2026/02/04 15:22 1/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Derniere mise-a-jour : 2020/02/21 07:43

LRF151 - Administration du Serveur MongoDB sous RHEL 7

Dans cette formation vous allez apprendre :

e Ce qui est le NOSQL,

e Ce qui est MongoDB,

e Comment installer et configurer MongoDB,

e Comment utiliser le client mongo,

¢ Quels sont les clients graphiques disponibles pour MongoDB,
* Quelle est la structure des données de MongoDB,

* Quel est le langage des requétes de MongoDB,

e Comment utiliser ce langage efficacement.

Présentation

Qu'est-ce le NOSQL ?

La naissance des outils NOSQL (Not Only SQL) a ses origines dans les limitations des propriétés ACID. En effet, c'est les grandes sociétés du web, qui,
amenées a traiter des volumes de données tres importants, ont été les premieres confrontées aux limitations intrinseques des SGBD relationnels
traditionnels.

De ce fait, chaque société a adopté ou a dévélopé sa propre solution de gestion de données :

¢ Google - BigTable (Fr),

e Facebook - Cassandra (Fr) puis HBase (Fr),
e Ubuntu One - CouchDB (Fr),

e Baidu - Hypertable (Fr),

e Amazon - Dynamo (En)

www.ittraining.team - https://ittraining.team/

https://fr.wikipedia.org/wiki/Propri%C3%A9t%C3%A9s_ACID
https://fr.wikipedia.org/wiki/BigTable
https://fr.wikipedia.org/wiki/Cassandra_(base_de_donn%C3%A9es)
https://fr.wikipedia.org/wiki/HBase
https://fr.wikipedia.org/wiki/CouchDB
https://fr.wikipedia.org/wiki/Hypertable
https://en.wikipedia.org/wiki/Dynamo_(storage_system)

2026/02/04 15:22 2/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

¢ LinkedIn - Voldemort (En),
» SourceForge.net - MongoDB.

C'est a travers de ce dernier que ce cours propose de vous faire découvrir la mouvance NOSQL.

Présentation de MongoDB

Dans le cas de MongoDB, les données prennent la forme de documents enregistrés dans des collections. Une collection peut contenir un nombre
guelconque de documents. Cependant, les champs d'un enregistrement sont libres et peuvent étre différents d'un enregistrement a un autre dans la
méme collection. Le seul champ commun et obligatoire est le champ de la clé principale : _id.

Fonctionnalités de MongoDB

* La réplication permet de dupliquer les serveurs de base de données pour répondre a une montée en charge ou une tolérance de panne,

e Le Sharding (distribution de données sur plusieurs machines pour assurer la scalabilité) permet de répartir les données sur plusieurs serveurs soit
pour simplement augmenter les performances soit pour répartir les données géographiquement,

e Systeme de fichiers GridFS qui permet de stocker simplement des fichiers en base de données,

e Le SIG ou Systeme d’Information Géographique permet de manipuler simplement des positions sur un plan ou sur le globe terrestre,

e La fonction de recherche : MongoDB integre un systeme de recherche optimisé en fonction de la langue utilisée,

* MongoDB offre des nombreuses fonctionnalités que I'on trouve dans le monde relationnel (count, groupBy, etc.) mais aussi le support de la
recherche full-text, la recherche géo-spatiale ou MapReduce (manipulation et distribution de données dans un cluster),

e Supporte I'indexation pour I'optimisation des recherches.

Historique du Projet

MongoDB (de Humongous qui veut dire énorme ou immense) :

* est développé depuis 2007 par MongoDB,
e 3 été industriellement viable en 2010 avec la version 1.4,
e est écrit en langage C++.

www.ittraining.team - https://ittraining.team/

https://en.wikipedia.org/wiki/Voldemort_(distributed_data_store)
https://fr.wikipedia.org/wiki/MongoDB
https://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27information_g%C3%A9ographique
https://fr.wikipedia.org/wiki/MapReduce

2026/02/04 15:22 3/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Versions Majeures

Version de MongoDB Améliorations par rapport a la version précédente

Création d'index plus rapide

Fonctions JavaScript stockées

La commande fsync configurable

Plusieurs petites fonctionnalités et corrections

Amélioration de la mémoire d'indexation

MongoDB 1.2.x

MongoDB 1.4 Une meilleure détection des expressions régulieres
L'option w (et wtimeout) peut se propager vers plusieurs serveurs
MonaoDB 1.6 La commande findAndModify supporte les upserts
g ' Option $ showDiskLoc permet de voir I'emplacement du disque d'un document
Prise en charge des sockets IPv6 et UNIX
MongoDB 1.8 Mode écriture avant Journaling pour faciliter la récupération du crash et la durabilité dans le moteur de stockage

Correction d'un probleme de concurrence avec de nombreuses connexions entrantes

Journaling est activé par défaut dans la version 2.0 pour les versions 64 bits

La commande compact est maintenant disponible pour le compactage des index

MongoDB 2.0 Réduction de la taille de la pile par défaut

Améliorations des Indices de performance

Les applications peuvent maintenant utiliser I' authentification avec les clusters fragmentées
Opérations d'agrégation

Collections TTL permet supprimer les données périmées d'une collection

Augmentation de la capacité du serveur pour les opérations simultanées

Amélioration de la sensibilisation Data Center avec Tag Aware Sharding

Fonctionnalité Text Search

Ajout d'un nouvel indice de 2dsphere

Ajout d'un Index Hashed pour indexer des documents
Améliorations de la sécurité

Agrégation Améliorées

Text Search activé par défaut

Nouveau protocole d'écriture

Package MSI pour MongoDB Disponible pour Windows

MongoDB 2.2

MongoDB 2.4

MongoDB 2.6

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

4/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

Version de MongoDB

Améliorations par rapport a la version précédente

MongoDB 3.0

MongoDB 3.0 introduit le WiredTiger comme moteur de stockage
Amélioration du moteur de stockage MMAPv

Augmentation du nombre de Replica Set Members

Amélioration des Clusters fragmentées

Améliorations des requétes

MongoDB 3.2

WiredTiger comme moteur par défaut de stockage
Amélioration des Clusters

Index partiels disponibles pour indexer des documents
Nouveaux opérateurs de requéte

SpiderMonkey JavaScript Engine

Exécutables

Le tableau suivant indique les noms des exécutables selon la base de donnée utilisée :

MongoDB MySQL Oracle| Informix DB2

Serveur| mongod |mysqld | oracle IDS DB2 Server

Client | mongo | mysql |sqlplus|DB-Access|DB2 Client

Avantages et Inconvénients

Avantages

MongoDB :

* ne nécessite pas de schéma prédéfini des données d'ou sa grande flexibilité,
 est une base de données orientée documents qui s'adapte parfaitement a de nombreuses applications, telles les applications de gestion de

dossiers, factures,

commandes ou produits,

 supporte une évolutivité a la charge (scaling) par I'ajout de machines,

supporte des indexes secondaires,
propose un langage complet de requétes et une stricte cohérence et stabilité,
propose du calcul en mémoire, d'ou la lecture et écriture rapides,

www.ittraining.team - https://ittraining.team/

LRF151 - Administration du Serveur MongoDB sous RHEL 7

2026/02/04 15:22 5/61

e propose la réplication en mode maitre/esclave et le basculement automatique,
* propose le Sharding (répartition automatique de données sur plusieurs machines).

Inconvénients

MongoDB :
* n'a pas de possibilité de réaliser de jointures, les données sont généralement embarquées dans le méme document,

 ne peut pas gérer de transactions complexes,
e impose que la charge du controle des données soit reportée du coté de I'application puisque il n'y a pas de schéma,

 propose un langage d’interrogation qui lui est propre (donc, non standardisé), pratique mais qui s'avere limité.

Installation de MongoDB

Créez le fichier /etc/yum.repos.d/mongodb-org-3.2.repo :

[root@centos7 ~]# vi /etc/yum.repos.d/mongodb-org-3.2.repo
[root@centos7 ~]# cat /etc/yum.repos.d/mongodb-org-3.2.repo

[mongodb-org-3.2]

name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.2/x86 64/
gpgcheck=1

enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.2.asc

Installez mongo :

[root@centos7 ~]# yum install mongodb-org
Loaded plugins: fastestmirror, langpacks
adobe-1linux-x86 64
| 2.9 kB 00:00:00

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 6/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

base

| 3.6 kB 00:00:00
extras

| 3.4 kB 00:00:00
mongodb-org-3.2

| 2.5 kB 00:00:00

updates

| 3.4 kB 00:00:00

(1/6): adobe-linux-x86 64/primary db
| 2.7 kB 00:00:01

(2/6): extras/7/x86 64/primary db

| 101 kB 00:00:00

(3/6): base/7/x86 64/group gz

| 156 kB 00:00:01

(4/6): mongodb-org-3.2/7/primary_db
| 72 kB 00:00:02

(5/6): base/7/x86 64/primary db
| 5.7 MB 00:00:03

(6/6): updates/7/x86 64/primary db

| 2.8 MB 00:00:02
Determining fastest mirrors

* base: ftp.ciril.fr

* extras: ftp.ciril.fr

* updates: centos.crazyfrogs.org
Resolving Dependencies

--> Running transaction check

---> Package mongodb-org.x86 64 0:3.2.16-1.el7 will be installed

--> Processing Dependency: mongodb-org-tools = 3.2.16 for package: mongodb-org-3.2.16-1.el7.x86 64
--> Processing Dependency: mongodb-org-shell = 3.2.16 for package: mongodb-org-3.2.16-1.el7.x86 64
--> Processing Dependency: mongodb-org-server = 3.2.16 for package: mongodb-org-3.2.16-1.el7.x86 64
--> Processing Dependency: mongodb-org-mongos = 3.2.16 for package: mongodb-org-3.2.16-1.el7.x86 64
--> Running transaction check

---> Package mongodb-org-mongos.x86 64
---> Package mongodb-org-server.x86 64

-1.el7 will be installed

2.1
2 -1.el7 will be installed

0:3.2.16
0:3.2.16

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 7/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

16-1.el7 will be installed
16-1.el7 will be installed

---> Package mongodb-org-shell.x86 64
---> Package mongodb-org-tools.x86 64
--> Finished Dependency Resolution

o o©

:3.2.
:3.2.

Dependencies Resolved

Package Arch Version
Repository Size

Installing:

mongodb-org x86 64 3.2.16-1.el7
mongodb-org-3.2 5.8 k

Installing for dependencies:

mongodb-org-mongos x86 64 3.2.16-1.el7
mongodb-org-3.2 5.7 M

mongodb-org-server x86 64 3.2.16-1.el7
mongodb-org-3.2 13 M

mongodb-org-shell x86 64 3.2.16-1.el7
mongodb-org-3.2 6.8 M

mongodb-org-tools x86 64 3.2.16-1.el7
mongodb-org-3.2 41 M

Transaction Summary

Install 1 Package (+4 Dependent packages)

Total download size: 66 M
Installed size: 202 M
Is this ok [y/d/N]: y

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

8/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Activez et démarrez le service :

[root@centos7 ~]# systemctl status mongod
® mongod.service - SYSV: Mongo is a scalable, document-oriented database.

Loaded:
Active:
Docs:

loaded (/etc/rc.d/init.d/mongod; bad; vendor preset: disabled)
inactive (dead)
man:systemd-sysv-generator(8)

[root@centos7 ~]1# systemctl enable mongod

mongod.service is not a native service, redirecting to /sbin/chkconfig.
Executing /sbin/chkconfig mongod on

[root@centos7 ~]# systemctl start mongod

[root@centos7 ~]# systemctl status mongod

@ mongod.service - SYSV: Mongo is a scalable, document-oriented database.

