
2026/02/04 12:12 1/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Niveau : Utilisateur Numéro de la Leçon Dernière Modification
1/4 <progrecss 5/5 style=inline /> 2020/01/30 03:28

Le Ligne de Commande

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.I). Il est utilisé comme interface pour donner des
instructions ou commandes au système d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

Shell Nom Date de Sortie Inventeur Commande Commentaires
tsh Thompson Shell 1971 Ken Thompson sh Le premier shell
sh Bourne Shell 1977 Stephen Bourne sh Le shell commun à tous les Unix. Sous Linux : /bin/sh
csh C-Shell 1978 Bill Joy csh Le shell BSD. Sous Linux : /bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous Linux : /bin/tcsh
ksh Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous Linux : /bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous Linux : /bin/bash

Cette unité concerne l'utilisation du shell bash sous Linux. Cependant, il peut aussi être utile aux utilisateurs de ksh sous UNIX car les commandes
sont pratiquement identiques.

Le shell /bin/bash permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaînes de caractères



2026/02/04 12:12 2/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Utiliser les fonctions

Une commande commence toujours par un mot clef. Ce mot clef est interpréter par le shell selon le type de commande et dans l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type :

root@debian:~# type cd
cd est une primitive du shell

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /bin, /sbin, /usr/bin ou /usr/sbin :

root@debian:~# type ifconfig
ifconfig est /sbin/ifconfig

Les alias

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
qu'à l'environnement de l'utilisateur :

root@debian:~# type ls
ls est /bin/ls
root@debian:~# exit
logout
trainee@debian:~$ type ls



2026/02/04 12:12 3/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

ls est un alias vers « ls --color=auto »

<note important> Notez que dans ce cas l'alias ls est en effet un alias qui utilise la commande ls elle-même. </note>

Un alias se définit en utilisant la commande alias :

trainee@debian:~$ alias dir='ls -l'
trainee@debian:~$ dir
total 32
-rw-r--r--. 1 trainee trainee    0  8 nov.  15:06 aac
-rw-r--r--. 1 trainee trainee    0  8 nov.  15:06 abc
-rw-r--r--. 1 trainee trainee    0  8 nov.  15:06 bca
drwxr-xr-x. 2 trainee trainee 4096 28 juil. 09:32 Bureau
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Documents
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Images
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Modèles
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Musique
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Public
drwxr-xr-x. 2 trainee trainee 4096 14 nov.  16:06 Téléchargements
drwxr-xr-x. 2 trainee trainee 4096 24 avril  2011 Vidéos
-rw-r--r--. 1 trainee trainee    0  8 nov.  15:06 xyz

<note important> Notez que la commande dir existe vraiment. Le fait de créer un alias qui s'appelle dir implique que l'alias sera exécuté à la place de
la commande dir. </note>

La liste des alias définis peut être visualisée en utilisant la commande alias :

trainee@debian:~$ alias
alias dir='ls -l'
alias ls='ls --color=auto'

<note important> Notez que cette liste contient, sans distinction, l'alias ls défini dans les fichiers de démarrage du système ainsi que l'alias dir créé
par trainee qui n'est que disponible à trainee dans le terminal courant. </note>



2026/02/04 12:12 4/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Pour forcer l'exécution d'une commande et non l'alias il faut faire précéder la commande par le caractère \ :

trainee@debian:~$ \dir
aac  bca     Documents  Modèles  Public          Vidéos
abc  Bureau  Images Musique  Téléchargements  xyz

Pour supprimer un alias, il convient d'utiliser la commande unalias :

trainee@debian:~$ unalias dir
trainee@debian:~$ dir
aac  bca     Documents  Modèles  Public          Vidéos
abc  Bureau  Images Musique  Téléchargements  xyz

Le shell des utilisateurs est défini par root dans le dernier champs du fichier /etc/passwd :

trainee@debian:~$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh



2026/02/04 12:12 5/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

libuuid:x:100:101::/var/lib/libuuid:/bin/sh
messagebus:x:101:103::/var/run/dbus:/bin/false
Debian-exim:x:102:104::/var/spool/exim4:/bin/false
statd:x:103:65534::/var/lib/nfs:/bin/false
avahi:x:104:107:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
usbmux:x:105:46:usbmux daemon,,,:/home/usbmux:/bin/false
Debian-gdm:x:106:114:Gnome Display Manager:/var/lib/gdm3:/bin/false
saned:x:107:116::/home/saned:/bin/false
hplip:x:108:7:HPLIP system user,,,:/var/run/hplip:/bin/false
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/bash
vboxadd:x:999:1::/var/run/vboxadd:/bin/false

Cependant l'utilisateur peut changer son shell grâce à la commande chsh. Les shells disponibles aux utilisateurs du système sont inscrits dans le
fichier /etc/shells. Saisissez la commande cat /etc/shells :

trainee@debian:~$ cat /etc/shells
# /etc/shells: valid login shells
/bin/csh
/bin/sh
/usr/bin/es
/usr/bin/ksh
/bin/ksh
/usr/bin/rc
/usr/bin/tcsh
/bin/tcsh
/usr/bin/esh
/bin/dash
/bin/bash
/bin/rbash

Ensuite utilisez la commande echo pour afficher le shell actuel de trainee :

trainee@debian:~$ echo $SHELL



2026/02/04 12:12 6/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

/bin/bash

Changez ensuite le shell de trainee en utilisant la commande chsh en indiquant la valeur de /bin/sh pour le nouveau shell :

trainee@debian:~$ chsh
Mot de passe :
Changement d'interpréteur de commandes initial pour trainee
Entrez la nouvelle valeur ou « Entrée » pour conserver la valeur proposée
    Interpréteur de commandes initial [/bin/bash]: /bin/sh

<note important> Notez que le mot de passe saisi ne sera pas visible. </note>

Vérifiez ensuite le shell actif pour trainee :

trainee@debian:~$ echo $SHELL
/bin/bash

Dernièrement contrôlez le shell stipulé dans le fichier /etc/passwd pour trainee :

trainee@debian:~$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee,,,:/home/trainee:/bin/sh

<note important> Vous noterez que le shell actif est toujours /bin/bash tandis que le shell stipulé dans le fichier /etc/passwd est le /bin/sh. Le shell
/bin/sh ne deviendra le shell actif de trainee que lors de sa prochaine connexion au système. </note>

Modifiez votre shell à /bin/bash de nouveau en utilisant la commande chsh :

trainee@debian:~$ chsh
Mot de passe :
Changement d'interpréteur de commandes initial pour trainee
Entrez la nouvelle valeur ou « Entrée » pour conserver la valeur proposée
    Interpréteur de commandes initial [/bin/sh]: /bin/bash

<note important> Notez que le mot de passe saisi ne sera pas visible. </note>



2026/02/04 12:12 7/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le Prompt

Le prompt d'un utilisateur dépend de son statut :

$ pour un utilisateur normal
# pour root

Rappeler des Commandes

Le shell /bin/bash permet le rappel des dernières commandes saisies. Afin de connaître la liste des commandes mémorisées, utilisez la commande
history :

trainee@debian:~$ history
  ...
  168  ls
  169  history
  170  cat /etc/profile
  171  ls
  172  ls -la
  173  cat .bashrc
  174  cat .profile
  175  cat /etc/bash.bashrc
  176  echo $HISTSIZE
  177  man history
  178  echo $HISTSIZE
  179  echo $HISTFILESIZE
  180  ls -la
  181  vi .bashrc
  182  man bash
  183  history

Il est aussi possible de rappeler la dernière commande de l'historique en utilisant les caractères !!:



