:~# docker run -d --name mongo2 -v persistent data:/data/db i2tch/mongodb2
3¢cf093d72b9e3739f2cb288e571244e494b7518292¢c31994ee012e3620bb0e98

root@debian9:~# docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

3cf093d72b9%e i2tch/mongodb?2 "docker-entrypoint..." 21 seconds ago Up 20 seconds

27017/tcp mongo2

€a239635e141 testcache “more /tmp/moment" 6 hours ago Exited (@) 6 hours ago
testl

21b0490a93dd i2tch/mydocker "/entrypoint.sh my..." 6 hours ago Exited (137) 6 hours ago
myDocker

bdb4bcOf81de i2tch/mongodbl "docker-entrypoint..." 18 hours ago Created

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54

8/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

27017/tcp
f5b45072b831
mongo
9731a48f126a
cocky gates
eacd70596e23
adoring yonath
cffb4456e9c4
i2tch

mongol

i2tch/mongodb

nginx
nginx

ubuntu

root@debian9:~# docker logs mongo2

2017-09-07T08:53:12.523+0000 I CONTROL
bit host=3cf093d72b9%e
2017-09-07T08:53:12.524+0000 I CONTROL
2017-09-07T08:53:12.524+0000 I CONTROL
2017-09-07T08:53:12.524+0000 I CONTROL
Debian 3.2.46-1 x86 64 BOOST LIB VERSION=1 49

2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
2017-09-07T08:
Zeroes. ..

2017-09-07T08:
Zeroes. ..

53:
53:
53:
53:
53:
53:
53:
53:
53:
53:
53:
53:
53:
53:

53:

12.524+0000 I
12.524+0000 I
12.535+0000 I
12.535+0000 I
13.368+0000 I
14.410+0000 I
16.277+0000 I
16.277+0000 I
16.277+0000 I
19.930+0000 I
23.035+0000 I
25.889+0000 I
25.889+0000 I
26.016+0000 I

26.246+0000 I

2017-09-07T08:53:26.246+0000 I

CONTROL
CONTROL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
JOURNAL
INDEX

STORAGE

STORAGE

"bash"

“nginx -g 'daemon ..

"nginx -g 'daemon ..

"/bin/bash"

[initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]

[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]
[initandlisten]

18 hours ago Exited (137) 6 hours ago
! 19 hours ago Exited (@) 6 hours ago
N 19 hours ago Exited (@) 19 hours ago

19 hours ago Exited (@) 19 hours ago

MongoDB starting : pid=1 port=27017 dbpath=/data/db 64-
db version v3.0.15

git version: b8ff507269c382bcl00fc52f75f48d54cd42ec3b
build info: Linux ip-10-166-66-3 3.2.0-4-amd64 #1 SMP

allocator: tcmalloc

options: { storage: { mmapvl: { smallFiles: true } } }
journal dir=/data/db/journal

recover : no journal files present, no recovery needed
preallocateIsFaster=true 15.4

preallocatelsFaster=true 19.36
preallocatelsFaster=true 15.86

preallocateIsFaster check took 3.742 secs

preallocating a journal file /data/db/journal/prealloc.
preallocating a journal file /data/db/journal/prealloc.
preallocating a journal file /data/db/journal/prealloc.

[durability] Durability thread started
[journal writer] Journal writer thread started

[initandlisten]
[FileAllocator]

[FileAllocator]

allocating new ns file /data/db/local.ns, filling with
allocating new datafile /data/db/local.0®, filling with

creating directory /data/db/ tmp

=

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54

9/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

2017-09-07T08:53:26.256+0000 I STORAGE
took 0.002 secs

2017-09-07T08:53:26.299+0000 I NETWORK

[FileAllocator] done allocating datafile /data/db/local.0, size: 16MB,

[initandlisten] waiting for connections on port 27017

Notez que cette fois-ci, docker a créé un répertoire persistent_data dans le répertoire /var/lib/docker/volumes/ :

root@debian9
total 68

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

wwwwwwww

1
5
=
1
1
1
1
1
:
w R

drwxr-xr-x

:~# 1s -1 /var/lib/docker/volumes/

root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root

4096
4096
4096
4096
4096
4096
4096
4096
65536
4096

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

N NOoONNNNNO

09

09

09

09

143
16:
146
09:
143
02:
02:
16:
09:
146

07

53

33
33
07
53

3bf724ceb38ce0792469d7e403f05b6794f27e0aa72bda51a8ab75b2df5ae87c¢
46d11d005d05757609ff76159ce0992d210089c5247fa54b024706a20b0de501
511e23f818d5cf60f4333a3fe8fd2e4333¢c900decbeee97170448bfb0091184d
5ca72bed4140ecfl271efe7342cf7cd58ceb66Tc3673d12c04b8503603b8ceebbC
76dccOcchbe6604278cf8e8da0398a8071f5d0719087f17c227c8504be24456d43
9c84c2d1a0db811a3c13dce354ba21169f3073513¢c8d025dd96c51902364d44a
a6177cf4b46089356280f084dd2e272f673aa4a8lacch53f031267fafceeb6050
cc38fa97138adc55976aa16993d8920c5f7da922ad1b2a07936d30cc82d59138
metadata.db

persistent data

Arrétez et supprimez le conteneur mongo2 puis re-créez un conteneur en utilisant le méme volume spécifique pour contenir les données placées dans