Loaded:
Active:
Docs:
Process:
CGroup:

loaded (/etc/rc.d/init.d/mongod; bad; vendor preset: disabled)

active (running) since Mon 2017-09-18 13:46:09 CEST; 4s ago
man:systemd-sysv-generator(8)

14244 ExecStart=/etc/rc.d/init.d/mongod start (code=exited, status=0/SUCCESS)
/system.slice/mongod.service

L-14255 /usr/bin/mongod -f /etc/mongod.conf

Sep 18 13:46:08 centos7.fenestros.loc systemd[1]: Starting SYSV: Mongo is a scalable, document-oriented

database..

Sep 18 13:46:08 centos7.fenestros.loc runuser[14251]: pam unix(runuser:session): session opened for user mongod

by (uid=0)

Sep 18 13:46:09 centos7.fenestros.loc mongod[14244]: Starting mongod: [OK]
Sep 18 13:46:09 centos7.fenestros.loc systemd[1l]: Started SYSV: Mongo is a scalable, document-oriented database..

Le client MongoDB est invoqué avec la commande mongo :

[root@centos7 ~]# mongo

MongoDB shell version: 3.2.16
connecting to: test

Welcome to the MongoDB shell.

For interactive help, type "help".

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 9/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

For more comprehensive documentation, see
http://docs.mongodb.org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
Server has startup warnings:
2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten]
2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096
processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.
> exit
bye
[root@centos7 ~]#

Configuration

Le fichier de configuration de mongodb est /etc/mongod.conf :

[root@centos7 ~]# cat /etc/mongod.conf
systemLog:

destination: file

logAppend: true

path: /var/log/mongodb/mongod. log

storage:
dbPath: /var/lib/mongo
journal:
enabled: true

processManagement:
fork: true # fork and run in background
pidFilePath: /var/run/mongodb/mongod.pid # location of pidfile

net:
port: 27017

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 10/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

bindIp: 127.0.0.1

Dans ce fichier, sont notamment définit le lieu de stockage des données et des logs respectivement dans /var/lib/mongo et
/var/log/mongodb/mongod.log par défaut.

Le client Mongo

Une manipulation intéressante a faire consiste a modifier le prompt du client mongo pour afficher la base de donnée courante. Par défaut le prompt est
minimaliste :

Pour connaitre le base de donnée sur laquelle on travaille il convient de de taper “db”

>db
test
>

Créez donc le fichier $HOME/.mongorc.js :

[root@centos7 ~]# vi $HOME/.mongorc.js
[root@centos7 ~]# cat $HOME/.mongorc.js
prompt = function(){return db+">";}

Constatez que la base de données courante se trouve dans le prompt :

[root@centos7 ~]# mongo

MongoDB shell version: 3.2.16

connecting to: test

Server has startup warnings:

2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten]

2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

11/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

processes, 64000 files. Number of processes should be at least 32000

test>

Autres Clients Mongodb

Interfaces graphiques

RoboMongo

0.5 times number of files.

RoboMongo est un client graphique disponible pour toutes les plate-formes sur le site https://robomongo.org/. L'installation est tres simple :

Filz Optionz Help
=-rn

4 B | ocathost (10
L. Systerm
{—j Lesmingline
4 B sampleDriverlb
4 L Collectiors (2
|, Sysbemn
=4 Book
* W Functions
L Users
.E' amazoon
E amazoon?
é concurrency Test
B min
E moncTest
E students
B tent

o Eook, fnd(PageCound: {sgt. %

H pcahoagt: 23007

Bock (L) 0,003 sec.
Ky

SarmplalrisaTb

Value

#[a® i) -]
_id
| Mame
5| PageCount
= _acoessid
@ Nl {.

Objectidl 5163 5Ma3aiabb 18585041 cd”) O

Book 3
305
E3alc

www.ittraining.team -

https://ittraining.team/

https://robomongo.org/

2026/02/04 15:22 12/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

A

& A Faire - Installez RoboMongo et connectez-vous a MongoDB.

RockMongo

RockMongo est une application PHP disponible sur le site http://www.rockmongo.com et qui nécessite un serveur Apache/PHP. De plus, il est
nécessaire d'installer I'extension PHP de connexion a MongoDB.

@i Databases » [game » [T ussr_achisvesants 1

Daney [heray| F50H] | Befrest | Toeert B 1 B W - Btk 1 Mt e . e
eEzy| _4d o -
s 1 (241 ARE W
rock vessions (1)
- = 2 A
[T user_schievementa 1 (53]
mer_sohievensnca 2 {10] AaC
Fields{0y * | Hincafl) * | Limizs O Bowsrld = | Acziond findAll =
Suibmit Joery Explain Clear Conditions | Dosz 0.002€36s
1 =xt |]
#55 sdsts | Dmlses | Hew Fisld uplicats | Befresh | Test | Expand
14" ¢ DEjectlo|"4sSda0sdE0aSE1a011 3800007,

Echisvesens 1477 @ IF,

R {4™ ¢+ CHsar -
W Coeate FRER_ N = S ETER Utu|.'|t|:|l:hith|ih'{l_-
gcal {3] S
aTera i ' -

- wuz |
mm I L ¥ Exp

Genghis

Genghis est une interface d'administration de bases de données NoSQL sous MongoDB permettant une lecture adaptée a chaque périphérique. Il

www.ittraining.team - https://ittraining.team/

http://www.rockmongo.com

2026/02/04 15:22 13/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

s'agit d'une interface semblable a I'outil phpMyAdmin :

1- 50 of 318 Documents

Add document z i 4

50b2f9d81735b45dd9000181 Edin SRS

_1d: Objectid("58b2fad81735b45dd9880F81"),
email: "ninagexample.org",

username: "carey_weimann",

cupiditate: "dolorem",

luste: "neque”,

carporis: "fuga",
ipsum: "et",
beatae: "quas",
saepe; [

Les APl pour MongoDB (Application Programming Interface)

Pour le langage Java

Java-MongoDB-Driver est le pilote Java pris en charge pour MongoDB :

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 14/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

e com.mongodb - il s'agit du paquet de base permettant de créer une connexion client a une instance en cours d' exécution mongod
e com.mongodb.client - ce paquet permet I'acces a une base de données MongoDB

On se connecte a une instance MongoDB en cours d' exécution sur le localhost (port par défaut 27017)
Pour gérer les documents dans |'application, on utilise les paquets suivants :

e org.bson.Document

e com.mongodb.MongoClient

e com.mongodb.client.MongoCollection
e com.mongodb.client.MongoDatabase

Pour le langage C++

mongo-cxx-driver permet de se connecter a une instance mongod et de créer une connexion client a une instance en cours d'exécution mongod.
* La librairie bsoncxx permet de gérer les documents.

Pour gérer les applications, on doit inclure bson/bson.h dans le fichier code de I'application afin de pouvoir gérer les documents.

Structure des Données

Notions de Documents

On associe les documents aux bases de données orientées documents qui sont destinées aux applications qui gerent des documents. Ce type de bases
de données peut étre ou non une sur-couche d'une base de données relationnelle.

Dans un systeme de base de données relationnelles, les informations sont stockées par ligne dans des tables. Ces tables sont mises en relation en
utilisants des clés primaires et étrangéres. Or dans MongoDb, I'information est modélisée sur un document au format BSON basé sur J[SON (Javascript
Object Notation).

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 15/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

MongoDB ne nécessite donc pas de schéma prédéfini comme en SQL, il n'est pas nécessaire par exemple de définir des colonnes avec un nom et un
type et on peut insérer n'importe quel document BSON. Lors de l'insertion d'un document, MongoDB ajoute automatiquement un index nommé par
défaut _id. La méthode insert retourne I'identifiant du document inséré.

De plus, contrairement aux bases de données SQL, il n'est pas nécessaire de faire des requétes avec des jointures pour connaitre des informations.
Dans MongoDb, il suffit de lire le document qui nous intéresse, d'ou I'avantage de modéliser les données sur un document.

Notions de Collections

Le terme collection est issu du monde NoSQL et correspond par analogie a la notion de table dans les bases de données relationnelles (MySQL,
PosgreSQL, Microsoft Access, Oracle, etc.). Une collection permet de stocker des documents, notion analogue a celle de I'enregistrement.

En comparant le schéma de structure d'une base de MongoDB a celui d'une base de donnée relationelle comme SQL, on peut faire le parallele suivant:

Base de données relationnelle (SQL) Base de données NoSQL (MongoDB)
database database
table collection
row document ou document BSON
column field
index index
primary key primary key

Pour avoir un apercu, on peut définir par exemple 2 documents comme ceci:

{ id: "Her", acteurs
{ id: "Avengers", acteurs

Dans I'exemple ci-dessus, on peut voir que I'actrice [{nom:“Johansson”, prenom:“Scarlett”}] est dupliquée. Dans le monde NoSQL, on n'hésite
pas a dénormaliser le schéma de la base de données pour favoriser les performances a la lecture. L'important est de savoir quelles requétes seront

[{nom:"Johansson", prenom:"Scarlett"}, {nom:"Phoenix", prenom:"Joaquim"}]}
[{nom:"Johansson", prenom:"Scarlett"}]}

faites pour décider du format des documents.

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 16/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Le Format JSON

JSON, ou JavaScript Object Notation, est un format de données textuelles dérivé de la notation des objets du langage JavaScript. Il permet de
représenter de I'information structurée.

Un document JSON a pour fonction de représenter de I'information accompagnée d'étiquettes permettant d'en interpréter les divers éléments, sans
aucune restriction sur le nombre de celles-ci. Un document JSON ne comprend que deux types d'éléments structurels : des ensembles de paires
nom/valeur et des listes ordonnées de valeurs.

Ce format se base donc sur 2 types d'éléments:

* la paire clé/valeur, par exemple “nom”: “Phoenix”
e |e tableau, par exemple “couleurs-primaires” : [“cyan”, “jaune”, “magenta”]

Le Format BSON

Le format BSON ou Binary JSON correspond au format des données manipulés par MongoDB. C'est un format d'échange de données informatiques
utilisé principalement comme stockage de données et format de transfert de données par le réseau dans la base de données MongoDB. C'est un
format binaire permettant de représenter des structures de données simples et des tableaux associatifs (appelées objets ou des documents dans
MongoDB). Le nom BSON est basé sur le terme JSON.

Comparaison BSON/JSON

Voici un tableau comparatif de BSON ET JSON :

Comparaison BSON/JSON

Type de Champs JSON/BSON
Number X X
String X X
Boolean X X
Array X X

www.ittraining.team - https://ittraining.team/

https://fr.wikipedia.org/wiki/JavaScript_Object_Notation
https://fr.wikipedia.org/wiki/BSON

2026/02/04 15:22

17/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

Comparaison BSON/JSON

Type de Champs

JSON

BSON

Object

X

X

Null

X

Float

Date

Regular Expression

JavaScript Code

XXX | X | X

On constate que le format BSON supporte plus de types que le format JSON. Le codage BSON complete la représentation JSON en y ajoutant des types

de données supplémentaires, tels que les formats virgule flottante ou date entre autres.

Format d'un Document BSON

Dernierement, voici un document au format BSON stockant des informations concernant un film :

"summary": "On a fall night in 2003, Harvard undergrad and
programming genius Mark Zuckerberg sits down at his
computer and heatedly begins working on a new idea.