2026/02/04 12:12 8/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@debian:~$ ls
aac  bca     Documents  Modèles  Public           Vidéos
abc  Bureau  Images     Musique  Téléchargements  xyz
trainee@debian:~$ !!
ls
aac  bca     Documents  Modèles  Public           Vidéos
abc  Bureau  Images     Musique  Téléchargements  xyz

Vous pouvez rappeler une commande spécifique de l'historique en utilisant le caractère ! suivi du numéro de la commande à rappeler :

trainee@debian:~$ !172
ls -la
total 216
drwxr-xr-x. 34 trainee trainee  4096  8 déc.  11:26 .
drwxr-xr-x.  3 root    root     4096 24 avril  2011 ..
-rw-r--r--.  1 trainee trainee     0  8 nov.  15:06 aac
-rw-r--r--.  1 trainee trainee     0  8 nov.  15:06 abc
drwx------.  3 trainee trainee  4096 28 juil. 09:18 .adobe
-rw-------.  1 trainee trainee  1923 28 nov.  15:14 .bash_history
-rw-r--r--.  1 trainee trainee   220 24 avril  2011 .bash_logout
-rw-r--r--.  1 trainee trainee  3206  8 déc.  11:24 .bashrc
-rw-r--r--.  1 trainee trainee     0  8 nov.  15:06 bca
drwxr-xr-x.  2 trainee trainee  4096 28 juil. 09:32 Bureau
drwx------.  3 trainee trainee  4096 28 juil. 09:29 .cache
drwxr-xr-x.  8 trainee trainee  4096 28 juil. 09:30 .config
drwx------.  3 trainee trainee  4096 24 avril  2011 .dbus
-rw-r--r--.  1 trainee trainee    48  8 déc.  10:41 .dmrc
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Documents
-rw-------.  1 trainee trainee    16 28 juil. 09:15 .esd_auth
drwx------.  3 trainee trainee  4096 28 juil. 09:27 .evolution
drwxr-xr-x.  2 trainee trainee  4096  3 oct.  16:30 .fontconfig
drwx------.  5 trainee trainee  4096  8 déc.  10:41 .gconf
drwx------.  2 trainee trainee  4096  8 déc.  11:05 .gconfd
-rw-r-----.  1 trainee trainee     0  5 oct.  15:51 .gksu.lock



2026/02/04 12:12 9/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

drwx------.  9 trainee trainee  4096 18 oct.  19:48 .gnome2
drwx------.  2 trainee trainee  4096 28 juil. 09:14 .gnome2_private
drwx------.  2 trainee trainee  4096 24 avril  2011 .gnupg
drwxr-xr-x.  2 trainee trainee  4096  4 oct.  18:55 .gstreamer-0.10
-rw-r--r--.  1 trainee trainee   168  8 déc.  10:41 .gtk-bookmarks
drwx------.  2 trainee trainee  4096 24 avril  2011 .gvfs
-rw-------.  1 trainee trainee  6360  8 déc.  10:41 .ICEauthority
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Images
drwxr-xr-x.  3 trainee trainee  4096 28 juil. 09:18 .java
-rw-------.  1 trainee trainee    41  8 déc.  11:16 .lesshst
drwx------.  3 trainee trainee  4096 27 avril  2011 .local
drwx------.  3 trainee trainee  4096 28 juil. 09:20 .macromedia
drwx------.  3 trainee trainee  4096 28 juil. 09:27 .mission-control
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Modèles
drwx------.  4 trainee trainee  4096 28 juil. 09:14 .mozilla
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Musique
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 .nautilus
drwx------.  3 trainee trainee  4096 28 juil. 09:29 .pki
-rw-r--r--.  1 trainee trainee   675 24 avril  2011 .profile
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Public
-rw-------.  1 trainee trainee   218  2 déc.  10:21 .recently-used.xbel
drwxr-xr-x.  2 trainee trainee  4096  3 oct.  13:44 .shcache
drwxr-xr-x.  2 trainee trainee  4096 14 nov.  16:06 Téléchargements
drwx------.  3 trainee trainee  4096 28 juil. 09:29 .thumbnails
drwx------.  2 trainee trainee  4096 24 avril  2011 .update-notifier
drwxr-xr-x.  2 root    root     4096  3 oct.  16:29 .ure
-rw-r--r--.  1 trainee trainee     5  8 déc.  10:41 .vboxclient-display.pid
-rw-r--r--.  1 trainee trainee     5  8 déc.  10:41 .vboxclient-seamless.pid
drwxr-xr-x.  2 trainee trainee  4096 24 avril  2011 Vidéos
-rw-------.  1 trainee trainee 20631  8 déc.  11:26 .xsession-errors
-rw-------.  1 trainee trainee  1324  2 déc.  13:47 .xsession-errors.old
-rw-r--r--.  1 trainee trainee     0  8 nov.  15:06 xyz

L'historique des commandes est en mode emacs par défaut. De ce fait, le rappel de la dernière commande se fait en utilisant la touche [Flèche vers



2026/02/04 12:12 10/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

le haut] ou bien les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant la touche [Flèche vers le bas] ou bien les touches
[CTRL]-[N] :

Caractère de Contrôle Définition
[CTRL]-[P] (= flèche vers le haut) Rappelle la commande précédente
[CTRL]-[N] (= flèche vers le bas) Rappelle la commande suivante

Sous Debian, le paramétrage de la fonction du rappel des commandes est défini par des variables système. Par exemple le nombre de commandes
mémorisées est défini par la variable $HISTSIZE :

trainee@debian:~$ echo $HISTSIZE
500

Comme vous pouvez le constater, la valeur par défaut est de 500.

Pour augmenter le nombre de commandes mémorisées, l'utilisateur peut éditer son fichier ~/.bashrc, ou ~/ indique le répertoire personnel de
l'utilisateur concerné, en ajoutant la ligne suivante à l'emplacement prévu à cet effet :

# don't put duplicate lines in the history. See bash(1) for more options
# don't overwrite GNU Midnight Commander's setting of `ignorespace'.
HISTCONTROL=$HISTCONTROL${HISTCONTROL+:}ignoredups
# ... or force ignoredups and ignorespace
HISTCONTROL=ignoreboth

# append to the history file, don't overwrite it
shopt -s histappend

# for setting history length see HISTSIZE and HISTFILESIZE in bash(1)

export HISTSIZE=1000 #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< La ligne ajoutée

# check the window size after each command and, if necessary,
# update the values of LINES and COLUMNS.
shopt -s checkwinsize



2026/02/04 12:12 11/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

...

Afin que le fichier ~/.bashrc soit relu, il convient d'utiliser la commande source :

trainee@debian:~$ source ~/.bashrc

Le résultat de cette opération est l'augmentation du nombre de commandes mémorisées :

trainee@debian:~$ echo $HISTSIZE
1000

Vous noterez que dans le cas précédent, la valeur de HISTSIZE est maintenant de 1000. Ceci implique que les dernières mille commandes sont
mémorisées.

Les commandes mémorisées sont stockées dans le fichier ~/.bash_history :

trainee@debian:~$ nl .bash_history
   ...
   150  touch aac abc bca xyz
   151  ls
   152  /etc/init.d/networking restart
   153  su -
   154  ls
   155  more /etc/group
   156  more --help
   157  find acc
   158  find aac
   159  find --help
   160  mount --help
   161  umount --help
   162  view Téléchargements/vitexte
   163  vi Téléchargements/vitexte
   164  view Téléchargements/vitexte
   165  vi Téléchargements/vitexte



2026/02/04 12:12 12/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

   166  view Téléchargements/vitexte
   167  vi Téléchargements/vitexte

<note important> Notez l'utilisation de la commande nl pour numéroter les lignes de l'affichage du contenu du fichier .bash_history. </note>

La comparaison du contenu de ce fichier avec la sortie de la commande history démontre que les deux sont diffèrents. En effet, le fichier
.bash_history ne contient pas les lignes 168 à 183 de la sortie de la commande history.