/data/db du conteneur par mongodb :

root@debian9:~# docker stop mongo2

mongo2

root@debian9:~# docker rm mongo2

mongo2

root@debian9:~# docker run -d --name mongo2 -v persistent data:/data/db i2tch/mongodb2
ad672c¢3038245¢c25a36162d05820c21f7250557ac342582d0908d3ca33799e37

root@debian9:~# docker ps -a
IMAGE
NAMES

CONTAINER ID
PORTS
ad672c303824
27017/tcp
€a239635e141

i2tch/mongodb2

mongo2

testcache

COMMAND CREATED STATUS

"docker-entrypoint..." 24 seconds ago

"more /tmp/moment" 6 hours ago

Up 22 seconds

Exited (@) 6 hours ago

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 10/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

testl

21b0490a93dd i2tch/mydocker “/entrypoint.sh my..." 6 hours ago Exited (137) 6 hours ago
myDocker

bdb4bcOf81de i2tch/mongodbl "docker-entrypoint..." 18 hours ago Created

27017 /tcp mongol

f5b45072b831 i2tch/mongodb "bash" 18 hours ago Exited (137) 6 hours ago
mongo

9731a48f126a nginx “nginx -g 'daemon ..." 19 hours ago Exited (@) 6 hours ago
cocky gates

eacd70596e23 nginx “nginx -g 'daemon ..." 19 hours ago Exited (@) 19 hours ago
adoring yonath

cffb4456e9c4 ubuntu "/bin/bash" 19 hours ago Exited (@) 19 hours ago
i2tch

Encore une fois, cherchez le point de montage de /data/db grace a I'utilisation de la commande docker inspect :

root@debian9:~# docker inspect mongo2

"Mounts": [
{
"Type": "volume",
"Name": "6cefc73cef475279dfe20e25421fa358e6aa995b5¢c175b9f2c7a9b86163661e5",
"Source":

"/var/lib/docker/volumes/6cefc73cef475279dfe20e25421fa358e6aa995b5¢c175b9f2c7a9b86163661e5/ data",
"“Destination": "/data/configdb",

"Driver": "local",
“Mode": "",
"RW": true,
“Propagation”: ""
b
{
"Type": "volume",
“Name": "persistent data",
“Source": "/var/lib/docker/volumes/persistent data/ data",

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 11/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"Destination": "/data/db",

"Driver": "local",
"Mode": "z",
"RW": true,
"Propagation": ""
}
| Important : Notez ici que l'utilisation du méme répertoire entre les deux conteneurs rend les données persistantes et évite la création de
&% volumes orphelins. Pour plus d'information sur les volumes, consultez la page : https://docs.docker.com/storage/volumes;.

Pour créer un volume a utiliser avec un conteneur utilisez la commande docker volume create :

root@debian9:~# docker volume create myvolume
myvolume

Pour lister les volumes, utilisez la commande docker volume Is :

root@debian9:~# docker volume 1s
DRIVER VOLUME NAME
local myvolume

Notez maintenant I'emplacement physique du volume créé :

root@debian9:~# docker volume inspect myvolume
[

{
“CreatedAt": "2021-04-15T09:35:21+02:00",

"Driver": "local",
"Labels": {},

"Mountpoint": "/var/lib/docker/volumes/myvolume/ data"

www.ittraining.team - https://ittraining.team/

https://docs.docker.com/storage/volumes/

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

2026/02/04 07:54 12/39
"Name": "myvolume",
"Options": {},

"Scope": "local"

Créez un fichier témoin dans le répertoire /var/lib/docker/volumes/myvolume/_data/ :
root@debian9:~# touch /var/lib/docker/volumes/myvolume/ data/test-file

Démarrez maintenant un conteneur qui utilise ce volume :

root@debian9:~# docker run -it --name ubuntu-volume --mount source=myvolume,target=/myvolume ubuntu bash

root@673f9c8bc837:/# 1s
bin boot dev etc home
tmp usr var

lib 1ib32 1ib64 1ibx32 media mnt myvolume opt proc root run sbin srv sys

Important : Notez |'utilisation de I'option -mount au lieu de I'option -volume ou -v. Introduit en Docker version 17.06, Docker
. recommende |'utilisation de I'option -mount plut6t que I'option -v..

Notez que le fichier témoin test-file est disponible dans le conteneur :

root@673f9c8bc837:/# cd myvolume/
root@673f9c8bc837:/myvolume# 1s
test-file

Créez un deuxieme fichier témoin dans le répertoire /myvolume du conteneur et quittez celui-ci :

root@673f9c8bc837:/myvolume# touch container volume
root@673f9c8bc837:/myvolume# exit

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 13/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Contr6lez maintenant le contenu du répertoire /var/lib/docker/volumes/myvolume/_data/ :

root@debian9:~# ls -1 /var/lib/docker/volumes/myvolume/ data/
total O

-rw-r--r-- 1 root root 0 avril 15 10:22 container volume
-rw-r--r-- 1 root root 0 avril 15 10:16 test-file

Important : Notez que les deux fichiers témoins sont visibles.

root@debian9:~# docker rm ubuntu-volume

ubuntu-volume

root@debian9:~# ls -1 /var/lib/docker/volumes/myvolume/ data/
total O

-rw-r--r-- 1 root root 0 avril 15 10:22 container volume
-rw-r--r-- 1 root root 0 avril 15 10:16 test-file

Important : Notez que les deux fichiers témoins sont toujours visibles.