{"first name": "Jesse", "last name": "Eisenberg"},

{
" id": "movie:100",
"title": "The Social network",
"year": 2010,
"director": {"last name": "Fincher",
“"first name": "David"},
"actors": [
{"first name": "Rooney", "last name": "Mara"}
|
}

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 18/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Le Langage des Requétes

Requétes de base

Se placer dans une base de données/Créer une base de données

Pour se placer dans une base de données ou créer une base inexistente, il convient d'utiliser la requéte use :

use <database>
Créer une collection

Pour créer une collection, il convient d'utiliser la requéte db.createCollection(<collection>) :

db.createCollection("movies")

Important - Une base est constituée d'un ensemble de collections, I’équivalent d’une table en relationnel.

]
-

Visualiser la liste des collections

Pour visualiser la liste des collections, il convient d'utiliser la requéte show :

show collections

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 19/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Inserer un document BSON dans une collection

Pour inserer un document BSON dans une collection, il convient d'utiliser la requéte db.<collection>.insert (<document>) :

db.movies.insert ({"title": "Batman", "year": 1989})
db.movies.insert ({"produit": "Grulband", prix: 230, enStock: true})

Important - Notez que la structure du deuxieme document n'a rien a voir avec le premier. Il n’y a pas de schéma (et donc pas de
| contrainte) dans MongoDB. On est libre de tout faire, ce qui revient a reporter les problémes (controles, contraintes, tests sur la structure)

£ vers I'application. Notez aussi que lorsque I'on veut insérer des documents BSON dans la base MongoDB, au lieu de les insérer un par un,
on peut utiliser I'utilitaire d'import de MongoDB, qui prend en entrée un tableau BSON contenant la liste des objets a insérer.

Affecter un identifiant explicitement

Pour affecter un identifiant explicitement, il convient d'utiliser la requéte db.<collection>.insert(<document>) en spécifiant la valeur de _id :

db.movies.insert ({ id: "1", "produit": "Kramdlk", prix: 10, enStock: true})
Remplacer un document

Pour remplacer un document, il convient d'utiliser la requéte db.<collection>.update(<document>) :

db.movies.update({ "title": "Mr Smith" }, { "title": "Mr Cool", "year": 2000 })

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 20/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Modifier des champs d’un document

Pour modifier des champs d’un document, il convient d'utiliser la requéte db.<collection>.update(<document>) et $set :

db.movies.update({ "title": "Avengers" }, { $set: { "summary": "c'est un film divertissant" } })

Compter le nombre de documents dans la collection

Pour compter le nombre de documents dans la collection, il convient d'utiliser la requéte db.<collection>.count() :

db.movies.count()

Supprimer un document

Pour supprimer un ou plusieurs documents il convient d'utiliser la requéte db.<collection>.remove(<document>) a laquelle on passe en parametre
le query permettant d’identifier les documents visés :

db.movies.remove({"produit": "Grulband"})

Supprimer un champ dans un document

Pour supprimer un champ dans un document, il convient d'utiliser la requéte db.<collection>.update(<document>) et $unset :

db.movies.update({"title": "Batman"}, {$unset : {year : 1989}})

Supprimer une collection

Pour supprimer une collection, il convient d'utiliser la requéte db.<collection>.drop() :

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 21/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

db.movies.drop()
Trier des documents

Pour trier les documents, il convient d'utiliser la requéte db.movies.find ().sort().skip().limit() :

db.movies.find ().sort({"title": 1}).skip(9).limit(12)

/. Important - Notez qu'implicitement, cela suppose qu'il existe un ordre sur le parcours des documents. Par défaut, cet ordre est dicté par
‘1 le stockage physique: MongoDB fournit les documents dans I'ordre ou il les trouve (dans les fichiers). On peut trier explicitement, ce qui
rend le résultat plus déterministe.

Rechercher des documents dans une collection

Pour afficher les contenu d'une collection, il convient d'utiliser la requéte db.<collection>.find(<document>) :
db.movies.find()
On obtient des objets (javascript, encodés en BSON), par exemple :

{ " id" : ObjectId("5422d9095ae45806a0e66474"), "nom" : "nfe024" }

| Important - Notez que MongoDB associe un identifiant unique a chaque document, de nom conventionnel _id, et lui attribue une valeur si
& . elle n’est pas indiquée explicitement.

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 22/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Il est aussi possible de rechercher en connaissant l'identifiant :
db.movies.find ({" id": "movie:2"})
ou en utilisant n’importe quel attribut :

db.movies.find ({"title": "Alien"})

Projections

Les requétes précédentes ramenent l'intégralité des objets satisfaisant les critéres de recherche. Il est aussi possible de faire des projections, en
passant un second argument a la fonction find() :

db.movies.find ({"actors.last name": "Tarantino"}, {"title": true, "actors": 'j'})
Le second argument est un objet BSON dont les attributs sont ceux a conserver dans le résultat. La valeur des attributs dans cet objet-projection ne
prend que deux interprétations. Toute valeur autre que 0 ou null indique que I'attribut doit étre conservé. Si on choisit au contraire d’indiquer les

attributs a exclure, on leur donne la valeur 0 ou null. Par exemple, la requéte suivante retourne les films sans les acteurs et sans le résumé :

db.movies.find ({"actors": null, "summary": 0})

Opérateurs ensemblistes

Les opérateurs du langage SQL in, not in, any et all se retrouvent dans le langage d’interrogation. La différence, notable, est que SQL applique ces
opérateurs a des relations (elles-mémes obtenues par des requétes) alors que dans le cas de MongoDB, ce sont des tableaux JSON. MongoDB ne
permet pas d’'imbriquer des requétes.

Par exemple, on cherche les films dans lesquels joue au moins un des artistes dans une liste dont on connait I'identifiant :

db.artists.find({"actors. id": {$in: ["artist:34","artist:98","artist:1"]1}})

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 23/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Le not in correspond a I'opérateur $nin.
db.artists.find({" id": {$nin: ["artist:34","artist:98","artist:1"]}})
Comme dernier example, voici comment trouver les films qui n’ont pas d’attribut summary :

db.movies.find({"summary": {$exists: false}}, {"title": 1})

Opérateurs booléens

Par défaut, quand on exprime plusieurs criteres, c’est une conjonction (and) qui est appliquée. On peut I'indiquer explicitement. Voici la syntaxe (les
films tournés avec Leonardo DiCaprio en 1997) :

db.movies.find({$and : [{"year": "1997"}, {actors.last name: "DiCaprio"]})

L'opérateur and s’applique a un tableau de conditions. Bien entendu il existe un opérateur or avec la méme syntaxe. Les films parus en 1997 ou avec
Leonardo DiCaprio :

db.movies.find({$or : [{"year": "1997"}, {actors.last name: "DiCaprio"1})
Comparaison de la structure des requétes entre SQL/MongoDB
Tables/Collections

CREATE TABLE

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

24/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

SQL

MongoDB

CREATE TABLE people (id MEDIUMINT NOT NULL
AUTO INCREMENT, user_id Varchar(30),\
age Number, status char(l), PRIMARY KEY (id))

db.people.insertOne({user id: "abcl23", age: 55, status:
IIAII})

ou simplement

db.createCollection("people")

DROP TABLE

SQL

MongoDB

DROP TABLE people

db.people.drop()

ALTER TABLE

SQL MongoDB
ALTER TABLE people ADD join date DATETIME|db.people.updateMany({ },{ $set: { join date: new Date() } })
ALTER TABLE people DROP COLUMN join date |db.people.updateMany({ },{ $unset: { "join date": "" } })

CREATE INDEX

SQL

MongoDB

CREATE INDEX idx user id asc ON people(user id)

db.people.createIndex({ user id: 1 })

CREATE INDEX idx user id asc _age desc ON people(user_id, age

db.people.createIndex({ user id: 1, age: -1 })

DESC)
Rows/documents
INSERT
SQL MongoDB
INSERT INTO people(user id, age, status) VALUES db.people.insertOne({ user _id: "bcd00l", age: 45, status:
(Ilbcd001ll’ 45’ IIAII) IIAII })

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 25/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

SELECT
SQL MongoDB
SELECT * FROM people db.people.find()
SELECT id, user _id, status FROM people db.people.find({ },{ user id: 1, status: 1 })
SELECT user id, status FROM people db.people.find({ },{ user id: 1, status: 1, id: 0 })
SELECT * FROM people WHERE status = "A" db.people.find({ status: "A" })
iEEEET SRl i Slelle Sl pEeple uiloil ity db.people.find({ status: "A" },{ user id: 1, status:1, id: 0 })
SELECT * FROM people WHERE status !'= "A" db.people.find({ status: { $ne: "A" } })
b3 = UAmN
iE;gCT FROM people WHERE status A" AND age db.people.find({ status: "A", age: 50 })
b3 — n
EEESCT FROM people WHERE status A" OR age db.people.find({ $or: [{ status: "A" } , { age: 50 } 1 })
SELECT * FROM people WHERE age > 25 db.people.find({ age: { $gt: 25 } })
SELECT * FROM people WHERE age < 25 db.people.find({ age: { $lt: 25 } })
b 3 =
ggLECT FROM people WHERE age > 25 AND age < db.people.find({ age: { $gt: 25, $lte: 50 } })
SELECT * FROM people WHERE status = "A" ORDER . . .
BY user id ASC db.people.find({ status: "A" }).sort({ user id: 1 })
SELECT * FROM people WHERE status = "A" ORDER . . o —
BY user id DESC db.people.find({ status: "A" }).sort({ user id: -1 })
db.people.find({ user _id: /"bc/ })
SELECT * FROM people WHERE user_id like "bc%" |ou
db.people.find({ user id: { $regex: ~bc/ } })
db.people.find({ user id: /bc/ })
SELECT * FROM people WHERE user id like "Sbc%" |ou
db.people.find({ user id: { $regex: /bc/ } })
db.people.count()
SELECT COUNT(*) FROM people ou
db.people.find().count()
db.people.count({ user id: { $exists: true } })
SELECT COUNT(user id) FROM people ou
db.people.find({ user id: { $exists: true } }).count()

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 26/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7
SQL MongoDB
db.people.count({ age: { $gt: 30 } })
SELECT COUNT(*) FROM people WHERE age > 30 ou

db.people.find({ age: { $gt:

30 } }).count()

SELECT DISTINCT(status) FROM people

db.people.distinct("status"

)

SELECT * FROM people LIMIT 1

db.people.findOne()
ou
db.people.find().limit(1)

SELECT * FROM people LIMIT 5 SKIP 10

db.people.find().limit(5).skip(10)

EXPLAIN SELECT

SQL

MongoDB

EXPLAIN SELECT * FROM people WHERE status = "A"|db.people.find({ status: "A" }).explain()

UPDATE

SQL

MongoDB

> 25

UPDATE people SET status = "C" WHERE age

)

db.people.updateMany({ age: { $gt:

25 } } , { $set: { status: "C" } }

status = "A"

UPDATE people SET age = age + 3 WHERE

db.people.updateMany({ status: "A" } , { $inc: { age: 3 } })

DELETE FROM

SQL

MongoDB

DELETE FROM people WHERE status = "D"

db.people.deleteMany({ status: "D" })

DELETE FROM people

db.people.deleteMany({})

LAB #1 - Utilisation de requétes de base

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 27/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Création d'une collection

Commencez par créer une collection nommé Movies qui enregistre des informations sur des films :

test>db.createCollection("movies")
{ "ok" : 1}
test>

Création de documents

Créez maintenant les documents de la collection :

test>db.movies.insert({ " id" : "movie:1", "titre" : "Batman", "année" : 1989, "acteurs" : [{ "prénom"
"Michael", "nom" : "Keaton" }] })

WriteResult({ "nInserted" : 1 })

test>db.movies.insert({ " id" : "movie:2", "titre" : "Beetlejuice", "année" : 1988, "acteurs" : [{ "prénom"
"Michael", "nom" : "Keaton" }, { "prénom" : "Geena", "nom" : "Davis" }] })

WriteResult({ "nInserted" : 1 })

test>db.movies.insert({ " id" : "movie:3", "titre" : "Jurassik Park", "réalisateur" : { "prénom" : "Steven",
"nom" : "Spielberg" }, "année" : 1990, "acteurs" : [{ "prénom" : "Sam", "nom" : "Neil" }, { "prénom" : "Laura",
"nom" : "Dern" } 1 })

WriteResult({ "nInserted" : 1 })

test>db.movies.insert({ " id" : "movie:4", "titre" : "Avengers", "année" : 2012 })

WriteResult({ "nInserted" : 1 })

test>db.movies.insert({ " id" : "movie:5", "titre" : "Hobbit", "année" : 2012 })

WriteResult({ "nInserted" : 1 })

test>

Important - Notez que vous avez rentré 2 fois le nom et prénom du champ acteurs pour les 2 premiers documents crées.