<note important> Les lignes 168 et supérieures ne seront inscrites dans le fichier .bash_history qu'au moment de la fermeture du terminal dans lequel
les commandes ont étaient saisies. </note>

Générer les fins de noms de fichiers

Le shell /bin/bash permet la génération des fins de noms de fichiers. Celle-ci est accomplie grâce à l'utilisation de la touche [Tab]. Dans l'exemple qui
suit, la commande saisie est :

$ more .b[Tab][Tab][Tab]

trainee@debian:~$ more .bash
.bash_history  .bash_logout   .bashrc

<note important> Notez qu'en appuyant sur la touche Tab  trois fois le shell propose 3 possibilités de complétion de nom de fichier. En effet, sans plus
d'information, le shell ne sait pas quel fichier doit être ouvert. </note>

La même possibilité existe pour la génération des fins de noms de commandes. Dans ce cas saisissez la commande suivante :

$ mo[Tab][Tab]

Appuyez sur la touche Tab  deux fois. Vous obtiendrez une fenêtre similaire à celle-ci :

trainee@debian:~$ mo
mogrify      montage      mount        mousetweaks



2026/02/04 12:12 13/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

mono         more         mountpoint

Le shell interactif

Lors de l'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractères spéciaux.

Caractère Spéciaux Description
* Représente 0 ou plus de caractères
? Représente un caractère
[abc] Représente un caractère parmi ceux entre crochets
[!abc] Représente un caractère ne trouvant pas parmi ceux entre crochets
?(expression1|expression2| …) Représente 0 ou 1 fois l'expression1 ou 0 ou 1 fois l'expression2 …
*(expression1|expression2| …) Représente 0 à x fois l'expression1 ou 0 à x fois l'expression2 …
+(expression1|expression2| …) Représente 1 à x fois l'expression1 ou 1 à x fois l'expression2 …
@(expression1|expression2| …) Représente 1 fois l'expression1 ou 1 fois l'expression2 …
!(expression1|expression2| …) Représente 0 fois l'expression1 ou 0 fois l'expression2 …

Caractère *

Dans votre répertoire individuel, créez un répertoire formation. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

trainee@debian:~$ mkdir formation
trainee@debian:~$ cd formation
trainee@debian:~/formation$ touch f1 f2 f3 f4 f5
trainee@debian:~/formation$ ls -l
total 0
-rw-r--r--. 1 trainee trainee 0  8 déc.  12:15 f1
-rw-r--r--. 1 trainee trainee 0  8 déc.  12:15 f2
-rw-r--r--. 1 trainee trainee 0  8 déc.  12:15 f3
-rw-r--r--. 1 trainee trainee 0  8 déc.  12:15 f4



2026/02/04 12:12 14/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

-rw-r--r--. 1 trainee trainee 0  8 déc.  12:15 f5

Afin de démontrer l'utilisation du caractère spécial *, saisissez la commande suivante :

trainee@debian:~/formation$ echo f*
f1 f2 f3 f4 f5

<note important> Notez que le caractère * remplace un caractère ou une suite de caractères. </note>

Caractère ?

Créez maintenant les fichiers f52 et f62 :

trainee@debian:~/formation$ touch f52 f62

Saisissez ensuite la commande suivante :

trainee@debian:~/formation$ echo f?2
f52 f62

<note important> Notez que le caractère ? remplace un seul caractère. </note>

Caractères [ ]

L'utilisation peut prendre plusieurs formes différentes :

Joker Description
[xyz] Représente le caractère x ou y ou z
[m-t] Représente le caractère m ou n …. t
[!xyz] Représente un caractère autre que x ou y ou z



2026/02/04 12:12 15/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Joker Description
[!m-t] Représente un caractère autre que m ou n …. t

Afin de démontrer l'utilisation des caractères [ et ], créez le fichier a100 :

trainee@debian:~/formation$ touch a100

Ensuite saisissez les commandes suivantes et notez le résultat :

trainee@debian:~/formation$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62
trainee@debian:~/formation$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

<note important> Notez ici que tous les fichiers commençant par les lettres a, b, c, d, e ou f sont affichés à l'écran. </note>

trainee@debian:~/formation$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

<note important> Notez ici que tous les fichiers sont affichés à l'écran, à l'exception d'un fichier commençant par la lettre a . </note>

trainee@debian:~/formation$ echo [a-b]*
a100

<note important> Notez ici que seul le fichier commençant par la lettre a est affiché à l'écran car il n'existe pas de fichiers commençant par la lettre b.
</note>

trainee@debian:~/formation$ echo [a-f]
[a-f]

<note important> Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, c, d, e ou f. Pour cette raison, n'ayons trouvé aucune
correspondance entre le filtre utilisé et les objets dans le répertoire courant, le commande echo retourne le filtre passé en argument, c'est-à-dire [a-f].
</note>



2026/02/04 12:12 16/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

L'option extglob

Activez l'option extglob du shell bash afin de pouvoir utiliser ?(expression), *(expression), +(expression), @(expression) et !(expression) :

trainee@debian:~/formation$ shopt -s extglob

La commande shopt est utilisée pour activer ou désactiver les options du comportement optional du shell. La liste des options peut être visualisée en
exécutant la commande shopt sans options :

trainee@debian:~/formation$ shopt
autocd          off
cdable_vars     off
cdspell         off
checkhash       off
checkjobs       off
checkwinsize    on
cmdhist         on
compat31        off
compat32        off
compat40        off
dirspell        off
dotglob         off
execfail        off
expand_aliases  on
extdebug        off
extglob         on
extquote        on
failglob        off
force_fignore   on
globstar        off
gnu_errfmt      off
histappend      on
histreedit      off



2026/02/04 12:12 17/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

histverify      off
hostcomplete    off
huponexit       off
interactive_comments    on
lithist         off
login_shell     off
mailwarn        off
no_empty_cmd_completion off
nocaseglob      off
nocasematch     off
nullglob        off
progcomp        on
promptvars      on
restricted_shell    off
shift_verbose   off
sourcepath      on
xpg_echo        off

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

trainee@debian:~/formation$ touch f f.txt f123.txt f123123.txt f123123123.txt

Saisissez la commande suivante :

trainee@debian:~/formation$ ls f?(123).txt
f123.txt  f.txt

<note important> Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1 occurence de la chaîne 123. </note>



2026/02/04 12:12 18/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

*(expression)

Saisissez la commande suivante :

trainee@debian:~/formation$ ls f*(123).txt
f123123123.txt  f123123.txt  f123.txt  f.txt

<note important> Notez ici que la commande affiche les fichiers ayant un nom contenant de 0 jusqu'à x occurences de la chaîne 123. </note>

+(expression)

Saisissez la commande suivante :

trainee@debian:~/formation$ ls f+(123).txt
f123123123.txt  f123123.txt  f123.txt

<note important> Notez ici que la commande affiche les fichiers ayant un nom contenant entre 1 et x occurences de la chaîne 123. </note>

@(expression)

Saisissez la commande suivante :

trainee@debian:~/formation$ ls f@(123).txt
f123.txt

<note important> Notez ici que la commande affiche les fichiers ayant un nom contenant 1 seule occurence de la chaîne 123. </note>

!(expression)



2026/02/04 12:12 19/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Saisissez la commande suivante :

trainee@debian:~/formation$ ls f!(123).txt
f123123123.txt  f123123.txt  f.txt

<note important> Notez ici que la commande n'afficheque les fichiers ayant un nom qui ne contient pas la chaîne 123. </note>

Caractères d'Échappement

Afin d'utiliser un caractère spécial dans un contexte littéral, il faut utiliser un caractère d'échappement. Il existe trois caractères d'échappement :

Caractère Description
\ Protège le caractère qui le suit
' ' Protège tout caractère, à l'exception du caractère ' lui-même, se trouvant entre les deux '
“ ” Protège tout caractère, à l'exception des caractères “ lui-même, $, \ et ', se trouvant entre les deux “

Afin d'illustrer l'utilisation des caractères d'échappement, considérons la commande suivante :

$ echo * est un caractère spécial [Entrée]

Lors de la saisie de cette commande dans votre répertoire formation, vous obtiendrez une fenêtre similaire à celle-ci :

trainee@debian:~/formation$ echo * est un caractère spécial
a100 f1 f2 f3 f4 f5 f52 f62 est un caractère spécial

Vous noterez que le caractère spécial * a bien été interprété par le shell.