4 []
-

Créez maintenant un deuxieme conteneur en spécifiant un volume qui n'existe pas :

root@debian9:~# docker run -it --rm --name ubuntu-volume --mount source=myvolumel,target=/myvolumel ubuntu bash
root@b1476960de63:/# 1s

bin boot dev etc home 1ib 1ib32 1ib64 1ibx32 media mnt myvolumel opt proc root run sbin srv sys
tmp usr var

root@b1476960de63:/# cd myvolumel

root@b1476960de63: /myvolumel# touch file myvolumel

root@hl1476960de63: /myvolumel# exit

exit

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 14/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Notez que Docker a automatiquement créé le volume :

root@debian9:~# docker volume 1s

DRIVER VOLUME NAME

local myvolume

local myvolumel

root@debian9:~# ls -1 /var/lib/docker/volumes/myvolumel/ data/
total 0

-rw-r--r-- 1 root root 0 avril 15 12:06 file myvolumel

Un autre type de volume utilisable avec Docker est le Bindmount. Un Bindmount :

» dépend de la structure de l'arborescence de I'h6te Docker,
* ne peut pas étre controler par la CLI Docker.

Pour créer un Bindmount, commencez par créer le répertoire bindmount dans /root :

root@debian9:~# mkdir bindmount
root@debian9:~# touch bindmount/test bind

Montez le Bindmount a l'intérieur d'un conteneur :

root@debian9:~# docker run -it --name ubuntu-volume --mount type=bind,source=/root/bindmount,target=/bindmount

ubuntu bash
root@7b13fe558984: /# 1s

bin bindmount boot dev etc home 1lib 1ib32 1ib64 1ibx32 media mnt opt proc root run sbin srv sys
tmp usr var

root@7b13fe558984:/# cd bindmount

root@7b13fe558984:/bindmount# 1s

test bind

root@7b13fe558984: /bindmount# touch container bind
root@7b13fe558984: /bindmount# 1s

container bind test bind

root@7b13fe558984: /bindmount# exit

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 15/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

exit
Conroélez la présence du fichier témoin :

root@debian9:~# ls -1 bindmount/

total O

-rw-r--r-- 1 root root 0 avril 15 10:32 container bind
-rw-r--r-- 1 root root 0 avril 15 10:32 test bind
root@debian9:~# docker rm ubuntu-volume

ubuntu-volume

root@debian9:~# ls -1 bindmount/

total ©

-rw-r--r-- 1 root root 0 avril 15 10:32 container bind
-rw-r--r-- 1 root root 0 avril 15 10:32 test bind

Notez que la CLI Docker n'a pas de connaissance de ce point de montage :

root@debian9:~# docker volume 1s
DRIVER VOLUME NAME
local myvolume

LAB #2 - Gestion du Réseau

2.1 - L'Approche Réseau Docker

Docker fournit trois réseaux par défaut :

root@debian9:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
495b3db75b0d bridge bridge local
eled4de2f947 host host local

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 16/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

6bda460c97cb none null local

Bridge

Ce type de réseau est limité aux conteneurs d'un hote unique exécutant Docker. Les conteneurs ne peuvent communiquer qu'entre eux et ils ne sont
pas accessibles depuis I'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou étre accessibles du monde extérieur, il faut
configurer le mappage de port.

Par défaut Docker fonctionne en mode Pont ou (Bridge) et crée une interface intermédiaire a cet effet appelé dockerO :

root@debian9:~# ip addr show docker0
3: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 02:42:38:fl:e7:ee brd ff:ff:ff:ff.ff.ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid lft forever preferred 1ft forever

Démarrez un conteneur dénommé resotest a partir d'une image de CentOS :

root@debian9:~# docker run -itd --name=resotest centos
2169360fcbfdbd6e68ea969a95edeb6fc42603c23eed42f03ceec286276519855

Lancez ensuite la commande docker network inspect bridge a partir de la machine virtuelle hoéte de Debian 9 :

root@debian9:~# docker network inspect bridge
[
{

"Name": "bridge",
"Id": "495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8b69b1e59a998bel1819d12",
"Created": "2017-09-07T07:44:49.942615596+01:00",
"Scope": "local",
“Driver": "bridge",
"EnableIPv6": false,

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 17/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"
}
]
IE

"Internal": false,

"Attachable": false,

"Ingress": false,

“"ConfigFrom": {
"Network": ""

I

"ConfigOnly": false,

"Containers": {

"2169360fcbfdbd6e68ea969a95edeb6Tc42603c23ee42T03ceec286276519855": {

"Name": "resotest",

"EndpointID": "fc74e519d69b9a2112be959c92cda22b67671b52efbbd36fadf66097ccbbl1271",

"MacAddress": "02:42:ac:11:00:03",
"IPv4Address": "172.17.0.3/16",

"IPvbAddress": ""
+

"ad672c3038245c25a36162d05820c21f7250557ac342582d0908d3¢ca33799e37": {

“Name": "mongo2",

"EndpointID": "adcl15132fb73b57abl4e960feeff1b965321ada411be8535b715b103b941d8cc",

"MacAddress": "02:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",

"IPv6Address": ""
}

I
"Options": {

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54

18/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

com.
“com.
“com.
"com.
“com.
com.