4 u
-

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 28/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Recherche de documents

Utilisez maintenant la commande find pour vérifier que les 5 documents ont bien été crées dans la collection movies :

test>db.movies.find()

{ " id" : "movie:1", "titre" : "Batman", "année" : 1989, "acteurs" : [{ "prénom" : "Michael", "nom" : "Keaton" }
1}
{ " id" : "movie:2", "titre" : "Beetlejuice", "année" : 1988, "acteurs" : [{ "prénom" : "Michael", "nom"
"Keaton" }, { "prénom" : "Geena", "nom" : "Davis" }] }
{ " id" : "movie:3", "titre" : "Jurassik Park", "réalisateur" : { "prénom" : "Steven", "nom" "Spielberg" },
"année" : 1990, "acteurs" : [{ "prénom" : "Sam", "nom" : "Neil" }, { "prénom" : "Laura", "nom" : "Dern" }] }
{ " id" : "movie:4", "titre" : "Avengers", "année" : 2012 }
{ " id" : "movie:5", "titre" : "Hobbit", "année" : 2012 }
test>
Modifiez ensuite le document ayant pour _id : movie 3) en utilisant la commande update :
test>db.movies.update({" id": "movie:3"}, {$set: {titre: "le parc des dinosaures"}})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
test>
. ! Important - Notez que le retour indique la réussite de I'oprération de mise a jour - “nModified” : 1.
Vérifiez que le champ a bien été modifié dans le document en consultant la collection movies :
test>db.movies.find()
{ " id" : "movie:1l", "titre" : "Batman", "année" : 1989, "acteurs" : [{ "prénom" : "Michael", "nom" : "Keaton" }
1}
{ " id" : "movie:2", "titre" : "Beetlejuice", "année" : 1988, "acteurs" : [{ "prénom" : "Michael", "nom"
"Keaton" }, { "prénom" : "Geena", "nom" : "Davis" }] }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 29/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : "movie:3", "titre" : "le parc des dinosaures", "réalisateur" : { "prénom" : "Steven", "nom" :
"Spielberg" }, "année" : 1990, "acteurs" : [{ "prénom" : "Sam", "nom" : "Neil" }, { "prénom" : "Laura", "nom"
"Dern" }] }

{ " id" : "movie:4", "titre" : "Avengers", "année" : 2012 }

{ " id" : "movie:5", "titre" : "Hobbit", "année" : 2012 }

test>

! Important - Notez que le titre du film ayant pour “_id” : “movie:3” a bien été modifié.

Affichez maintenant les films n'ayant pas de réalisateur :

test>db.movies.find({"réalisateur": null})

{ " id" : "movie:1", "titre" : "Batman", "année" : 1989, "acteurs" : [{ "prénom" : "Michael", "nom" : "Keaton" }
1}

{ " id" : "movie:2", "titre" : "Beetlejuice", "année" : 1988, "acteurs" : [{ "prénom" : "Michael", "nom"
"Keaton" }, { "prénom" : "Geena", "nom" : "Davis" }] }

{ " id" : "movie:4", "titre" : "Avengers", "année" : 2012 }

{ " id" : "movie:5", "titre" : "Hobbit", "année" : 2012 }

test>

Suppression d'un document

Supprimez le film dont le titre est “Batman” :

test>db.movies.remove({"titre": "Batman"})
WriteResult({ "nRemoved" : 1 })
test>

Constatez le résultat de la requéte :

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 30/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7
test>db.movies.find ()

{ " id" "movie:2", "titre" "Beetlejuice", "année" 1988, "acteurs" [{ "prénom" "Michael", "nom"
"Keaton" }, { "prénom" "Geena", "nom" "Davis" }] }

{ " id" "movie:3", "titre" "le parc des dinosaures", "réalisateur" { "prénom" "Steven", "nom"
"Spielberg" }, "année" 1990, "acteurs" [{ "prénom" "Sam", "nom" "Neil" }, { "prénom" "Laura", "nom"
"Dern" } 1 }

{ " id" "movie:4", "titre" "Avengers", "année" : 2012 }

{ " id" "movie:5", "titre" "Hobbit", "année" : 2012 }

test>

Supprimez maintenant les films ayant “année”: 2012 :

test>db.movies.remove({"année": 2012})

WriteResult({ "nRemoved" : 2 })

test>db.movies.find ()

{ " id" "movie:2", "titre" "Beetlejuice", "année" 1988, "acteurs" [{ "prénom" "Michael", "nom"
"Keaton" }, { "prénom" "Geena", "nom" "Davis" }] }

{ " id" "movie:3", "titre" "le parc des dinosaures", "réalisateur" { "prénom" "Steven", "nom"
"Spielberg" }, "année" 1990, "acteurs" [{ "prénom" "Sam", "nom" "Neil" }, { "prénom" "Laura", "nom"
"Dern" } 1 }

F L
-

LAB #2 - Rechercher, filtrer et trier

La Requéte find()

Connectez-vous a MongoDB en utilisant le client mongo :

Important - Notez |la suppression de deux documents : “_id” : “movie:4” et “_id”

: “movie:5”.

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 31/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

[trainee@centos7 ~]$ su -

Mot de passe : fenestros
Derniére connexion : lundi 18 septembre 2017 a 13:39:03 CEST sur pts/0

[root@centos7 ~]# mongo
MongoDB shell version: 3.2.16
connecting to: test

Server has startup warnings:

2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten]
2017-09-18T13:46:09.416+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096

processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.
test>

Commencez par créer une base de données appelée find :

test>use find
switched to db find
find>

Criteres de recherche

En sachant que le client mongo interprete du JavaScript, créez 100 000 documents dans la base de données find dans une collection appelée
products :

find>for(i=1; i<=100000; i++){var tenthousand = i%10000; var thousand = i%1000; var hundred = i%100;
db.products.insert({counter:i, tenthousand:tenthousand, thousand:thousand, hundred:hundred })}

WriteResult({ "nInserted" : 1 })

Saisissez maintenant la commande db.products.find() :

find>db.products.find()
{ " id" : ObjectId("59c0fbla3b6221e3d36169a6"), "counter" : 1, "tenthousand" : 1, "thousand" : 1,

{ " id" : ObjectId("59c0fbla3b6221e3d36169a7"), "counter" : 2, "tenthousand" : 2, "thousand" : 2,

"hundred"
"hundred"

N

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

32/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

" g
" g
" g
" g
" i
" ig
" g
T

(o]
Sl

n idll

(=)
|

n idll

n idll

w
|

n idll

N
|

n idll

(0]
- |

n idll

(@)]
|

n idll

~
- |

n idll

|

8

AR ARPARPASARPARASARARARARASASAASASASASASAASAASAS A
N
- |

Il_id n

=
O
-

{ "_id"
20 }

Type "it" for more

find>

: ObjectId
: ObjectId
: ObjectlId
: ObjectId
: ObjectId
: ObjectId
: ObjectId
: ObjectId

.~~~ o~ o~ o~ o~ o~

"59c0fbla3b6221e3d36169a8"
"59c0fbla3b6221e3d36169a9"
"59c0fbla3b6221e3d36169aa"
"59c0fbla3b6221e3d36169ab"
"59c0fbla3b6221e3d36169ac"
"59c0fbla3b6221e3d36169ad"
"59c0fbla3b6221e3d36169ae"
"59c0fbla3b6221e3d36169af"

Notez l'instruction Type “it” for more :

~— O e S S S S S

’

’

’

’

’

’

’

’

: ObjectId("59c0fbla3b6221e3d36169b0"),
: ObjectId("59c0fbla3b6221e3d36169b1"),
: ObjectId("59c0fbla3b6221e3d36169b2"),
: ObjectId("59c0fbla3b6221e3d36169b3"),
: ObjectId("59c0fbla3b6221e3d36169b4"),
: ObjectId("59c0fbla3b6221e3d36169b5"),
: ObjectId("59c0fbla3b6221e3d36169b6"),
: ObjectId("59c0fbla3b6221e3d36169b7"),
: ObjectId("59c0fbla3b6221e3d36169b8"),

: ObjectId("59c0fbla3b6221e3d36169b9"),

"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"
"counter"

"counter"

"counter"

= O 00 NO Ul bW

O~

~-

~-

~

~

~

: 13,
: 14,
: 15,
: 16,
: 17,
: 18,
: 19,

1 20,

"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"
"tenthousand"

"tenthousand"

"tenthousand"

:: iO,
: 11,
: 12,
: 13,
: 14,
: 15,
: 16,
: 17,
: 18,
: 19,

1 20,

, "thousand"
, "thousand"
, "thousand"
, "thousand"
, "thousand"
, "thousand"
"thousand" :
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"
"thousand"

©O© 00 NO Ul &~

1 3,

’

~

~

~

’

: 11,
: 12,
: 13,
: 14,
: 15,
: 16,
17,
: 18,
: 19,

1 20,

"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred" :
: 10, "hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"
"hundred"

O 00 NO Ul b

N e o o N o

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

33/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

find>it
{ Il_idll
21 }

{ n idll
22
{ n idll
23
{ n idll
24
{ n idll
25
{ n idll
26
{ n idll
27
{ n idll
28
{ n idll
29
{ n idll
30
{ n idll
31
{ Il_idll
32 }

{ Il_idll
33 }

{ Il_idll
34 }

{ Il_idll
35}

{ Il_idll
36 }

{ Il_idll

- | | | - | | | - | | - | |

: ObjectId("59c0fbla3b6221e3d36169ba"),
: ObjectId("59c0fbla3b6221e3d36169bb"),
: ObjectId("59c0fbla3b6221e3d36169bc"),
: ObjectId("59c0fbla3b6221e3d36169bd"),
: ObjectId("59c0fbla3b6221e3d36169be"),
: ObjectId("59c0fbla3b6221e3d36169bf"),
: ObjectId("59c0fbla3b6221e3d36169c0"),
: ObjectId("59c0fbla3b6221e3d36169cl"),
: ObjectId("59c0fbla3b6221e3d36169c2"),
: ObjectId("59c0fbla3b6221e3d36169c3"),
: ObjectId("59c0fbla3b6221e3d36169c4"),
: ObjectId("59c0fbla3b6221e3d36169c5"),
: ObjectId("59c0fbla3b6221e3d36169c6"),
: ObjectId("59c0fbla3b6221e3d36169c7"),
: ObjectId("59c0fbla3b6221e3d36169c8"),
: ObjectId("59c06fbla3b6221e3d36169c9"),