Afin de protéger le caractère *, nous devons utiliser un caractère d'échappement. Commençons par l'utilisation du caractère \ :

trainee@debian:~/formation$ echo \* est un caractère spécial
* est un caractère spécial



2026/02/04 12:12 20/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Vous noterez que le caractère spécial * n'a pas été interprété par le shell.

Le même résultat peut être obtenu en utilisant ainsi :

trainee@debian:~/formation$ echo "* est un caractère spécial"
* est un caractère spécial
trainee@debian:~/formation$ echo '* est un caractère spécial'
* est un caractère spécial

Codes Retour

Chaque commande retourne un code à la fin de son exécution. La variable spéciale $? sert à stocker le code retour de la dernière commande
exécutée.

Par exemple :

trainee@debian:~/formation$ cd ..
trainee@debian:~$ mkdir codes
trainee@debian:~$ echo $?
0
trainee@debian:~$ touch codes/retour
trainee@debian:~$ rmdir codes
rmdir: échec de suppression de « codes »: Le dossier n'est pas vide
trainee@debian:~$ echo $?
1

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.

La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un un.

Si le code retour est zéro la dernière commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la dernière commande s'est déroulée avec une erreur.



2026/02/04 12:12 21/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Redirections

Votre dialogue avec le système Linux utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et l’écran, le canal
de sortie standard :

;#; ;#;

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande à l’écran.

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette façon, le résultat d’une commande telle free peut être
stocké dans un fichier pour une consultation ultérieure :

;#; ;#;

Cet effet est obtenu en utilisant une redirection :

$ free > fichier [Entrée]

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande free. Par contre si le fichier existe déjà, il sera écrasé.

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Adebian%3A6%3Al105&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Adebian%3A6%3Al105&media=free:redirection.png


2026/02/04 12:12 22/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Pour ajouter des données supplémentaires au même fichier cible, il faut utiliser une double redirection :

$ date >> fichier [Entrée]

De cette façon, la date du jour sera rajoutée à la fin de votre fichier après les informations de la commande free.

trainee@debian:~$ cd formation
trainee@debian:~/formation$ free > fichier
trainee@debian:~/formation$ date >> fichier
trainee@debian:~/formation$ cat fichier
             total       used       free     shared    buffers     cached
Mem:       1034472     729100     305372          0      69752     351680
-/+ buffers/cache:     307668     726804
Swap:      1951856          0    1951856
jeudi 8 décembre 2011, 12:27:53 (UTC+0100)

<note important> Notez que la sortie standard ne peut être redirigée que dans une seule direction. </note>

Les canaux d’entrées et de sorties sont numérotés :

0 = Le Canal d’entrée Standard
1 = Le Canal de Sortie Standard
2 = Le Canal d’erreur

La commande suivante créera un fichier nommé erreurlog qui contient les messages d’erreur de l’exécution de la commande rmdir :

$ rmdir formation/ 2> erreurlog [Entrée]

En vous placant dans votre répertoire personnel, et en saisissant cette commande, vous obtiendrez une fenêtre similaire à celle-ci :

trainee@debian:~/formation$ cd ..
trainee@debian:~$ rmdir formation/ 2>erreurlog
trainee@debian:~$ cat erreurlog
rmdir: échec de suppression de « formation/ »: Le dossier n'est pas vide



2026/02/04 12:12 23/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

En effet l'erreur est générée parce que le répertoire formation n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche à
droite.

Dans l’exemple suivant, nous réunissons le canal de sortie et le canal d’erreurs :

$ free > fichier 2>&1 [Entrée]

La syntaxe 2>&1 envoie la sortie du canal 2 au même endroit que le canal 1, à savoir le fichier dénommé fichier.

Il est possible de modifier le canal d'entrée standard afin de lire des informations à partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractère < :

$ wc -w < erreurlog [Entrée]

Dans cet exemple la commande wc compte le nombre de mots ( -w ) dans le fichier erreurlog et l’affiche à l’écran :

trainee@debian:~$ wc -w < erreurlog
11

Tubes

Il est aussi possible de relier des commandes avec un tube | .

Dans ce cas, le canal de sortie de la commande à gauche du tube est envoyé au canal d’entrée de la commande à droite du tube :

$ ls | wc -w [Entrée]

Cette commande, lancée dans votre répertoire personnel, prend la sortie de la commande ls et demande à la commande wc de compter le nombre de
mots inclus dans la sortie de ls :

trainee@debian:~$ ls | wc -w



2026/02/04 12:12 24/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

15

<note important> Il est à noter qu'il est possible de relier plusieurs tubes dans la même commande. </note>

Rappelez-vous que la sortie standard ne peut être redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
la visualiser à l'écran, nous devons utiliser la commande tee avec un pipe :

trainee@debian:~$ date | tee fichier1
jeudi 8 décembre 2011, 12:30:24 (UTC+0100)
trainee@debian:~$ cat fichier1
jeudi 8 décembre 2011, 12:30:24 (UTC+0100)

Cette même technique nous permet de créer deux fichiers :

$ date | tee fichier1 > fichier2 [Entrée]

trainee@debian:~$ date | tee fichier1 > fichier2
trainee@debian:~$ cat fichier1
jeudi 8 décembre 2011, 12:30:43 (UTC+0100)
trainee@debian:~$ cat fichier2
jeudi 8 décembre 2011, 12:30:43 (UTC+0100)

Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par sa valeur de sa sortie. Afin d'illustrer ce point, considérons les
commandes suivantes :

trainee@debian:~$ echo date
date
trainee@debian:~$ echo $(date)
jeudi 8 décembre 2011, 12:32:47 (UTC+0100)
trainee@debian:~$ echo `date`



2026/02/04 12:12 25/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

jeudi 8 décembre 2011, 12:33:00 (UTC+0100)

<note important> Notez le format de chaque substitution $(commande) ou `commande`. Sur un clavier français, l'anti-côte est accessible en
utilisant les touches Alt Gr  et 77 . </note>

Chainage de Commandes

Il est possible de regrouper des commandes à l’aide d’un sous-shell :

$ (ls -l; ps; who) > liste [Entrée]

Cet exemple envoie le résultat des trois commandes vers le fichier liste en les traitant en tâches de fond.

Les commandes peuvent être aussi chainées en fonction du code retour de la commande précédente.

&& est utilisé afin de s’assurer que la deuxième commande s’exécute dans le cas où la valeur du statut de sortie est 0, autrement dit qu’il n’y a pas eu
d’erreurs.

|| est utilisé afin de s’assurer de l’inverse.