},
"Labels":

docker.
docker.
docker.
docker.
docker.
docker.

{}

network
network
network
network
network
network

.bridge.
.bridge.
.bridge.
.bridge.
.bridge.
.driver.

default bridge":
enable icc": "true",

enable ip masquerade": "true",
host binding ipv4": "0.0.0.0",

name" :
mtu":

"docker0",
"1500"

"tl"ue" ,

/. Important : Notez ici que les conteneurs mongo2 et resotest ne disposent pas de la méme adresse que l'interface docker0 de la
4 ! machine héte. Cependant les adresses se trouvent dans le méme segment - 172.17.0.0/16 indiqué par la sortie “Subnet”:
~ “172.17.0.0/16".

Vous pouvez déconnecter un conteneur du réseau en utilisant la commande suivante :

root@debian9:~# docker network disconnect bridge resotest

root@debian9:~# docker network inspect bridge

[

“Id": "495b3db75b0d4bfcfcboda7c3e2at5fbaddcdc227aa8b69b1e59a998be1819d12",
: "2017-09-07T07:44:49.942615596+01: 00",

{
“Name": "bridge",
"Created"
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"“Driver": "default",
"Options": null,
"Config": [

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 19/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs
{
"Subnet": "172.17.0.0/16",
“Gateway": "172.17.0.1"
}
]
} ’
"Internal": false,
"Attachable": false,
"Ingress": false,
“ConfigFrom": {
"Network": ""
s

"ConfigOnly": false,
"Containers": {
"ad672c3038245¢c25a36162d05820c211f7250557ac342582d0908d3ca33799e37": {

}
I
"Options
“com.
“com
com
"com.
com.
com
b
"Labels":

"Name" :

"EndpointID":
"MacAddress":

“mongo2

"IPv4Address":
"IPvbAddress":

II: {

{}

docker.
.docker.
.docker.
docker.
docker.
.docker.

network
network
network
network
network
network

n
’

"172.17.

.bridge.
.bridge.
.bridge.
.bridge.
.bridge.
.driver.

0.2/16",

default bridge": "true",

enable icc": "true",
enable ip masquerade": "true",
host binding ipv4": "0.0.0.0",
name": "docker0",

mtu": "1500"

"adc15132fb73b57ab14e960feeff1b965321ada411be8535b715b103b941d8cc",
"02:42:ac:11:00:02",

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 20/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Créez maintenant votre propre réseau ponté appelé my-bridged-network :

root@debian9:~# docker network create -d bridge --subnet 172.25.0.0/16 --gateway 172.25.0.1 my-bridged-network
ceb7ba7493933¢c55d181bc92b1f799cad7bfe84b168d52a6ac648c1a906093f3
root@debian9:~# docker network 1ls

NETWORK ID NAME DRIVER SCOPE
495b3db75b0d bridge bridge local
eled4de2f947 host host local
ceb7ba749393 my-bridged-network bridge local
6bdad60c97c6 none null local

Bien évidement, ce réseau est actuellement vide :

root@debian9:~# docker network inspect my-bridged-network

[
{
"Name": "my-bridged-network",
"Id": "ceb7ba7493933c55d181bc92b1f799cal7bfe84b168d52a6ac648c1a906093f3",
"Created": "2017-09-07T10:03:17.063730665+01:00",

"Scope": "local",
“Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": {},

“"Config": [

{

“Subnet": "172.25.0.0/16",
“"Gateway": "172.25.0.1"

]
}'

"Internal": false,
"Attachable": false,

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 21/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"Ingress": false,

“ConfigFrom": {
"Network": ""

},

"ConfigOnly": false,

"Containers": {},

"Options": {},

"Labels": {}

]
Lancez maintenant deux conteneurs et consultez les informations concernant le réseau :

root@debian9:~# docker run -itd --name=centosl centos
9f36a628c72b383edfd4dcl3eededb2eat5be0078d780f0334Ffcb8be®d977d0e

root@debian9:~# docker run -itd --name=centos2 centos
aaed3bc8e404eelbccd6c87b39de32332940b5391514691fc70188edbl7cld7c

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centosl

{"bridge": {"IPAMConfig":null, "Links":null, "Aliases":null, "NetworkID":"495b3db75b0d4bfcfc6da7c3e2af5f6addcdc227aa8
b69b1e59a998bel1819d12", "EndpointID":"d7b87875688b45258fc867b6bb8b0a0592f5c5fal6857fel36e55b87b6698219", "Gateway" :
"172.17.0.1","IPAddress":"172.17.0.3","IPPrefixLen":16, "IPv6Gateway":"", "GlobalIPv6Address":"","GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:03","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{json .NetworkSettings.Networks}}' centos2

{"bridge": {"IPAMConfig":null, "Links":null, "Aliases":null, "NetworkID":"495b3db75b0d4bfcfcb6da7c3e2af5f6addcdc227aa8
b69b1e59a998be1819d12", "EndpointID":"2bfe090dccef89495d437d8deba5765996a917544ab7fde28ef5199f4e907ebl", "Gateway":
"172.17.0.1","IPAddress":"172.17.0.4" ,"IPPrefixLen":16, "IPv6Gateway":"", "GlobalIPv6Address":"", "GlobalIPv6PrefixL
en":0,"MacAddress":"02:42:ac:11:00:04","DriverOpts":null}}