: ObjectId("59cOfbla3b6221e3d36169ca"),

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

1 21,
1 22,
1 23,
1 24,
: 25,
: 26,
1 27,
: 28,
: 29,
: 30,
: 31,
: 32,
: 33,
: 34,
: 35,
: 36,

: 37,

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

1 21,
1 22,
1 23,
1 24,
. 25,
: 26,
: 27,
1 28,
: 29,
: 30,
: 31,
: 32,
: 33,
1 34,
: 35,
: 36,

: 37,

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

1 21,
1 22,
1 23,
1 24,
. 25,
: 26,
1 27,
1 28,
: 29,
: 30,
: 31,
: 32,
: 33,
: 34,
: 35,
: 36,

: 37,

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

"hundred"

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 34/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

37 }

{ " id" : ObjectId("59c0fbla3b6221e3d36169cb"), "counter" : 38, "tenthousand" : 38, "thousand" : 38, "hundred"
38 }

{ " id" : ObjectId("59c0fbla3b6221e3d36169cc"), "counter" : 39, "tenthousand" : 39, "thousand" : 39, "hundred"
39 }

{ " id" : ObjectId("59c0fbla3b6221e3d36169cd"), "counter" : 40, "tenthousand" : 40, "thousand" : 40, "hundred"
40 }

Type "it" for more

find>

Important - Bien que pratique, il faudrait taper la commande it un grand nombre de fois pour atteindre le document 90 000 !

2 [
-

Tapez maintenat la commande db.products.find({tenthousand:9999}) :

find>db.products.find({tenthousand:9999})

{ " id" : ObjectId("59c0fb2d3b6221e3d36190b4"), "counter" : 9999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59c0fb403b6221e3d361b7c4"), "counter" : 19999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59c0fb533b6221e3d361ded4"), "counter" : 29999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59c0fb663b6221e3d36205e4"), "counter" : 39999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59c0fb793b6221e3d3622cf4"), "counter" : 49999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59c0fb8e3b6221e3d3625404"), "counter" : 59999, "tenthousand" : 9999, "thousand" : 999,
"hundred" : 99 }

{ " id" : ObjectId("59c0fbal3b6221e3d3627b14"), "counter" : 69999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

{ " id" : ObjectId("59cO0fbb43b6221e3d362a224"), "counter" : 79999, "“tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 35/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : ObjectId("59c0fbc93b6221e3d362c934"), "counter" : 89999, "tenthousand" : 9999, "thousand" : 999,
"hundred" : 99 }

{ " id" : ObjectId("59c0fbdc3b6221e3d362f044"), "counter" : 99999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }

find>

Important - Vous obtenez les documents qui correspondent a tenthousand = 9999.

Précisez maintenant un deuxiéme critére de recherche :

find>db.products.find({counter:19999, tenthousand:9999})

{ " id" : ObjectId("59c0fb403b6221e3d361b7c4"), "counter" : 19999, "tenthousand" : 9999, "thousand" : 999,
“hundred" : 99 }
find>

Important - Vous obtenez un seul document ou counter=19999 et tenthousand=9999.

Pour connaitre le nombre de documents retournés lors d'une recherche spécifique, utilisez la commande count() :

find>db.products.find({thousand:289, hundred:89})

{ " id" : ObjectId("59c0fbla3b6221e3d3616ac6"), "counter" : 289, "“tenthousand" : 289, "thousand" : 289, "hundred"
: 89 }

{ " id" : ObjectId("59c0fbld3b6221e3d3616eae"), "counter" : 1289, "tenthousand" : 1289, "thousand" : 289,
"hundred" : 89 }

{ " id" : ObjectId("59c0fble3b6221e3d3617296"), "counter" : 2289, "tenthousand" : 2289, "thousand" : 289,
"hundred" : 89 }

{ " id" : ObjectId("59c0fb203b6221e3d361767e"), "counter" : 3289, "tenthousand" : 3289, "“thousand" : 289,
"hundred" : 89 }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

36/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
Type "it"

: ObjectId("59c0fb223b6221e3d3617a66"),

: 89 }

: ObjectId("59c0fb243b6221e3d3617e4e"),

: 89 }

: ObjectId("59c0fb263b6221e3d3618236"),

: 89 }

: ObjectId("59c0fb283b6221e3d361861e"),

: 89 }

: ObjectId("59c0fb2a3b6221e3d3618a06"),

: 89 }

: ObjectId("59c0fb2c3b6221e3d3618dee"),

: 89 }

: ObjectId("59c0fb2e3b6221e3d36191d6"),

: 89 }

: ObjectId("59c0fb2f3b6221e3d36195be"),

: 89 }

: ObjectId("59c0fb313b6221e3d36199a6"),

: 89 }

: ObjectId("59c0fb333b6221e3d3619d8e"),

: 89 }

: ObjectId("59c0fb353b6221e3d361al76"),

: 89 }

: ObjectId("59c0fb373b6221e3d361a55e"),

: 89 }

: ObjectId("59c0fb393b6221e3d361a946"),

: 89 }

: ObjectId("59c0fb3b3b6221e3d36lad2e"),

: 89 }

: ObjectId("59c0fb3d3b6221e3d361b116"),

: 89 }

: ObjectId("59c0fb3f3b6221e3d361b4fe"),

: 89 }
for more

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

find>db.products.find({thousand:289, hundred:89}).count()

: 4289,
: 5289,
: 6289,
: 7289,
: 8289,
: 9289,
: 10289,
: 11289,
: 12289,
: 13289,
: 14289,
: 15289,
: 16289,
: 17289,
: 18289,

: 19289,

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

: 4289,
: 5289,
: 6289,
: 7289,
: 8289,
: 9289,
: 289,
: 1289,
1 2289,
: 3289,
: 4289,
: 5289,
: 6289,
1 7289,
: 8289,

: 9289,

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

1 289,
1 289,
: 289,
1 289,
1 289,
: 289,
1 289,
1 289,
: 289,
1 289,
1 289,
: 289,
1 289,
1 289,
1 289,

: 289,

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 37/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

100
find>

Important - Notez qu'il existe 100 documents correspondant a notre critére ({thousand:289, hundred:89}).

r L] 1
—

Utiliser des Opérandes

Il est possilible d'utiliser des opérandes avec la requéte find() :

Opérande| Description
$gt Supérieur a
$gte |Supérieur ou égal a
$lt Inférieur a
$lte Inférieur ou égal a
| Important - Les 4 opérandes ci-dessus fonctionnent pour des nombres et des chaines de caracteres. Dans le cas des chaines de

£ caractéres, I'ordre appliqué est I'ordre alphabétique.

Par exemple le nombre de documents qui ont pour la valeur thousand supérieure ou égale a 525 et la valeur hundred inférieure a 90 :
find>db.products.find({thousand:{$gte:525}, hundred:{$1t:90}}).count()

42500
find>

Filtrer les champs

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 38/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Saisissez la requéte db.products.find({tenthousand: 525}) :

find>db.products.find({tenthousand: 525})

{ " id" : ObjectId("59c0fblb3b6221e3d3616bb2"), "counter" : 525, "tenthousand" : 525, "thousand" : 525, "hundred"
: 25 }

{ " id" : ObjectId("59c0fb2e3b6221e3d36192c2"), "counter" : 10525, "tenthousand" : 525, "thousand" : 525,
"hundred" : 25 }

{ " id" : ObjectId("59c0fb413b6221e3d361b9d2"), "counter" : 20525, "tenthousand" : 525, "thousand" : 525,
"hundred" : 25 }

{ " id" : ObjectId("59c0fb543b6221e3d361e0e2"), "counter" : 30525, "tenthousand" : 525, "thousand" : 525,
“hundred" : 25 }

{ " id" : ObjectId("59cO0fb673b6221e3d36207f2"), "counter" : 40525, "tenthousand" : 525, "thousand" : 525,
"hundred" : 25 }

{ " id" : ObjectId("59c0fb7a3b6221e3d3622f02"), "counter" : 50525, "tenthousand" : 525, "thousand" : 525,
"hundred" : 25 }

{ " id" : ObjectId("59cO0fb8f3b6221e3d3625612"), "counter" : 60525, "tenthousand" : 525, "thousand" : 525,
“hundred" : 25 }

{ " 1id" : ObjectId("59c0fba23b6221e3d3627d22"), "counter" : 70525, "tenthousand" : 525, "thousand" : 525,
"hundred" : 25 }

{ " id" : ObjectId("59c0fbb53b6221e3d362a432"), "counter" : 80525, "tenthousand" : 525, "thousand" : 525,
“hundred" : 25 }

{ " id" : ObjectId("59cOfbca3b6221e3d362cb42"), "counter" : 90525, "tenthousand" : 525, "“thousand" : 525,
“hundred" : 25 }

find>

Ajoutez maintenant un deuxieme parametre destiné a filtrer les champs retournés par la requéte :

find>db.
"_id"
"_id“
||7id||
"_id"
"_id"
"_id"

N e e)

: ObjectId

'59c0fb413b6221e3d361b9d2"

: ObjectId("59c0fb673b6221e3d36207f2"),

'59c0fb7a3b6221e3d3622702"

products.find({tenthousand: 525} , {counter:1})
: ObjectId("59c0fblb3b6221e3d3616bb2"),
: ObjectId("59c0fb2e3b6221e3d36192c2"),
: ObjectId(')
: ObjectId("59c0fb543b6221e3d361e0e2")

()

(!)

“counter"
"counter"
"counter"
"counter"
"counter"
"counter"

: 525 }
: 10525
: 20525
: 30525
: 40525
: 50525

O e s s

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 39/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : ObjectId("59c0fb8f3b6221e3d3625612"), "counter"
{ " id" : ObjectId("59c0fba23b6221e3d3627d22"), "counter"
{ " id" : ObjectId("59c0fbb53b6221e3d362a432"), "counter"
{ " id" : ObjectId("59cOfbca3b6221e3d362cb42"), "counter"
find>

valeur 1.