Le syntaxe de cette commande est :

Commande1 && Commande2

Dans ce cas, Commande 2 est exécutée uniquement dans le cas où Commande1 s’est exécuté sans erreur

Ou :

Commande1 || Commande2

Dans ce cas, Commande2 est exécuté si Commande1 a rencontré une erreur.



2026/02/04 12:12 26/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Affichage des variables du shell

Une variable du shell peut être affichée grâce à la commande :

$ echo $VARIABLE [Entrée]

Les Variables Principales

Variable Description
BASH Le chemin complet du shell.
BASH_VERSION La version du shell.
EUID EUID de l'utilisateur courant.
UID UID de l'utilisateur courant.
PPID Le PID du processus père.
PWD Le répertoire courant.
OLDPWD Le répertoire avant la dernière commande cd. Même chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767
SECONDS Le nombre de scondes écoules depuis le lancement du shell
LINES Le nombre de lignes de l'écran.
COLUMNS La largeur de l'écran.
HISTFILE Le fichier historique
HISTFILESIZE La taille du fichier historique
HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HISTCMD Le numéro de la commande courante dans l'historique
HISTCONTROL ignorespace ou ignoredups ou ignoreboth
HOME Le répertoire de connexion.
HOSTTYPE Le type de machine.
OSTYPE Le système d'exploitation.
MAIL Le fichier contenant le courrier.
MAILCHECK La fréquence de vérification du courrier en secondes.



2026/02/04 12:12 27/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
PATH Le chemin de recherche des commandes.
PROMPT_COMMAND La commande exécutée avant chaque affichage du prompt.
PS1 Le prompt par défaut.
PS2 Le deuxième prompt par défaut
PS3 Le troisième prompt par défaut
PS4 Le quatrième prompt par défaut
SHELL Le shell de préférence.
SHLVL Le nombre d'instances du shell.
TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.

Les Variables de Régionalisation et de l'Internationalisation

L'Internationalisation, aussi appelé i18n car il y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste à adapter un
logiciel aux paramètres variant d'une région à l'autre :

longueur des mots,
accents,
écriture de gauche à droite ou de droite à gauche,
unité monétaire,
styles typographiques et modèles rédactionnels,
unités de mesures,
affichage des dates et des heures,
formats d'impression,
format du clavier,
etc …

Le Régionalisation, aussi appelé i10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste à modifier l'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractères. Par exemple, pour la langue française les valeurs de langue-PAYS
sont :



2026/02/04 12:12 28/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

fr-BE = la Belgique francophone,
fr-CA = le Québec,
fr-FR = la France,
fr-LU = le Luxembourg,
fr-MC = Monaco,
fr-CH = la Suisse francophone.

Les variables système les plus importants contenant les informations concernant le régionalisation sont :

Variable Description
LC_ALL Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE Détermine les paramètres régionaux pour l'interprétation de séquence d'octets de données texte en caractères.

Par exemple :

trainee@debian:~$ echo $LC_ALL

trainee@debian:~$ echo $LC_CTYPE

trainee@debian:~$ echo $LANG
fr_FR.utf8

Les variables spéciales

Variable Description
$LINENO Contient le numéro de la ligne courante du script ou de la fonction
$$ Contient le PID du shell en cours
$PPID Contient le PID du processus parent du shell en cours
$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 … Contient respectivement le premier argument, deuxième argument etc passés au script
$# Contient le nombre d'arguments passés au script
$* Contient l'ensemble des arguments passés au script



2026/02/04 12:12 29/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
$@ Contient l'ensemble des arguments passés au script

La Commande env

La commande env envoie sur la sortie standard les valeurs des variables système de l'environnement de l'utilisateur qui l'invoque :

root@debian:~# env
SHELL=/bin/bash
TERM=xterm
XDG_SESSION_COOKIE=9dbc42206eca490459754e5100000008-1394376534.132688-1876788925
USER=root
MAIL=/var/mail/root
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PWD=/root
LANG=fr_FR.UTF-8
SHLVL=1
HOME=/root
LOGNAME=root
DISPLAY=:0.0
XAUTHORITY=/var/run/gdm3/auth-for-trainee-Bb3WgH/database
COLORTERM=gnome-terminal
_=/usr/bin/env

La commande peut aussi être utilisée pour fixer une variable lors de l'exécution d'une commande. Lancez xterm avec la variable EDITOR fixée à vim :

root@debian:~# env EDITOR=vim xterm

Options de la commande

Les options de cette commande sont :



2026/02/04 12:12 30/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

root@debian:~# env --help
Utilisation : env [OPTION]... [-] [NAME=VALUE]... [COMMAND [ARG]...]
Initialise chaque NAME à VALUE dans l'environnement et exécute COMMAND.

  -i, --ignore-environment   démarre avec un environnement vide
  -0, --null                 termine chaque ligne de sortie avec l'octet 0 au
                             lieu d'une ligne nouvelle
  -u, --unset=NAME           enlève la variable de l'environment
      --help     affiche l'aide et quitte
      --version  affiche des informations de version et quitte

Un simple - implique -i. Si aucune COMMAND n'est fournie, affiche
l'environnement résultant.

Signalez les anomalies de « env » à <bug-coreutils@gnu.org>
Page d'accueil de « GNU coreutils » : <http://www.gnu.org/software/coreutils/>
Aide générale sur les logiciels GNU : <http://www.gnu.org/gethelp/>
Traduction de « env » à <http://translationproject.org/team/fr.html>
Pour une documentation complète, lancer « info coreutils 'env invocation' »

Options du Shell Bash

Pour visualiser les options du shell bash, il convient d'utiliser la commande set :

$ set -o [Entrée]

Par exemple :

trainee@debian:~$ set -o
allexport       off
braceexpand     on
emacs           on



2026/02/04 12:12 31/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

errexit         off
errtrace        off
functrace       off
hashall         on
histexpand      on
history         on
ignoreeof       off
interactive-comments    on
keyword         off
monitor         on
noclobber       off
noexec          off
noglob          off
nolog           off
notify          off
nounset         off
onecmd          off
physical        off
pipefail        off
posix           off
privileged      off
verbose         off
vi              off
xtrace          off

Pour activer une option il convient de nouveau à utiliser la commande set :

# set -o allexport [Entrée]

Par exemple :

trainee@debian:~$ set -o allexport
trainee@debian:~$ set -o
allexport       on



2026/02/04 12:12 32/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

...

Notez que l'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec l'option +o :

$ set +o allexport [Entrée]

trainee@debian:~$ set +o allexport
trainee@debian:~$ set -o
allexport       off
...

Parmi les options, voici la description des plus intéressantes :

Option Valeur par Défaut Description
allexport off Le shell export automatiquement toute variable
emacs on L'édition de la ligne de commande est au style emacs
history on L'historique des commandes est activé
noclobber off Les simples re-directions n'écrasent pas le fichier de destination
noglob off Désactive l'expansion des caractères génériques
nounset off Le shell retourne une erreur lors de l'expansion d'une variable inconnue
verbose off Affiche les lignes de commandes saisies
vi off L'édition de la ligne de commande est au style vi

Exemples

noclobber

trainee@debian:~$ set -o noclobber
trainee@debian:~$ pwd > file
trainee@debian:~$ pwd > file



2026/02/04 12:12 33/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

bash: file : impossible d'écraser le fichier existant
trainee@debian:~$ pwd >|file
trainee@debian:~$ set +o noclobber

<note important> Notez que l'option noclobber peut être contournée en utilisant la redirection suivi par le caractère |. </note>

noglob

trainee@debian:~$ set -o noglob
trainee@debian:~$ echo *
*
trainee@debian:~$ set +o noglob
trainee@debian:~$ echo *
aac abc bca Bureau codes Documents erreurlog fichier1 fichier2 file formation Images Modèles Musique Public
Téléchargements Vidéos xyz

<note important> Notez que l'effet du caractère spécial est annulé sous l'influence de l'option noglob. </note>

nounset

trainee@debian:~$ set -o nounset
trainee@debian:~$ echo $FENESTROS
bash: FENESTROS : variable sans liaison
trainee@debian:~$ set +o nounset
trainee@debian:~$ echo $FENESTROS

trainee@debian:~$

<note important> Notez que la variable inexistante $FENESTROS est identifiée comme telle sous l'influence de l'option nounset. Or le comportement
habituel de Linux est de retourner une ligne vide qui n'indique pas si la variable n’existe pas ou si elle est simplement vide. </note>



2026/02/04 12:12 34/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash monscript

soit en redirigeant son entrée standard :

/bin/bash < monscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

monscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. monscript et ./monscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.