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 22/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4

Mettez le conteneur centosl dans le réseau my-bridged-network :
root@debian9:~# docker network connect my-bridged-network centosl

root@debian9:~# docker network inspect my-bridged-network
[
{
“Name": "my-bridged-network",
"Id": "ceb7ba7493933¢c55d181bc92b1f799cad7bfe84b168d52a6ac648c1a906093f3",
"Created": "2017-09-07T10:03:17.063730665+01:00",

"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": {},

"Config": [

{

“Subnet": "172.25.0.0/16",
“"Gateway": "172.25.0.1"

]
}

"Internal": false,

"Attachable": false,

"Ingress": false,

"ConfigFrom": {
"Network": ""

b

“ConfigOnly": false,

"Containers": {

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 23/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"9f36a628c72b383edfd4dcl3eededb2eaf5be0078d780T0334fcb8bed®d977d0e" : {
"Name": "centosl",
"EndpointID": "71lel@ede34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbclbldc2bdfebb5",
"MacAddress": "02:42:ac:19:00:02",
"IPv4Address": "172.25.0.2/16",

"IPvbAddress": ""
}
}I
"Options": {},
"Labels": {}

]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centosl
172.17.0.3172.25.0.2

Important : Notez que le conteneur centosl se trouve dans deux réseaux.

2 [
-

Faites la méme chose pour le conteneur centos?2 :
root@debian9:~# docker network connect my-bridged-network centos2

root@debian9:~# docker network inspect my-bridged-network
[
{

“"Name": "my-bridged-network",
"Id": "ceb7ba7493933¢c55d181bc92b1f799cal7bfe84b168d52a6ac648c1a906093f3",
"Created": "2017-09-07T10:03:17.063730665+01:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 24/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"172.25.0.0/16",
"172.25.0.1"

"IPAM": {
"Driver": "default",
"Options": {},
"Config": [
{
"Subnet":
"Gateway":
}
]
IE

"Internal": false,

"Attachable": false,

"Ingress": false,

“"ConfigFrom": {
"Network": ""

I

"ConfigOnly": false,

"Containers": {

"9f36a628c72b383edfd4dcl3eededb2eaf5be0078d780f0334fcb8be®d977d0e" : {
"Name": "centosl",
"71el0ede34ce8c42ef029e302f6ed372357f6fde8fd87fc2cbclbl4c2bdfbbb5”,

"EndpointID":

"MacAddress":

"IPv4Address":

"IPvbAddress":
b

"02:42:ac:19:00:02",
"172.25.0.2/16",

"aaed3bc8e404eelbccd6c87b39de32332940b5391514691fc70188edb17cld7c": {
"Name": "centos2",
"3415336221134b995097f1d3e6ce935158¢c1e5644201f896b42336738a81819c",

"EndpointID":
"MacAddress":
"IPv4Address":
"IPvb6Address":
¥
I
"Options": {},

"02:42:ac:19:00:03",
"172.25.0.3/16",

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 25/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

"Labels": {}

]

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

Connectez-vous au conteneur centosl en lancant bash :
root@debian9:~# docker exec -it centosl bash
Vérifiez que la connectivité fonctionne :

[root@9f36a628c72b /1# ping 172.25.0.3

PING 172.25.0.3 (172.25.0.3) 56(84) bytes of data.

64 bytes from 172.25.0.3: icmp seg=1 ttl=64 time=0.100 ms

64 bytes from 172.25.0.3: icmp seqg=2 ttl=64 time=0.050 ms

64 bytes from 172.25.0.3: icmp seqg=3 ttl=64 time=0.050 ms

~C

--- 172.25.0.3 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.050/0.066/0.100/0.025 ms

Les options possibles au niveau de la gestion du réseau sont vaste. Voici deux exemples supplémentaires.

Il est possible d'ajouter une adresse d'un serveur DNS au lancement d'un conteneur :

[root@9f36a628c72b /]# exit

exit

root@debian9:~# docker stop mongo2
mongo2

root@debian9:~# docker rm mongo2
mongo2

root@debian9:~# docker run -it --name mongo2 --dns 8.8.8.8 i2tch/mongodb2 bash

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 26/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

root@735599480b45: /# cat /etc/resolv.conf
search home

nameserver 8.8.8.8

root@735599480b45: /#

ou de passer une entrée pour le fichier /etc/hosts :

root@735599480b45: /# exit

exit

root@debian9:~# docker stop mongo2
mongo2

root@debian9:~# docker rm mongo2
mongo?2

root@debian9:~# docker run -it --name mongo2 --add-host mickeymouse:127.0.0.1 i2tch/mongodb2 bash
root@718e7eab814f:/# cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ffe0::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

127.0.0.1 mickeymouse

172.17.0.2 718e7eab814f

Host

Ce type de réseau est utilisé dans le cas ou le réseau ne doit pas étre isolé de I'hote tout en isolant les autres aspects du conteneur. Les conteneurs
utilisent la méme interface que I'h6te en prenant la méme adresse IP que la machine héte.