Saisissez donc la requéte suivante qui indique que celle-ci ne doit pas retournée le champs _id :

: 60525 }
: 70525 }
: 80525 }
: 90525 }

find>db.products.find({tenthousand: 525} , { id:0, counter:1})

{ "counter" : 525 }
{ "counter" : 10525
{ "counter" : 20525
{ "counter" : 30525
{ "counter" : 40525
{ "counter" : 50525
{ "counter" : 60525
{ "counter" : 70525
{ "counter" : 80525
{ "counter" : 90525
find>

N N N N Y

Trier

Saissisez la requéte suivante :

find>db.products.find({thousand :

{$in:

[500, 600, 700]}})

Important - Notez que vous n'avez plus que les champs _id et counter dans les résultats. Le champs _id est systématiquement renvoyé
+ . sauf quand il est explicitement indiqué le contraire dans la requéte. counter est renvoyé parce que dans le second parametre se trouve la

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

40/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id"
: 0}

{ " id"
: 0}

{ " id"
: 0}

{ " id" :
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"
{ " id"
"hundred"

: ObjectId("59c0fblb3b6221e3d3616b99"),
: ObjectId("59c0fblb3b6221e3d3616bfd"),

: ObjectId("59c0fblb3b6221e3d3616c61"),

ObjectId("59c0fbld3b6221e3d3616f81"),
: 0}

: ObjectId("59c0fbld3b6221e3d3616fe5"),

: 0}

: ObjectId("59c0fbld3b6221e3d3617049"),

: 0}

: ObjectId("59c0fb1f3b6221e3d3617369"),

: 0}

: ObjectId("59c0fb1f3b6221e3d36173cd"),

: 0}

: ObjectId("59c0fb1f3b6221e3d3617431"),

: 0}

: ObjectId("59c0fb213b6221e3d3617751"),

: 0}

: ObjectId("59c0fb213b6221e3d36177b5"),

: 0}

: ObjectId("59c0fb213b6221e3d3617819"),

: 0}

: ObjectId("59c0fb233b6221e3d3617b39"),

: 0}

: ObjectId("59c0fb233b6221e3d3617b9d"),

: 0}

: ObjectId("59c0fb233b6221e3d3617c01"),

: 0}

: ObjectId("59c0fb253b6221e3d3617f21"),

: 0}

: ObjectId("59c0fb253b6221e3d3617f85"),

: 0}

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

: 500,

: 600,

: 700,

: 1500,
: 1600,
: 1700,
: 2500,
1 2600,
: 2700,
: 3500,
: 3600,
: 3700,
: 4500,
: 4600,
: 4700,
: 5500,

: 5600,

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

: 500,
1 600,

: 700,

: 1500,
: 1600,
: 1700,
: 2500,
1 2600,
: 2700,
: 3500,
: 3600,
: 3700,
: 4500,
: 4600,
: 4700,
: 5500,

: 5600,

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

: 500,
! 600,

: 700,

"hundred"
“hundred"”
“hundred"”
: 500,
1 600,
: 700,
: 500,
1 600,
: 700,
: 500,
1 600,
: 700,
: 500,
1 600,
: 700,
1 500,

: 600,

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 41/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : ObjectId("59c0fb253b6221e3d3617fe9"), "counter" : 5700, "tenthousand" : 5700, "thousand" : 700,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb263b6221e3d3618309"), "counter" : 6500, "tenthousand" : 6500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb273b6221e3d361836d"), "counter" : 6600, "tenthousand" : 6600, "thousand" : 600,
"hundred" : 0 }

Type "it" for more

find>

Important - Notez que le résultat démontre une alternance des valeurs de thousand, alternativement 500, 600 et 700.

P

Triez maintenant les résultats sur la valeur de thousand dans le sens croissant :

find>db.products.find({thousand : {$in: [500, 600, 700]}}).sort({thousand:1})

{ " id" : ObjectId("59c0fblb3b6221e3d3616b99"), "counter" : 500, "tenthousand" : 500, "thousand" : 500, "hundred"
: 0}

{ " id" : ObjectId("59c0fbld3b6221e3d3616f81"), "counter" : 1500, "tenthousand" : 1500, "“thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59cO0fb1f3b6221e3d3617369"), "counter" : 2500, "tenthousand" : 2500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb213b6221e3d3617751"), "counter" : 3500, "tenthousand" : 3500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb233b6221e3d3617b39"), "counter" : 4500, "tenthousand" : 4500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb253b6221e3d3617f21"), "counter" : 5500, "tenthousand" : 5500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb263b6221e3d3618309"), "counter" : 6500, "tenthousand" : 6500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb283b6221e3d36186f1"), "counter" : 7500, "tenthousand" : 7500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb2a3b6221e3d3618ad9"), "counter" : 8500, "tenthousand" : 8500, "thousand" : 500,

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 42/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

"hundred" : 0 }

{ " id" : ObjectId("59c0fb2c3b6221e3d3618ecl"), "counter" : 9500, "tenthousand" : 9500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb2e3b6221e3d36192a9"), "counter" : 10500, "tenthousand" : 500, "“thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb303b6221e3d3619691"), "counter" : 11500, "tenthousand" : 1500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb323b6221e3d3619a79"), "counter" : 12500, "tenthousand" : 2500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb343b6221e3d3619e61"), "counter" : 13500, "tenthousand" : 3500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb363b6221e3d361a249"), "counter" : 14500, "tenthousand" : 4500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb373b6221e3d361a631"), "counter" : 15500, "tenthousand" : 5500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb393b6221e3d361aal9"), "counter" : 16500, "tenthousand" : 6500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb3b3b6221e3d361ae01"), "counter" : 17500, "tenthousand" : 7500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59c0fb3d3b6221e3d361b1le9"), "counter" : 18500, "tenthousand" : 8500, "thousand" : 500,
"hundred" : 0 }

{ " id" : ObjectId("59cO0fb3f3b6221e3d361b5d1"), "counter" : 19500, "“tenthousand" : 9500, "thousand" : 500,
"hundred" : 0 }

Type "it" for more

find>

Dernierement, triez dans le sens décroissant :

find>db.products.find({thousand : {$in: [500, 600, 700]}}).sort({thousand:-1})

{ " id" : ObjectId("59cO0fblb3b6221e3d3616c61"), "counter" : 700, "tenthousand" : 700, "thousand" : 700, "hundred"
: 0}

{ " id" : ObjectId("59c0fbld3b6221e3d3617049"), "counter" : 1700, "tenthousand" : 1700, "thousand" : 700,
"hundred" : 0 }

{ " id" : ObjectId("59c0fblf3b6221e3d3617431"), "counter" : 2700, "tenthousand" : 2700, "thousand" : 700,

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

43/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Iliidll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll
"hundred"
{ Il_idll

: 0}

: ObjectId("59c0fb213b6221e3d3617819"),

: 0}

: ObjectId("59c0fb233b6221e3d3617cO1"),

: 0}

: ObjectId("59c0fb253b6221e3d3617fe9"),

: 0}

: ObjectId("59c0fb273b6221e3d36183d1"),

: 0}

: ObjectId("59c0fb293b6221e3d36187b9"),

: 0}

: ObjectId("59c0fb2b3b6221e3d3618bal"),

: 0}

: ObjectId("59c0fb2d3b6221e3d3618f89"),

: 0}

: ObjectId("59c0fb2e3b6221e3d3619371"),

: 0}

: ObjectId("59c0fb303b6221e3d3619759"),

: 0}

: ObjectId("59c0fb323b6221e3d3619b41"),

: 0}

: ObjectId("59c0fb343b6221e3d3619129"),

: 0}

: ObjectId("59c0fb363b6221e3d361a311"),

: 0}

: ObjectId("59c0fb383b6221e3d361a6t9"),

: 0}

: ObjectId("59cOfb3a3b6221e3d36laael"),

: 0}

: ObjectId("59c0Ofb3c3b6221e3d361laec9"),

: 0}

: ObjectId("59c0fb3e3b6221e3d361b2b1"),

: 0}

: ObjectId("59c0fb3f3b6221e3d361b699"),

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

"counter"

: 3700,
: 4700,
: 5700,
: 6700,
: 7700,
: 8700,
: 9700,
: 10700,
: 11700,
: 12700,
: 13700,
: 14700,
: 15700,
: 16700,
: 17700,
: 18700,

: 19700,

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

"tenthousand"

: 3700,
: 4700,
: 5700,
: 6700,
: 7700,
: 8700,
: 9700,
: 700,
: 1700,
: 2700,
: 3700,
: 4700,
: 5700,
: 6700,
: 7700,
: 8700,

: 9700,

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

"thousand"

1 700,
1 700,
: 700,
: 700,
1 700,
: 700,
1 700,
1 700,
: 700,
: 700,
: 700,
: 700,
: 700,
: 700,
: 700,
: 700,

: 700,

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 44/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

"hundred" : 0 }
Type "it" for more
find>

LAB #3 - Requétes sur la base movies

Préparation

Sortez du client mongo, puis télécharger a partir de la section Fichiers de ce cours le fichier au format JSON dont nous aurons besoin pour ce LAB :

* movies.json
o ce fichier contient la liste de films complets comprenant tous les noms et prénoms des artistes, répétés a chaque occurrence.

Création de base de données

Connectez-vous a MongoDB avec le client mongo et créez une base de données movies contenant une collection movies,

[root@centos7 ~]# mongo

MongoDB shell version: 3.2.16

connecting to: test

Server has startup warnings:

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten]

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096
processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.

test>use movies

switched to db movies

movies>db.createCollection("movies")

{ "ok" : 1}
movies>exit
bye

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 45/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Importer les données

Utilisez maintenant la commande mongoimport pour importer le fichier dans MongoDB :

[root@centos7 ~]# mongoimport -d movies -c movies --file movies.json --jsonArray
2017-09-20T11:19:44.012+0200 connected to: localhost
2017-09-20T11:19:44.122+0200 imported 88 documents

| Important - Notez que I'argument jsonArray indique a mongoimport qu'il s’agit d’un tableau d’objets a créer individuellement, et pas d'un

&% unique document JSON.

Re-connectez-vous a MongoDB en utilisant le client mongo :

[root@centos7 ~]# mongo

MongoDB shell version: 3.2.16

connecting to: test

Server has startup warnings:

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten]

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096

processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.
test>

En utilisant la base de données movies, vérifiez que vous pouvez trouver les 88 documents :

movies>db.movies.count ()
88

Exercices

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 46/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Trouvez maintenant les informations suivantes :

e tous les titres,

le résumé de Spider-Man,

le metteur en scene de Gladiator,

les titres des films avec Kirsten Dunst,

les films ayant un résumé,

les films qui ne sont ni des drames ni des comédies,

les titres des films et les noms des acteurs,

les films ou Clint Eastwood est acteur mais pas réalisateur.

Corrigés
Tous les titres

movies>db.movies.find({}, {"title": 1})

{ " id" : "movie:1", "title" : "Vertigo" }

{ " id" : "movie:2", "title" : "Alien" }

{ " id" : "movie:3", "title" : "Titanic" }

{ " id" : "movie:4", "title" : "Sacrifice" }

{ " id" : "movie:5", "title" : "Volte/Face" }

{ " id" : "movie:6", "title" : "Sleepy Hollow" }

{ " id" : "movie:7", "title" : "American Beauty" }

{ " id" : "movie:8", "title" : "Impitoyable" }

{ " id" : "movie:9", "title" : "Gladiator" }

{ " id" : "movie:10", "title" : "Blade Runner" }

{ " id" : "movie:1l1l", "title" : "Piege de cristal" }

{ " id" : "movie:12", "title" : "58 minutes pour vivre" }
{ " id" : "movie:13", "title" : "Van Gogh" }

{ " id" : "movie:14", "title" : "Seven" }

{ " id" : "movie:15", "title" : "Twelve Monkeys" }

{ " id" : "movie:16", "title" : "Le last name de la rose" }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 47/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : "movie:17", "title" : "Pulp fiction" }

{ " id" : "movie:18", "title" : "Mary a tout prix" }

{ " id" : "movie:19", "title" : "Terminator" }

{ " id" : "movie:20", "title" : "Les dents de la mer" }
Type "it" for more

movies>

Le résumé de Spider-Man

movies>db.movies.find({"title": "Spider-Man"}, {"summary": 1})