2026/02/04 12:12 35/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

trainee@debian:~$ cd formation/
trainee@debian:~/formation$ script
Script started, file is typescript
trainee@debian:~/formation$ pwd
/home/trainee/formation
trainee@debian:~/formation$ ls
a100  f1  f2  f3  f4  f5  f52  f62  fichier  typescript
trainee@debian:~/formation$ exit
exit
Script done, file is typescript
trainee@debian:~/formation$ cat typescript

Le contenu de votre fichier typescript sera similaire à cet exemple :

Script started on jeu. 08 déc. 2011 12:48:10 CET
trainee@debian:~/formation$ pwd
/home/trainee/formation
trainee@debian:~/formation$ ls
a100  f1  f2  f3  f4  f5  f52  f62  fichier  typescript
trainee@debian:~/formation$ exit
exit

Script done on jeu. 08 déc. 2011 12:48:18 CET



2026/02/04 12:12 36/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, éditez le fichier monscript avec vi :

$ vi monscript [Entrée]

Éditez votre fichier ainsi :

pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

trainee@debian:~/formation$ vi monscript
trainee@debian:~/formation$ /bin/bash monscript
/home/trainee/formation
a100  f1  f2  f3  f4  f5  f52  f62  fichier  monscript  typescript

Lancez ensuite le script en redirigeant son entrée standard :

trainee@debian:~/formation$ /bin/bash < monscript
/home/trainee/formation
a100  f1  f2  f3  f4  f5  f52  f62  fichier  monscript  typescript

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH. Consultez donc le fichier ~/.profile :

trainee@debian:~/formation$ cat ../.profile | grep PATH
# set PATH so it includes user's private bin if it exists
    PATH="$HOME/bin:$PATH"
trainee@debian:~/formation$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Vous constaterez que le répertoire $HOME/bin, autrement dit /home/trainee/bin, n'a pas été rajouté à votre PATH car ce répertoire n'existe pas.
Créez donc le répertoire :



2026/02/04 12:12 37/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@debian:~/formation$ mkdir ~/bin

Re-chargez maintenant le fichier ~/.profile :

trainee@debian:~/formation$ source ~/.profile 2>/dev/null

et vérifiez votre PATH :

trainee@debian:~/formation$ echo $PATH
/home/trainee/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

<note important> Notez la présence du répertoire /home/trainee/bin dans votre PATH. </note>

Afin de rendre la modification de la variable $PATH permanente entre sessions, éditez le fichier .profile ainsi :

# ~/.profile: executed by the command interpreter for login shells.
# This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
# exists.
# see /usr/share/doc/bash/examples/startup-files for examples.
# the files are located in the bash-doc package.

# the default umask is set in /etc/profile; for setting the umask
# for ssh logins, install and configure the libpam-umask package.
#umask 022

# if running bash
if [ -n "$BASH_VERSION" ]; then
    # include .bashrc if it exists
    if [ -f "$HOME/.bashrc" ]; then
    . "$HOME/.bashrc"
    fi
fi

# set PATH so it includes user's private bin if it exists



2026/02/04 12:12 38/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
export PATH  # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Ajoutez cette ligne
fi

Déplacez maintenant votre script dans ce répertoire, rendez-le exécutable pour votre utilisateur et vérifiez qu'il est bien exécutable:

trainee@debian:~/formation$ mv monscript ~/bin
trainee@debian:~/formation$ cd ~/bin
trainee@debian:~/bin$ chmod u+x monscript
trainee@debian:~/bin$ ls -l
total 4
-rwxr--r--. 1 trainee trainee 7  8 déc.  12:50 monscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

trainee@debian:~/bin$ cd /tmp
trainee@debian:/tmp$ monscript
/tmp
keyring-yLNomI    orbit-trainee  seahorse-EyQIJZ  virtual-trainee.rihpCF
orbit-Debian-gdm  plugtmp    ssh-waPfps1811

Dans les trois cas précédents, le script a été exécuté dans un shell fils. Pour l'exécuter dans le shell en cours, placez-vous dans le répertoire contenant
le script et saisissez la commande suivante :

$ . monscript [Entrée]

Vous devez obtenir un résultat similaire à celui-ci :

trainee@debian:/tmp$ cd ~/bin
trainee@debian:~/bin$ . monscript
/home/trainee/bin
monscript



2026/02/04 12:12 39/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exécutez maintenant le script dans un shell fils :

trainee@debian:~/bin$ ./monscript
/home/trainee/bin
monscript

<note> Notez bien la différence entre les sorties de cette dernière commande et la précédente. Expliquez pourquoi. </note>

La commande read

<note> Vous êtes actuellement connecté en tant que l'utilisateur trainee. Devenez maintenant root grâce à la commande su - et le mot de passe
fenestros. </note>

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

root@debian:~# read var1 var2 var3 var4
fenestros edu est super!
root@debian:~# echo $var1
fenestros
root@debian:~# echo $var2
edu
root@debian:~# echo $var3
est
root@debian:~# echo $var4
super!

root@debian:~# read var1 var2
fenestros edu est super!
root@debian:~# echo $var1
fenestros
root@debian:~# echo $var2



2026/02/04 12:12 40/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

edu est super!

<note important> Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros est mis dans $var2. </note>

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D  :

root@debian:~# read var
fenestros
root@debian:~# echo $?
0
root@debian:~# echo $var
fenestros

Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée  :

root@debian:~# read $var

Entrée

root@debian:~#  echo $?
0
root@debian:~#  echo $var

root@debian:~#

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D  :

root@debian:~#  read var

Ctrl+D



2026/02/04 12:12 41/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

root@debian:~#  echo $?
1
root@debian:~#  echo $var

root@debian:~#

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab  et Entrée  :

root@debian:~# echo "$IFS" | od -c
0000000      \t  \n  \n
0000004

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

root@debian:~# OLDIFS="$IFS"
root@debian:~# echo "$OLDIFS" | od -c
0000000      \t  \n  \n
0000004
root@debian:~# IFS=":"
root@debian:~# echo "$IFS" | od -c
0000000   :  \n
0000002

De cette façon l'espace redevient un caractère normal :

root@debian:~# read var1 var2 var3
fenestros:edu est:super!
root@debian:~# echo $var1
fenestros



2026/02/04 12:12 42/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

root@debian:~# echo $var2
edu est
root@debian:~# echo $var3
super!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

root@debian:~# IFS="$OLDIFS"
root@debian:~# echo "$IFS" | od -c
0000000      \t  \n  \n
0000004

<note important> La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée standard au format octal. Ceci est utile afin de
visualiser les caractères non-imprimables. L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou dans le contenu
fourni à l'entrée standard. </note>

La commande test

<note> Vous êtes actuellement connecté en tant que l'utilisateur root. Devenez maintenant trainee grâce à la commande exit. </note>