Dans le cas de la machine virtuelle, I'adresse IP de |'interface connectée au réseau local est 10.0.2.60 :

root@debian9:~# ip addr show ensl8
2: ens1l8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 27/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff.ff.ff

inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ensl18
valid lft 83772sec preferred lft 83772sec

inet6 fe80::a00:27ff:fe2e:7701/64 scope link
valid 1ft forever preferred 1ft forever

Démarrez un conteneur a partir de I'image centos dans un réseau de type host :

root@debian9:~# docker run -it --rm --network host --name centos3 centos bash
[root@debian9 /]# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid lft forever preferred 1ft forever
inet6 ::1/128 scope host
valid lft forever preferred lft forever
2: ens1l8: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default glen 1000
link/ether 08:00:27:2e:77:01 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.60/24 brd 10.0.2.255 scope global dynamic ensl18
valid 1ft 82102sec preferred 1ft 82102sec
inet6 fe80::a00:27ff:fe2e:7701/64 scope link
valid lft forever preferred lft forever
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 02:42:38:fl:e7:ee brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
valid lft forever preferred lft forever
inet6 fe80::42:38ff:fefl:e7ee/64 scope link
valid lft forever preferred lft forever
[root@debian9 /]# hostname
debian9
[root@debian9 /]# exit

Le but de ce type de réseau est de permettre I'acces a des services dans le conteneur directement a partir de I'adresse IP de I'hote Docker. Par
exemple, un nginx dans le conteneur pourrait étre joint directement sur 10.0.2.60:80 sans avoir besoin de passer par I'exposition du port.

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 28/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

Pour cette raison, dans le cas de I'option -p utilisé dans la cas du réseau host, cette option n'est pas prise en compte et produit I'avertissement
WARNING: Published ports are discarded when using host network mode. L'utilité majeure donc du réseau host se trouve dans le cas ou de
multiples ports dans le conteneur doivent étre joignables.

/. Important : Notez que le réseau de type host ne fonctionne que sous
! * Linux. Il est donc incompatible avec Docker Desktop pour Mac, Docker
Desktop pour Windows et Docker EE pour Windows Server.

None

Ce type de réseau est utilisé principalement dans le cas de I'utilisation d'un plugin réseau disponible dans le Docker Hub.

Il est donc possible de lancer un conteneur totalement étanche grace au réseau none :

root@718e7eab814f:/# exit

exit

root@debian9:~# docker stop mongo2
mongo2

root@debian9:~# docker rm mongo2
mongo2

root@debian9:~# docker run -it --name mongo2 --network none i2tch/mongodb2 bash
root@332aa9930f30: /#

Liens

Le mécanisme des liens entre conteneurs est tres puissant et permet d'atteindre un autre conteneur facilement a condition que les deux conteneurs
soient dans le méme réseau. Créez donc un conteneur dénommé centos3 qui est lié au conteneur centos2 qu'il connait aussi sous I'alias alias :

www.ittraining.team - https://ittraining.team/

https://hub.docker.com/search/?category=network&q=&type=plugin

2026/02/04 07:54

29/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

root@332aa9930f30: /# exit

exit

root@debian9:~# docker run -itd --name centos3 --link centos2:alias centos

6a315259b2946c3bf2bb69f608che910d87edaadedb4f805e7a4dbf6afleb916

root@debian9:~# docker ps -a

CONTAINER ID
PORTS
6a315259b294
centos3
332229930130
mongo2
aaed3bc8e404
centos?2
9f36a628c72b
centosl
2169360fcbfd
resotest
€a239635e141
testl
21b0490a93dd
myDocker
bdb4bcOf81de
27017/tcp
f5b45072b831
mongo
9731a48f126a
cocky gates
eacd70596e23
adoring yonath
cffb4456e9c4
i2tch

IMAGE

NAMES

centos
i2tch/mongodb2
centos

centos

centos
testcache
i2tch/mydocker
i2tch/mongodbl
mongol
i2tch/mongodb
nginx

nginx

ubuntu

COMMAND

"/bin/bash"

"docker-entrypoint...

"/bin/bash"
"/bin/bash"
"/bin/bash"

"more /tmp/moment"

"/entrypoint.sh my...

"docker-entrypoint...

Ilbashll

“nginx -g 'daemon ...

“nginx -g 'daemon ...

"/bin/bash"

CREATED

33 seconds ago
3 minutes ago
16 minutes ago
16 minutes ago
20 minutes ago
7 hours ago

7 hours ago

18 hours ago
19 hours ago
19 hours ago
19 hours ago

20 hours ago

STATUS

Up 32 seconds

Exited (127) 39 seconds ago
Up 16 minutes

Up 16 minutes

Up 20 minutes

Exited (@) 7 hours ago
Exited (137) 6 hours ago
Created

Exited (137) 6 hours ago
Exited (@) 6 hours ago
Exited (@) 19 hours ago

Exited (@) 20 hours ago

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 30/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

root@debian9:~# docker exec -it centos3 bash

[root@6a315259b294 /]# ping centos2

PING alias (172.17.0.4) 56(84) bytes of data.
64 bytes from alias
64 bytes from alias
64 bytes from alias
64 bytes from alias
~C

--- alias ping statistics ---

4 packets transmitted, 4 received, 0% packet loss
rtt min/avg/max/mdev = 0.068/0.080/0.116/0.023 ms

172.17.0.4

—~ o~ o~ o~

172.17.0.4

[root@6a315259b294 /]# cat /etc/hosts
127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.4 alias aaed3bc8e404 centos?2
172.17.0.2 6a315259b294