{ " id" : "movie:47", "summary" : "Orphelin, Peter Parker est élevé par sa tante May et son oncle Ben dans le
quartier Queens de New York. Tout en poursuivant ses études a l'université, il trouve un emploi de photographe au
journal Daily Bugle. Il partage son appartement avec Harry Osborn, son meilleur ami, et réve de séduire la belle
Mary Jane.Cependant, apres avoir été mordu par une araignée génétiquement modifiée, Peter voit son agilité et sa
force s'accroitre et se découvre des pouvoirs surnaturels. Devenu Spider-Man, il décide d'utiliser ses nouvelles
capacités au service du bien.Au méme moment, le pere de Harry, le richissime industriel Norman Osborn, est
victime d'un accident chimique qui a démesurément augmenté ses facultés intellectuelles et sa force, mais l'a
rendu fou. Il est devenu le Bouffon Vert, une créature démoniaque qui menace la ville. Entre lui et Spider-Man,
une lutte sans merci s'engage." }

Le metteur en scéne de Gladiator

movies>db.movies.find({"title": "Gladiator"}, {"director": 1})
{ " id" : "movie:9", "director" : { " id" : "artist:4", "last name" : "Scott", "first name" : "Ridley",
"birth date" : "1937" } }

Les titres des films avec Kirsten Dunst

movies>db.movies.find({"actors.last name": "Dunst"}, {"title": 1})

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 48/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : "movie:67", "title" : "Marie Antoinette" }

Les films ayant un résumé

movies>db.movies.find({"summary": {$exists: true}}, {"title": 1})

{ " id" : "movie:1", "title" : "Vertigo" }

{ " id" : "movie:2", "title" : "Alien" }

{ " id" : "movie:3", "title" : "Titanic" }

{ " id" : "movie:4", "title" : "Sacrifice" }

{ " id" : "movie:5", "title" : "Volte/Face" }

{ " id" : "movie:6", "title" : "Sleepy Hollow" }

{ " id" : "movie:7", "title" : "American Beauty" }

{ " id" : "movie:8", "title" : "Impitoyable" }

{ " id" : "movie:9", "title" : "Gladiator" }

{ " id" : "movie:10", "title" : "Blade Runner" }

{ " id" : "movie:1ll", "title" : "Piege de cristal" }

{ " id" : "movie:12", "title" : "58 minutes pour vivre" }
{ " id" : "movie:13", "title" : "Van Gogh" }

{ " id" : "movie:14", "title" : "Seven" }

{ " id" : "movie:15", "title" : "Twelve Monkeys" }

{ " id" : "movie:16", "title" : "Le last name de la rose" }
{ " id" : "movie:17", "title" : "Pulp fiction" }

{ " id" : "movie:18", "title" : "Mary a tout prix" }

{ " id" : "movie:19", "title" : "Terminator" }

{ " id" : "movie:20", "title" : "Les dents de la mer" }
Type "it" for more

Les films qui ne sont ni des drames ni des comédies

movies>db.movies.find({"genre": {$nin: ["Drame", "Comédie"]}}, {"title": 1, "genre": 1})
{ " id" : "movie:1", "title" : "Vertigo", "genre" : "drama" }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 49/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

{ " id" : "movie:2", "title" : "Alien", "genre" : "Science-fiction" }

{ " id" : "movie:3", "title" : "Titanic", "genre" : "drama" }

{ " id" : "movie:4", "title" : "Sacrifice", "genre" : "drama" }

{ " id" : "movie:5", "title" : "Volte/Face", "genre" : "Action" }

{ " id" : "movie:6", "title" : "Sleepy Hollow", "genre" : "Fantastique" }

{ " id" : "movie:8", "title" : "Impitoyable", "genre" : "Western" }

{ " id" : "movie:9", "title" : "Gladiator", "genre" : "drama" }

{ " id" : "movie:10", "title" : "Blade Runner", "genre" : "Action" }

{ " id" : "movie:1l1l", "title" : "Piege de cristal", "genre" : "Action" }

{ " id" : "movie:12", "title" : "58 minutes pour vivre", "genre" : "Action" }
{ " id" : "movie:13", "title" : "Van Gogh", "genre" : "drama" }

{ " id" : "movie:14", "title" : "Seven", "genre" : "crime" }

{ " id" : "movie:15", "title" : "Twelve Monkeys", "genre" : "Science-fiction" }
{ " id" : "movie:16", "title" : "Le last name de la rose", "genre" : "crime" }
{ " id" : "movie:17", "title" : "Pulp fiction", "genre" : "Action" }

{ " id" : "movie:19", "title" : "Terminator", "genre" : "Science-fiction" }

{ " id" : "movie:20", "title" : "Les dents de la mer", "genre" : "Horreur" }

{ " id" : "movie:21", "title" : "Le silence des agneaux", "genre" : "crime" }
{ " id" : "movie:22", "title" : "Godzilla", "genre" : "Action" }

Type "it" for more

Les titres des films et les noms des acteurs

movies>db.movies.find ({}, {"title": 1, "actors.first name": 1, "actors.last name": 1})

{ " id" : "movie:1", "title" : "Vertigo", "actors" : [{ "first name" : "James", "last name" : "Stewart" }, {
"first name" : "Kim", "last name" : "Novak" }, { "first name" : "Arthur", "last name" : "Pierre" }] }

{ " id" : "movie:2", "title" : "Alien", "actors" : [{ "first name" : "Sigourney", "last name" : "Weaver" }] }

{ " id" : "movie:3", "title" : "Titanic", "actors" : [{ "first name" : "Kate", "last name" : "Winslet" }, {
“first name" : "Leonardo", "last name" : "DiCaprio" }] }

{ " id" : "movie:4", "title" : "Sacrifice", "actors" : [] }

{ " id" : "movie:5", "title" : "Volte/Face", "actors" : [{ "first name" : "John", "last name" : "Travolta" }, {
"first name" : "Nicolas", "last name" : "Cage" }] }

{ " id" : "movie:6", "title" : "Sleepy Hollow", "actors" : [{ "first name" : "Johnny", "last name" : "Depp" }, {

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 50/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7
"first name" “Christina", "last name" "Ricci" }, { "first name" "Christopher", "last name" "Walken" }] }
{ " id" "movie:7", "title" "American Beauty", "actors" [{ "first name" "Kevin", "last name" “Spacey"
Y, { "first _name" “Anette", "last name" “Bening" } 1 }

{ " id" "movie:8", "title" “"Impitoyable", "actors" [{ "first name" “Clint", "last name" "Eastwood" },
{ "first name" "Gene", "last name" "Hackman" }, { "first name" "Morgan", "last name" "Freeman" }] }

{ " id" "movie:9", "title" "Gladiator", "actors" [{ "first name" "Russell”, "last name" "Crowe" }, {
"first name" "Adam", "last name" "Baldwin" }, { "first name" "Ryan", "last name" "ONeal" }, {

“first name" "Marisa", "last name" "Berenson" }] }

{ " id" "movie:10", "title" "Blade Runner", "actors" [{ "first name" "Harrison", "last name" "Ford" 1},
{ "first name" "Rutger", "last name" "Hauer" } 1 }

{ " id" "movie:11", "title" "Piege de cristal", "actors" [{ "first name" "Bruce", "last name" "Willis"
F1}

{ " id" "movie:12", "title" "58 minutes pour vivre", "actors" [{ "first name" “Bruce", "last name"
"Willis" }] }

{ " id" "movie:13", "title" "Van Gogh", "actors" [{ "first name" “Jacques", "last name" "Dutronc" } 1]
}

{ " id" "movie: 14", "title" "Seven", "actors" [{ "first name" "Kevin", "last name" "Spacey" }, {
"first name" "Morgan", "last name" “"Freeman" }, { "first name" “Brad", "last name" "Pitt" } 1 }

{ " id" "“movie:15", "title" “Twelve Monkeys", "actors" [{ "first name" “Bruce", "last name" "Willis" }
1}

{ " id" "movie:16", "title" "Le last name de la rose", "actors" [{ "first name" "Sean", "last name"

“Connery" }, { "first name"

"Christian", "last name"

"Slater" } 1 }

{ " id" "movie:17", "title" "Pulp fiction", "actors" [{ "first name" "John", "last name" "Travolta" },
{ "first _name" "Bruce", "last name" "Willis" }, { "first name" “Quentin”, "last name" “Tarantino" }, {
“first name" “Samuel L.", "last name" “Jackson" }, { "first name" "Rosanna"”, "last name" "Arquette"” }, {
“first name" “Uma", "last name" “Thurman" }, { "“first name" “Christopher", "last name" "Walken" }, {
"first name" "Harvey", "last name" "Keitel" }, { "first name" "Tim", "last name" "Roth" } 1 }

{ " id" "movie:18", "title" "Mary a tout prix", "actors" [{ "first name" "Cameron", "last name" "Diaz"
Y, { "first name" "Mat", "last name" "Dillon" }] }

{ " id" "movie:19", "title" “Terminator", "actors" [{ "first name" "Arnold", "last name"
"Schwartzenegger" } 1 }

{ " id" “movie:20", "title" "Les dents de la mer", "actors" [{ "first _name" "Roy", "last name"

“Scheider" }, { "first name"
"Dreyfus" }] }

"Robert", "last name"

“Shaw" }, { "first name" "Richard", "last name"

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 51/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Type "it" for more
Les films ou Clint Eastwood est acteur mais pas réalisateur

movies>db.movies.find({"actors.last name": "Eastwood", "director.last name": {$ne: "Eastwood"}}, {"title": 1})
{ " id" : "movie:32", "title" : "Le bon, la brute et le truand" }

LAB #4 - Jointures

Préparation

Sortez du client mongo, puis téléchargez a partir de la section Fichiers de ce cours les deux fichiers au format JSON dont nous aurons besoin pour ce
LAB :

e movies_ref.json

o ce fichier contient la liste des films avec références, les identifiants des artistes, et impose donc d'effectuer des jointures
e artists.json

o ce fichier contient la liste des artistes.

Création des bases de données

Connectez-vous a MongoDB avec le client mongo et créez une base de données moviesref contenant deux collections movies et artists.

[root@centos7 ~]# mongo

MongoDB shell version: 3.2.16

connecting to: test

Server has startup warnings:

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten]

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 52/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.
movies>use moviesref

switched to db moviesref

moviesref>db.createCollection("movies")

{ "ok" : 1}

moviesref>db.createCollection("artists")

{ "ok" : 11}

moviesref>exit

bye

Importer les données

Utilisez maintenant la commande mongoimport pour importer les fichiers dans MongoDB :

[root@centos7 ~]# mongoimport -d moviesref -c movies --file movies-refs.json --jsonArray
2017-09-20T11:19:58.697+0200 connected to: localhost

2017-09-20T11:19:58.721+0200 imported 88 documents

[root@centos7 ~]# mongoimport -d moviesref -c artists --file artists.json --jsonArray
2017-09-20T11:20:14.384+0200 connected to: localhost

2017-09-20T11:20:14.405+0200 imported 206 documents

| Important - Notez que I'argument jsonArray indique a mongoimport qu'il s’agit d’un tableau d’objets a créer individuellement, et pas d'un
£.% % unique document JSON.

Re-connectez-vous a MongoDB en utilisant le client mongo :

[root@centos7 ~]# mongo
MongoDB shell version: 3.2.16
connecting to: test

Server has startup warnings:

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 53/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten]

2017-09-19T11:51:43.992+0200 I CONTROL [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 4096
processes, 64000 files. Number of processes should be at least 32000 : 0.5 times number of files.

test>use moviesref

switched to db moviesref

Effectuer la jointure du coté client

Le serveur MongoDB ne sait pas effectuer de jointures. Pour cette raison celles-ci doivent étre mises en place du c6té client. Cela revient
essentiellement a appliquer I'algorithme de jointures par boucle imbriquées en stockant des données temporaires dans des structures de données sur
le client, et en effectuant des échanges réseaux entre le client et le serveur.