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace ]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard



2026/02/04 12:12 43/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Test Description
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

Exemples

Testez si le fichier a100 est un fichier ordinaire :

trainee@debian:~/bin$ cd ../formation
trainee@debian:~/formation$ test -f a100
trainee@debian:~/formation$ echo $?
0
trainee@debian:~/formation$ [ -f a100 ]
trainee@debian:~/formation$ echo $?
0

Testez si le fichier a101 existe :

trainee@debian:~/formation$ [ -f a101 ]
trainee@debian:~/formation$ echo $?
1

Testez si /home/trainee/formation est un répertoire :

trainee@debian:~/formation$ [ -d /home/trainee/formation ]



2026/02/04 12:12 44/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

trainee@debian:~/formation$ echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
chaîne1 = chaîne2 Retourne vrai si chaîne1 est égale à chaîne2
chaîne1 != chaîne2 Retourne vrai si chaîne1 est différente de chaîne2
chaîne1 Retourne vrai si chaîne1 n'est pas vide

Exemples

Testez si les deux chaînes sont égales :

trainee@debian:~/formation$ chaine1="root"
trainee@debian:~/formation$ chaine2="fenestros"
trainee@debian:~/formation$ [ "chaine1" = "chaine2" ]
trainee@debian:~/formation$ echo $?
1

Testez si la chaîne1 n'a pas de longueur 0 :

trainee@debian:~/formation$ [ -n "chaine1" ]
trainee@debian:~/formation$ echo $?
0

Testez si la chaîne1 a une longueur de 0 :

trainee@debian:~/formation$ [ -z "chaine1" ]
trainee@debian:~/formation$ echo $?



2026/02/04 12:12 45/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

1

Tests sur des nombres

Test Description
valeur1 -eq valeur2 Retourne vrai si valeur1 est égale à valeur2
valeur1 -ne valeur2 Retourne vrai si valeur1 n'est pas égale à valeur2
valeur1 -lt valeur2 Retourne vrai si valeur1 est inférieure à valeur2
valeur1 -le valeur2 Retourne vrai si valeur1 est inférieur ou égale à valeur2
valeur1 -gt valeur2 Retourne vrai si valeur1 est supérieure à valeur2
valeur1 -ge valeur2 Retourne vrai si valeur1 est supérieure ou égale à valeur2

Exemples

Comparez les deux nombres nombre1 et nombre2 :

trainee@debian:~/formation$ read nombre1
35
trainee@debian:~/formation$ read nombre2
23
trainee@debian:~/formation$ [ $nombre1 -lt $nombre2 ]
trainee@debian:~/formation$ echo $?
1
trainee@debian:~/formation$ [ $nombre2 -lt $nombre1 ]
trainee@debian:~/formation$ echo $?
0
trainee@debian:~/formation$ [ $nombre2 -eq $nombre1 ]
trainee@debian:~/formation$ echo $?
1



2026/02/04 12:12 46/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

Exemples

Testez si $fichier n'est pas un répertoire :

trainee@debian:~/formation$ fichier=a1OO
trainee@debian:~/formation$ [ ! -d $fichier ]
trainee@debian:~/formation$ echo $?
0

Testez si $repertoire est un répertoire et si l'utilisateur à le droit de le traverser :

trainee@debian:~/formation$ repertoire=/usr
trainee@debian:~/formation$ [ -d $repertoire -a -x $repertoire ]
trainee@debian:~/formation$ echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@debian:~/formation$ [ -w a100 -a \( -d /usr -o -d /tmp \) ]
trainee@debian:~/formation$ echo $?
0



2026/02/04 12:12 47/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

Exemple

trainee@debian:~/formation$ [ -o allexport ]
trainee@debian:~/formation$ echo $?
1

La commande [[ expression ]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[ expression ]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
chaine = modele Retourne vrai si chaîne correspond au modèle
chaine != modele Retourne vrai si chaîne ne correspond pas au modèle
chaine1 < chaine2 Retourne vrai si chaîne1 est lexicographiquement avant chaîne2
chaine1 > chaine2 Retourne vrai si chaîne1 est lexicographiquement après chaîne2



2026/02/04 12:12 48/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemple

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

trainee@debian:~/formation$[[ -w a100 && ( -d /usr || -d /tmp ) ]]
trainee@debian:~/formation$ echo $?
0

Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

Exemples

trainee@debian:~/formation$ [[ -d /root ]] && echo "Répertoire root existe"
Répertoire root existe
trainee@debian:~/formation$ [[ -d /root ]] || echo "Répertoire root existe"
trainee@debian:~/formation$

L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace  nombre1 Espace  opérateur Espace  nombre2 Entrée

ou



2026/02/04 12:12 49/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

expr Tab  nombre1 Tab  opérateur Tab  nombre2 Entrée

ou

expr Espace  chaîne Espace  : Espace  expression_régulière Entrée

ou

expr Tab  chaîne Tab  : Tab  expression_régulière Entrée

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
\* Multiplication
/ Division
% Modulo
\( \) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques



2026/02/04 12:12 50/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
\| ou logique
\& et logique

Exemples

Ajoutez 2 à la valeur de $x :

trainee@debian:~/formation$ x=2
trainee@debian:~/formation$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

trainee@debian:~/formation$ expr $x+2
2+2

Les opérateurs doivent être protégés :

trainee@debian:~/formation$ expr $x * 2
expr: erreur de syntaxe
trainee@debian:~/formation$ expr $x \* 2
4

Mettez le résultat d'un calcul dans une variable :

trainee@debian:~/formation$ resultat=`expr $x + 10`
trainee@debian:~/formation$ echo $resultat
12



2026/02/04 12:12 51/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal



2026/02/04 12:12 52/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

Exemples

trainee@debian:~/formation$ x=2
trainee@debian:~/formation$ ((x=$x+10))
trainee@debian:~/formation$ echo $x
12
trainee@debian:~/formation$ ((x=$x+20))
trainee@debian:~/formation$ echo $x
32

Structures de contrôle

If



2026/02/04 12:12 53/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

La syntaxe de la commande If est la suivante :

if condition
then
    commande(s)
else
    commande(s)
fi

ou :

if condition
then
    commande(s)
    commande(s)
fi

ou encore :

if condition
then
     commande(s)
elif condition
then
     commande(s)
elif condition
then
     commande(s)
else
    commande(s)

fi



2026/02/04 12:12 54/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemples

Créez le script user_check suivant :

#!/bin/bash
if [ $# -ne 1 ] ; then
  echo "Mauvais nombre d'arguments"
  echo "Usage : $0 nom_utilisateur"
  exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
  echo "Utilisateur $1 est défini sur ce système"
else
  echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

trainee@debian:~/formation$  chmod 770 user_check
trainee@debian:~/formation$  ./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@debian:~/formation$  ./user_check root
Utilisateur root est défini sur ce système
trainee@debian:~/formation$  ./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
trainee@debian:~/formation$  ./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système



2026/02/04 12:12 55/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
   ...
   ;;
modele2) commande
   ...
   ;;
modele3 | modele4 | modele5 ) commande
   ...
   ;;
esac

Exemple

  case "$1" in
      start)
          start
          ;;
      stop)
          stop
          ;;
      restart|reload)
          stop
          start
          ;;
      status)
          status
          ;;



2026/02/04 12:12 56/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

      *)
          echo $"Usage: $0 {start|stop|restart|status}"
          exit 1
esac

<note important> L'exemple indique que dans le cas où le premier argument qui suit le nom du script contenant la clause case est start, la fonction
start sera exécutée. La fonction start n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de script. La même logique
est appliquée dans le cas où le premier argument est stop, restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom du script. </note>

Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
    commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
    commande(s)
done



2026/02/04 12:12 57/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

Exemple

MAX_ACCOUNTS=100
U=1
while [ $U -lt $MAX_ACCOUNTS ]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de Debian, le système exécute le script ~/.profile qui exécute le script ~/.bashrc qui appelle le script /etc/bash.bashrc.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

T.P.#1

<note> En utilisant vos connaissances acquises dans cette unité, expliquez les scripts ~/.profile et ~/.bashrc ligne par ligne. </note>



2026/02/04 12:12 58/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

~/.profile

# ~/.profile: executed by the command interpreter for login shells.
# This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
# exists.
# see /usr/share/doc/bash/examples/startup-files for examples.
# the files are located in the bash-doc package.