[root@6a315259b294 /1# exit
exit

root@debian9:~# docker inspect --format='{{range
172.17.0.2

Notez cependant qu le lien est unidirectionnel :
root@debian9:~# docker exec -it centos2 bash

[root@aaed3bc8e404 /1# ping centos3

172.17.0.4): icmp seq=1 tt1=64 time=0.116 ms
): icmp seqg=2 ttl=64 time=0.069 ms
172.17.0.4): icmp_seq=3 ttl=64 time=0.068 ms
): icmp seqg=4 ttl=64 time=0.070 ms

, time 2999ms

.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos3

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 31/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

ping: centos3: Name or service not known

[root@aaed3bc8e404 /]# ping 172.17.0.2

PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp seqg=1 ttl=64 time=0.054 ms

64 bytes from 172.17.0.2: icmp seq=2 ttl=64 time=0.035 ms

64 bytes from 172.17.0.2: icmp seqg=3 ttl=64 time=0.051 ms

64 bytes from 172.17.0.2: icmp seq=4 ttl=64 time=0.071 ms

~C

--- 172.17.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.035/0.052/0.071/0.015 ms

[root@aaed3bc8e404 /1#

Dans le cas ci-dessus, centos2 peut atteindre centos3 en utilisant I'adresse IP 172.17.0.2 car centos2 se trouve dans les deux réseaux avec les
adresses IP 172.17.0.4 et 172.25.0.3 :

[root@aaed3bc8e404 /]# exit
exit

root@debian9:~# docker inspect --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' centos2
172.17.0.4172.25.0.3

2.2 - Lancer Wordpress dans un container

Créez le répertoire ~/wordpress et placez-vous dedans :
root@debian9:~# mkdir ~/wordpress && cd ~/wordpress
Créez un conteneur dénommé wordpressdb a partir de I'image mariadb:latest :

root@debian9:~/wordpress# docker run -e MYSQL ROOT PASSWORD=fenestros -e MYSQL DATABASE=wordpress --name

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 32/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

wordpressdb -v "$PwWD/database":/var/lib/mysql -d mariadb:latest
Unable to find image 'mariadb:latest' locally

latest: Pulling from library/mariadb

f2b6b4884fc8: Pull complete

26d8bdcadf3e: Pull complete

74f09e820cce: Pull complete

5390f1fe4554: Pull complete

3d3f1706a741: Pull complete

2942f66426ea: Pull complete

97eel11d39c75: Pull complete

590c46ef722b: Pull complete

32eb4b9666e5: Pull complete

fc883f98a064: Pull complete

bb8beeblbcle: Pull complete

Digest: sha256:6135f5b851e7fe263dcfOedf3480cdablab28c4287e867c5d83fbe967412ealsd
Status: Downloaded newer image for mariadb:latest
67831dacf002bdc21dc79b0e84831538235d00ddd2e8aael75ef3ebf189aeldd

Vérifiez que le conteneur fonctionne :

root@debian9:~/wordpress# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

67831dacf002 mariadb:latest "docker-entrypoint.s.." About a minute ago Up 45 seconds

3306/tcp wordpressdb

Créez un conteneur appellé wordpress lié au conteneur wordpressdb :

root@debian9:~/wordpress# docker run -e WORDPRESS DB USER=root -e WORDPRESS DB PASSWORD=fenestros --name
wordpress --link wordpressdb:mysql -p 10.0.2.60:80:80 -v "$PWD/html":/var/www/html -d wordpress

Unable to find image 'wordpress:latest' locally

latest: Pulling from library/wordpress

2a72cbf407d6: Pull complete

273cd543cb15: Pull complete

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 33/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

ec5ac8875de7: Pull complete

9106e19b56c1: Pull complete

ee2f70ac7c7d: Pull complete

7257ad6985e8: Pull complete

18f5c2055da2: Pull complete

85293a6fdd80: Pull complete

9e797eeb0cl4: Pull complete

£16178842884: Pull complete

13899c06d3f8: Pull complete

70c27fed4c3c5: Pull complete

d32c8ad2d9d7: Pull complete

07fed445494e6: Pull complete

63b8de7b32fe: Pull complete

e4b721952e22: Pull complete

d9ede6dd6f74: Pull complete

0af4f74bfd92: Pull complete

e4e7c47b969f: Pull complete

69aff47f3112: Pull complete

Digest: sha256:201d004f55669dd2c0884f00fc44145fb0da8cafadb65bf22cbaacecat81138d4
Status: Downloaded newer image for wordpress:latest
9eb2f7fbfbd25307ed2f463c7eb3bef40bfa556174e68750bb76b8d032546129

Vérifiez que le conteneur fonctionne :

root@debian9:~/wordpress# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

9eb2f7fbfbd2 wordpress "docker-entrypoint.s.." 2 minutes ago Up About a minute
10.0.2.60:80->80/tcp wordpress

67831dacf002 mariadb:latest "docker-entrypoint.s.." 9 minutes ago Up 8 minutes 3306/tcp
wordpressdb

Vérifiez que le Wordpress fonctionne :

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 34/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

root@debian9:~/wordpress# lynx --dump http://10.0.2.60
[1]WordPress

Select a default language [English (United States) |

Continue
References
1. https://wordpress.org/

root@debian9:~/wordpress# docker inspect wordpress | grep IPAddress
"SecondaryIPAddresses": null,
"IPAddress": "172.17.0.3",
"IPAddress": "172.17.0.3",
root@debian9:~/wordpress# lynx --dump http://172.17.0.3
[1]WordPress