La premiere étape dans la jointure coté client consiste a chercher I'artiste Clint Eastwood et a le stocker dans I'espace mémoire du client :

moviesref>eastwood = db.artists.findOne({"first name": "Clint", "last name": "Eastwood"})
{

" id" : "artist:20",

“last name" : "Eastwood",

"first name" : "Clint",

"birth date" : "1930"
}

Ensuite il convient d'utiliser cette “variable” pour rechercher dans la collection movies :

moviesref>db.movies.find({"director. id": eastwood[' id']}, {"title": 1})

{ " id" : "movie:8", "title" : "Impitoyable" }
{ " id" : "movie:26", "title" : "Les pleins pouvoirs" }
{ " id" : "movie:63", "title" : "Million Dollar Baby" }

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 54/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

MapReduce

Définition

Etant donné une collection de documents on applique un traitement en deux phases:

La premiere phase appelée map

Une fonction est appliquée a chaque document de la collection et produit une valeur placée dans un accumulateur.
La seconde phase appelée reduce

Les valeurs placées dans I'accumulateur sont traitées par une fonction d'agrégation reduce ,produisant une valeur finale.

Un exemple simple peut étre vu en considérant la requéte SQL suivante :
select count(*) from Collection

Dans ce cas :

* |la phase map produit une valeur de 1 et la place dans I'accumulateur pour chague document dans la collection,
* |a phase reduce calcule la somme pour produire un résultat.

En allant un peu plus loins, considérez la requéte SQL suivante :
select count(*) from Collection group by annee

Dans ce cas, les valeurs produites par le map sont partionnées en groupes ou chaque groupe représente une année. Le map produit donc des paires
groupe, valeur ou année, valeur.

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 55/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Revenons maintenant a notre base de données de films. Notre but est de produire un document par réalisateur contenant la liste des films réalisés par
ce réalisateur :

* la phase map : un groupe doit étre créé par réalisateur contenant les films réalisés par ce dernier,
* la phase reduce : la création du document final.

Par exemple la phase map est la définition d'une variable mapRealisateur contenant une fonction. Saisissez donc cette commande dans l'interface
du client mongo :

movies>var mapRealisateur = function() {
emit(this.director. id, this.title);
I

movies>

| Important - La fonction contient I'instruction emit qui produit une paire clef:valeur constituée de I'identifiant du réalisateur et du titre
£2% % dufilm. Le mot clef this indique le document actuel.

La phase reduce contient une fonction, reduceRealisateur, qui prend deux arguments directorld, I'identifiant du groupe auquel elle s’applique, et la
liste des valeurs produites par le map sous forme d'un tableau javascript. Saisissez donc cette commande dans l'interface du client mongo :

movies>var reduceRealisateur = function(directorId, titres) {
var res = new Object();
res.director = directorld;
res.films = titres;
return res;
b

movies>

Important - La fonction construit la valeur de résultat comme un objet res auquel on affecte deux propriétés: director et titres.

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 56/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

Pour lancer le traitement, il convient d'exécuter la commande suivante qui appelle la fonction mapReduce sur la collection movies :

movies>db.movies.mapReduce(mapRealisateur, reduceRealisateur, {out: {"inline": 1}})

{
"results" : [
{
" id" : "artist:1",
"value" : "Marie Antoinette"
b
{
" id" : "artist:10",
"value" : "Volte/Face"
b
{
" id" : "artist:101",
"value" : {
"director" : "artist:101",
"films" : [
"Eyes Wide Shut",
“Shining"
]
}
I
{
" id" : "artist:111",
"value" : {
"director" : "artist:111",
"films" : [
"Jeanne d'Arc",
"Le cinquieme élément",
"Léon",
"Nikita",
“Le grand bleu"
]

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 57/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

}
}
{
" id" : "artist:122",
"value" : {
"director" : "artist:122",
"films" : [
"King of New York",
"Bad Lieutenant"
]
}
s
{
" id" : "artist:13",
"value" : "Sleepy Hollow"
},
{
" id" : "artist:135",
"value" : "The Matrix Revolutions"
¥,
{
" id" : "artist:138",
"value" : "De bruit et de fureur"
s
{
" id" : "artist:142",
"value" : "Usual suspects”
},
{
" id" : "artist:168",
"value" : "Une journée en enfer"
},
{
" id" : "artist:17",

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22 58/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

"value" : {
"director" : "artist:17",
"films" : [
"American Beauty",
"Skyfall"
]
}

Important - Le premier paramétre est la fonction de map, le second la fonction de reduce, et le troisieme indique la sortie, ici I'écran.

F [
-

MapReduce peut prendre plusieurs options dont une s'avere particuluierement utile, a savoir le résultat d'une requéte :

movies>db.movies.mapReduce(mapRealisateur, reduceRealisateur,
{out: {"inline": 1}, query: {"country": "USA"}})
{

"results" : [

{
" id" : "artist:1",
"value" : "Marie Antoinette"

b

{
" id" : "artist:10",
"value" : "Volte/Face"

b,

{
" id" : "artist:101",
"value" : "Eyes Wide Shut"

I

{

www.ittraining.team - https://ittraining.team/

2026/02/04 15:22

59/61

LRF151 - Administration du Serveur MongoDB sous RHEL 7

" id" : "artist:122",
"value" : {
"director" : "artist:122",
"films" : [
"King of New York",
"Bad Lieutenant"

]
}
" id" : "artist:13",
"value" : "Sleepy Hollow"
" id" : "artist:135",
"value" : "The Matrix Revolutions"
" id" : "artist:142",
"value" : "Usual suspects”
" id" : "artist:168",
"value" : "Une journée en enfer"
" id" : "artist:17",
"value" : {
"director" : "artist:17",
"films" : [
"American Beauty",
"Skyfall"
]
}

www.ittraining.team -

https://ittraining.team/

2026/02/04 15:22 60/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

b

Références

e https://www.mongodb.com/fr

e https://fr.wikipedia.org/wiki/MongoDB

e http://blog.ippon.fr/2013/11/19/mongodb-est-moins-rapide-et-alors/

¢ http://www.next-decision.fr/les-editeurs/stockage/mongo-db

e https://docs.mongodb.com/manual/release-notes/

e http://b3d.bdpedia.fr/mongodb.html

e https://openclassrooms.com/courses/guide-de-demarrage-pour-utiliser-mongodb

e http://blog.xebia.fr/2010/12/15/mongodb-en-pratique/

¢ http://www.slideshare.net/marksmalleyl/json-the-argonauts-and-mark

e https://fr.wikipedia.org/wiki/BSON

e https://blog.michaelckennedy.net/2013/04/22/a-roundup-of-mongodb-management-tools-nosql-database/
e http://rockmongo.com/

* http://genghisapp.com/

e http://b3d.bdpedia.fr/mongodb.html

e http://blog.xebia.fr/2010/12/15/mongodb-en-pratique/

e https://api.mongodb.com/java/current/

e http://javarticles.com/2016/01/inserting-document-using-mongodb-java-driver.html
e https://www.mongodb.com/blog/post/introducing-new-c-driver

e http://mongoc.org/libmongoc/1.2.2/tutorial.html

<html>

Copyright © 2004-2017 I2TCH LIMITED.

</html>

www.ittraining.team - https://ittraining.team/

https://www.mongodb.com/fr
https://fr.wikipedia.org/wiki/MongoDB
http://blog.ippon.fr/2013/11/19/mongodb-est-moins-rapide-et-alors/
http://www.next-decision.fr/les-editeurs/stockage/mongo-db
https://docs.mongodb.com/manual/release-notes/
http://b3d.bdpedia.fr/mongodb.html
https://openclassrooms.com/courses/guide-de-demarrage-pour-utiliser-mongodb
http://blog.xebia.fr/2010/12/15/mongodb-en-pratique/
http://www.slideshare.net/marksmalley1/json-the-argonauts-and-mark
https://fr.wikipedia.org/wiki/BSON
https://blog.michaelckennedy.net/2013/04/22/a-roundup-of-mongodb-management-tools-nosql-database/
http://rockmongo.com/
http://genghisapp.com/
http://b3d.bdpedia.fr/mongodb.html
http://blog.xebia.fr/2010/12/15/mongodb-en-pratique/
https://api.mongodb.com/java/current/
http://javarticles.com/2016/01/inserting-document-using-mongodb-java-driver.html
https://www.mongodb.com/blog/post/introducing-new-c-driver
http://mongoc.org/libmongoc/1.2.2/tutorial.html

2026/02/04 15:22 61/61 LRF151 - Administration du Serveur MongoDB sous RHEL 7

From:
https://ittraining.team/ - wwwi.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:debian:6:senior:1131

Last update: 2020/02/21 07:43

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:debian:6:senior:l131

	LRF151 - Administration du Serveur MongoDB sous RHEL 7
	Présentation
	Qu'est-ce le NOSQL ?
	Présentation de MongoDB
	Fonctionnalités de MongoDB
	Historique du Projet
	Versions Majeures
	Exécutables
	Avantages et Inconvénients
	Avantages
	Inconvénients

	Installation de MongoDB
	Configuration

	Le client Mongo
	Autres Clients Mongodb
	Interfaces graphiques
	RoboMongo
	RockMongo
	Genghis

	Les API pour MongoDB (Application Programming Interface)
	Pour le langage Java
	Pour le langage C++

	Structure des Données
	Notions de Documents
	Notions de Collections
	Le Format JSON
	Le Format BSON
	Comparaison BSON/JSON
	Format d'un Document BSON

	Le Langage des Requêtes
	Requêtes de base
	Se placer dans une base de données/Créer une base de données
	Créer une collection
	Visualiser la liste des collections
	Inserer un document BSON dans une collection
	Affecter un identifiant explicitement
	Remplacer un document
	Modifier des champs d’un document
	Compter le nombre de documents dans la collection
	Supprimer un document
	Supprimer un champ dans un document
	Supprimer une collection
	Trier des documents
	Rechercher des documents dans une collection

	Projections
	Opérateurs ensemblistes
	Opérateurs booléens
	Comparaison de la structure des requêtes entre SQL/MongoDB
	Tables/Collections
	CREATE TABLE
	DROP TABLE
	ALTER TABLE
	CREATE INDEX

	Rows/documents
	INSERT
	SELECT
	EXPLAIN SELECT
	UPDATE
	DELETE FROM

	LAB #1 - Utilisation de requêtes de base
	Création d'une collection
	Création de documents
	Recherche de documents
	Suppression d'un document

	LAB #2 - Rechercher, filtrer et trier
	La Requête find()
	Critères de recherche
	Utiliser des Opérandes

	Filtrer les champs
	Trier

	LAB #3 - Requêtes sur la base movies
	Préparation
	Création de base de données
	Importer les données

	Exercices
	Corrigés
	Tous les titres
	Le résumé de Spider-Man
	Le metteur en scène de Gladiator
	Les titres des films avec Kirsten Dunst
	Les films ayant un résumé
	Les films qui ne sont ni des drames ni des comédies
	Les titres des films et les noms des acteurs
	Les films où Clint Eastwood est acteur mais pas réalisateur

	LAB #4 - Jointures
	Préparation
	Création des bases de données
	Importer les données

	Effectuer la jointure du côté client

	MapReduce
	Définition
	La première phase appelée map
	La seconde phase appelée reduce

	Références