# the default umask is set in /etc/profile; for setting the umask
# for ssh logins, install and configure the libpam-umask package.
#umask 022

# if running bash
if [ -n "$BASH_VERSION" ]; then
    # include .bashrc if it exists
    if [ -f "$HOME/.bashrc" ]; then
    . "$HOME/.bashrc"
    fi
fi

# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/bin" ] ; then
    PATH="$HOME/bin:$PATH"
fi

~/.bashrc

# System-wide .bashrc file for interactive bash(1) shells.

# To enable the settings / commands in this file for login shells as well,
# this file has to be sourced in /etc/profile.



2026/02/04 12:12 59/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

# If not running interactively, don't do anything
[ -z "$PS1" ] && return

# check the window size after each command and, if necessary,
# update the values of LINES and COLUMNS.
shopt -s checkwinsize

# set variable identifying the chroot you work in (used in the prompt below)
if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then
    debian_chroot=$(cat /etc/debian_chroot)
fi

# set a fancy prompt (non-color, overwrite the one in /etc/profile)
PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '

# Commented out, don't overwrite xterm -T "title" -n "icontitle" by default.
# If this is an xterm set the title to user@host:dir
#case "$TERM" in
#xterm*|rxvt*)
#    PROMPT_COMMAND='echo -ne "\033]0;${USER}@${HOSTNAME}: ${PWD}\007"'
#    ;;
#*)
#    ;;
#esac

# enable bash completion in interactive shells
#if [ -f /etc/bash_completion ] && ! shopt -oq posix; then
#    . /etc/bash_completion
#fi

# if the command-not-found package is installed, use it
if [ -x /usr/lib/command-not-found -o -x /usr/share/command-not-found ]; then
    function command_not_found_handle {
            # check because c-n-f could've been removed in the meantime



2026/02/04 12:12 60/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

                if [ -x /usr/lib/command-not-found ]; then
           /usr/bin/python /usr/lib/command-not-found -- $1
                   return $?
                elif [ -x /usr/share/command-not-found ]; then
           /usr/bin/python /usr/share/command-not-found -- $1
                   return $?
        else
           return 127
        fi
    }
fi
trainee@debian:~/formation$ cat ../.bashrc
# ~/.bashrc: executed by bash(1) for non-login shells.
# see /usr/share/doc/bash/examples/startup-files (in the package bash-doc)
# for examples

# If not running interactively, don't do anything
[ -z "$PS1" ] && return

# don't put duplicate lines in the history. See bash(1) for more options
# don't overwrite GNU Midnight Commander's setting of `ignorespace'.
HISTCONTROL=$HISTCONTROL${HISTCONTROL+:}ignoredups
# ... or force ignoredups and ignorespace
HISTCONTROL=ignoreboth

# append to the history file, don't overwrite it
shopt -s histappend

# for setting history length see HISTSIZE and HISTFILESIZE in bash(1)

export HISTSIZE=1000

# check the window size after each command and, if necessary,
# update the values of LINES and COLUMNS.



2026/02/04 12:12 61/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

shopt -s checkwinsize

# make less more friendly for non-text input files, see lesspipe(1)
#[ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)"

# set variable identifying the chroot you work in (used in the prompt below)
if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then
    debian_chroot=$(cat /etc/debian_chroot)
fi

# set a fancy prompt (non-color, unless we know we "want" color)
case "$TERM" in
    xterm-color) color_prompt=yes;;
esac

# uncomment for a colored prompt, if the terminal has the capability; turned
# off by default to not distract the user: the focus in a terminal window
# should be on the output of commands, not on the prompt
#force_color_prompt=yes

if [ -n "$force_color_prompt" ]; then
    if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then
    # We have color support; assume it's compliant with Ecma-48
    # (ISO/IEC-6429). (Lack of such support is extremely rare, and such
    # a case would tend to support setf rather than setaf.)
    color_prompt=yes
    else
    color_prompt=
    fi
fi

if [ "$color_prompt" = yes ]; then
    PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ '
else



2026/02/04 12:12 62/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

    PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '
fi
unset color_prompt force_color_prompt

# If this is an xterm set the title to user@host:dir
case "$TERM" in
xterm*|rxvt*)
    PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1"
    ;;
*)
    ;;
esac

# enable color support of ls and also add handy aliases
if [ -x /usr/bin/dircolors ]; then
    test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)"
    alias ls='ls --color=auto'
    #alias dir='dir --color=auto'
    #alias vdir='vdir --color=auto'

    #alias grep='grep --color=auto'
    #alias fgrep='fgrep --color=auto'
    #alias egrep='egrep --color=auto'
fi

# some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'

# Alias definitions.
# You may want to put all your additions into a separate file like
# ~/.bash_aliases, instead of adding them here directly.
# See /usr/share/doc/bash-doc/examples in the bash-doc package.



2026/02/04 12:12 63/63 Le Ligne de Commande

www.ittraining.team - https://ittraining.team/

if [ -f ~/.bash_aliases ]; then
    . ~/.bash_aliases
fi

# enable programmable completion features (you don't need to enable
# this, if it's already enabled in /etc/bash.bashrc and /etc/profile
# sources /etc/bash.bashrc).
if [ -f /etc/bash_completion ] && ! shopt -oq posix; then
    . /etc/bash_completion
fi

~~DISCUSSION:off~~

Donner votre Avis

{(rater>id=debian_6_l105|name=cette page|type=rate|trace=user|tracedetails=1)}

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:debian:6:l105

Last update: 2020/01/30 03:28

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:debian:6:l105

	Le Ligne de Commande
	Le Shell
	Les Commandes Internes et Externes au shell
	Les alias
	Le Prompt
	Rappeler des Commandes
	Générer les fins de noms de fichiers
	Le shell interactif
	Caractère *
	Caractère ?
	Caractères [ ]
	L'option extglob
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	Codes Retour
	Redirections
	Tubes
	Substitutions de Commandes
	Chainage de Commandes
	Affichage des variables du shell
	Les Variables Principales
	Les Variables de Régionalisation et de l'Internationalisation
	Les variables spéciales

	La Commande env
	Options de la commande

	Options du Shell Bash
	Exemples
	noclobber
	noglob
	nounset



	Les Scripts Shell
	Exécution
	La commande read
	Code de retour
	La variable IFS

	La commande test
	Tests de Fichiers
	Exemples

	Tests de chaînes de caractère
	Exemples

	Tests sur des nombres
	Exemples

	Les opérateurs
	Exemples

	Tests d'environnement utilisateur
	Exemple


	La commande [[ expression ]]
	Exemple

	Opérateurs du shell
	Exemples

	L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques
	Exemples

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits
	Exemples


	Structures de contrôle
	If
	Exemples

	case
	Exemple


	Boucles
	for
	while
	Exemple


	Scripts de Démarrage
	T.P.#1
	~/.profile
	~/.bashrc



	Donner votre Avis