Select a default language [English (United States)]

Continue

References

1. https://wordpress.org/

2.3 - Gestion d'une Architecture de Microservices

Vous allez mettre en place une application simple sous forme de microservices, développé par Docker et appelé demo-voting-app, :

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 35/39

DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

voting-app
Python

n-memaory DB
Redis

Worker

result-app
NodedS

db
PostgressQL

]

Dans cette application le conteneur voting-app permet de voter pour des chats ou des chiens. Cette application tourne sous Python et fournit une

interface HTML :

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 36/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

[4 Cats s Dogs! x [4 cCatsvsDogs - Result ® | [4 Catswvs Dogs! ¥ | [CatsvsDogs - Result W + -

“ ['D D Mon sécurisé i & 0 M B M . (/) ﬂ

it applcations [HowtoCreate an & Telafriend W ifach Europe (8L NS Mes ressources EMD 2 Suggested Namir E simple-Help Senw & VirtualEowes - Fre & virtualfoo virtual -

Cats vs Dogs!

Lors de la vote, le résultat de celle-ci est stocké dans Redis dans une base de données en mémoire. Le résultat est ensuite passé au conteneur
Worker qui tourne sous .NET et qui met a jour la base de données persistante dans le conteneur db qui tourne sous PostgreSQL.

L'application result-app qui tourne sous Node)S lit ensuite la table dans la base de données PostgreSQL et affiche le résultat sous forme HTML :

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 37/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs
[4 Cats w5 Dogs! ® [0 Cats vs Dogs - Result W [4 Cats ws Dogs! *® [0 Cats vs Dogs - Result ® o+ - ¢ D
€ 2 C {0 @ Nonsécurisé &« pmamBEBO0 &
it applications [4 HowtoCreate an & Tel a friend W iZuch Europe (BL2 m Mes ressources EMI 32 Suggested Momine = Simple-Help Serve B WirbaalBoxes - Freo e ‘Wirbual8oo Virtual £ L

CATS DOGS

100.0% 0.0%

Cette application peut étre mise en place sous docker avec les commandes suivantes :

docker
docker
docker
docker
docker

run
run
run
run
run

-d --name=redis redis

-d --name=db -e POSTGRES PASSWORD=postgres -e POSTGRES USER=postgres postgres:9.4

-d --name=vote -p 5000:80 --link redis:redis dockersamples/examplevotingapp vote

-d --name=result -p 5001:80 --link db:db dockersamples/examplevotingapp result

-d --name=worker --link db:db --link redis:redis dockersamples/examplevotingapp worker

Cette solution utilise un réseau de type Bridge. Ce type de réseau est limité aux conteneurs d'un héte unique exécutant Docker. Les conteneurs ne
peuvent communiquer qu'entre eux et ils ne sont pas accessibles depuis I'extérieur. Pour que les conteneurs sur le réseau puissent communiquer ou
étre accessibles du monde extérieur, il faut configurer le mappage de port.

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 38/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

LAB #3 - Superviser les Conteneurs

3.1 - Les Journaux

Consultez les logs d'un conteneur :

root@debian9:~# docker logs mongo2
root@332aa9930f30:/# ip addr

bash: ip: command not found
root@332aa9930f30:/# ip address
bash: ip: command not found
root@332aa9930f30:/# ifconfig
bash: ifconfig: command not found

root@332aa9930f30:/# 1s
bin boot core data dev docker-entrypoint-initdb.d entrypoint.sh etc home 1ib 1ib64 media mnt opt

proc root run sbin selinux srv sys tmp wusr var
root@332aa9930f30:/# which ip

root@332aa9930f30:/# which ifconfig
root@332aa9930f30:/# docker run -itd --name centos3 --link centos2:alias centos

bash: docker: command not found
root@332aa9930f30: /# exit
exit

3.2 - Les Processus

Consultez les processus d'un conteneur :

root@debian9:~# docker top centos3

uID PID PPID C STIME TTY
TIME CMD
root 31073 31060 0 10:20 pts/0

www.ittraining.team - https://ittraining.team/

2026/02/04 07:54 39/39 DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs

00:00:00 /bin/bash

3.3 - L'Activité en Continu

Pour voir I'activité d'un conteneur, utilisez la commande suivante :

root@debian9:~# docker stats centos3

CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/O
PIDS

centos3 0.00% 0B / OB 0.00% 4.37kB / 952B 61.4kB / 0B
0

Copyright © 2022 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:dockerl:drf03

Last update: 2021/12/29 10:32

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:docker1:drf03

	DOF104 - Gestion des Volumes, du Réseau et de la Supervision des Conteneurs
	Contenu du Module
	LAB #1 - Gestion des Volumes
	1.1 - Gestion Automatique de Volumes par Docker
	1.2 - Gestion Manuelle d'un Volume

	LAB #2 - Gestion du Réseau
	2.1 - L'Approche Réseau Docker
	Bridge
	Host
	None
	Liens

	2.2 - Lancer Wordpress dans un container
	2.3 - Gestion d'une Architecture de Microservices

	LAB #3 - Superviser les Conteneurs
	3.1 - Les Journaux
	3.2 - Les Processus
	3.3 - L'Activité en Continu

