
2026/02/04 15:08 1/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Version : 2024.01

Dernière mise-à-jour : 2024/04/28 15:11

LCF405 - La Ligne de Commande

Contenu du Module

LCF405 - La Ligne de Commande
Contenu du Module
Le Shell
LAB #1 - Le Shell /bin/bash

1.1 - Les Commandes Internes et Externes au shell
1.2 - Les alias
1.3 - Définir le Shell d'un Utilisateur
1.4 - Le Prompt
1.5 - Rappeler des Commandes
1.6 - Générer les fins de noms de fichiers
1.7 - Le shell interactif

Caractère *
Caractère ?
Caractères []

1.8 - L'option extglob
?(expression)
*(expression)
+(expression)
@(expression)
!(expression)
Caractères d'Échappement

1.9 - Codes Retour
1.10 - Redirections

2026/02/04 15:08 2/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

1.11 - Pipes
1.12 - Substitutions de Commandes
1.13 - Chaînage de Commandes
1.14 - Affichage des variables du shell

Les variables principales
Les Variables de Régionalisation et d'Internationalisation
Les variables spéciales

1.15 - La Commande env
1.16 - Options du Shell Bash

Exemples
noclobber
noglob
nounset

LAB #2 - Les Scripts Shell
2.1 - Exécution
2.2 - La commande read

Code de retour
La variable IFS

2.3 - La commande test
Tests de Fichiers
Tests de chaînes de caractère
Tests sur des nombres
Les opérateurs
Tests d'environnement utilisateur

2.4 - La commande [[expression]]
2.5 - Opérateurs du shell
2.6 - L'arithmétique

La commande expr
Opérateurs Arithmétiques
Opérateurs de Comparaison
Opérateurs Logiques

La commande let
Opérateurs Arithmétiques
Opérateurs de comparaison

2026/02/04 15:08 3/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateurs Logiques
Opérateurs travaillant sur les bits

2.7 - Structures de contrôle
If
case

Exemple
Boucles

for
while
Exemple

2.8 - Scripts de Démarrage
~/.bash_profile
~/.bashrc

Le Shell

Un shell est un interpréteur de commandes ou en anglais un Command Line Interpreter (C.L.I). Il est utilisé comme interface pour donner des
instructions ou commandes au système d'exploitation.

Le mot shell est générique. Il existe de nombreux shells dans le monde Unix, par exemple :

Shell Nom Date de
Sortie Inventeur Commande Commentaires

tsh Thompson Shell 1971 Ken Thompson sh Le premier shell
sh Bourne Shell 1977 Stephen Bourne sh Le shell commun à tous les Unix. Sous RHEL/CentOS 8 : /usr/bin/sh
csh C-Shell 1978 Bill Joy csh Le shell BSD. Sous RHEL/CentOS 8 : /usr/bin/csh
tcsh Tenex C-Shell 1979 Ken Greer tcsh Un dérivé du shell csh. Sous RHEL/CentOS 8 : /usr/bin/tcsh
ksh Korn Shell 1980 David Korn ksh Uniquement libre depuis 2005. Sous RHEL/CentOS 8 : /usr/bin/ksh
bash Bourne Again Shell 1987 Brian Fox bash Le shell par défaut de Linux et de MacOS X. Sous RHEL/CentOS 8 : /usr/bin/bash

zsh Z Shell 1990 Paul Falstad zsh Zsh est plutôt orienté pour l'interactivité avec l'utilisateur. Sous RHEL/CentOS 8
: /usr/bin/zsh

2026/02/04 15:08 4/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Sous RHEL/CentOS 8 le shell /bin/sh est un lien symbolique vers /bin/bash :

[trainee@centos8 ~]$ ls -l /bin/sh
lrwxrwxrwx. 1 root root 4 Jul 21 2020 /bin/sh -> bash

LAB #1 - Le Shell /bin/bash

Ce module concerne l'utilisation du shell bash sous Linux. Le shell bash permet de:

Rappeler des commandes
Générer la fin de noms de fichiers
Utiliser des alias
Utiliser les variables tableaux
Utiliser les variables numériques et l'arithmétique du langage C
Gérer des chaînes de caractères
Utiliser les fonctions

Une commande commence toujours par un mot clef. Ce mot clef est interprété par le shell selon le type de commande et dans l'ordre qui suit :

Les alias1.
Les fonctions2.
Les commandes internes au shell3.
Les commandes externes au shell4.

1.1 - Les Commandes Internes et Externes au shell

Les commandes internes au shell sont des commandes telles cd. Pour vérifier le type de commande, il faut utiliser la commande type :

[trainee@centos7 ~]$ type cd
cd is a shell builtin

2026/02/04 15:08 5/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Les commandes externes au shell sont des binaires exécutables ou des scripts, généralement situés dans /bin, /sbin, /usr/bin ou /usr/sbin :

[trainee@centos8 ~]$ type cd
cd is a shell builtin

1.2 - Les alias

Les alias sont des noms permettant de désigner une commande ou une suite de commandes et ne sont spécifiques qu'au shell qui les a créés ainsi
qu'à l'environnement de l'utilisateur :

[trainee@centos8 ~]$ type ls
ls is aliased to `ls --color=auto'

Important : Notez que dans ce cas l'alias ls est en effet un alias qui utilise la commande
ls elle-même.

Un alias se définit en utilisant la commande alias :

[trainee@centos8 ~]$ alias dir='ls -l'
[trainee@centos8 ~]$ dir
total 0
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 aac
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 abc
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 bca
-rw-rw-r--. 1 trainee trainee 0 Apr 20 03:46 xyz

Important : Notez que la commande dir existe vraiment. Le fait de créer un alias qui
s'appelle dir implique que l'alias sera exécuté à la place de la commande dir.

2026/02/04 15:08 6/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

La liste des alias définis peut être visualisée en utilisant la commande alias :

[trainee@centos8 ~]$ alias
alias dir='ls -l'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'
alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-
dot'
alias xzegrep='xzegrep --color=auto'
alias xzfgrep='xzfgrep --color=auto'
alias xzgrep='xzgrep --color=auto'
alias zegrep='zegrep --color=auto'
alias zfgrep='zfgrep --color=auto'
alias zgrep='zgrep --color=auto'

Important : Notez que cette liste contient, sans distinction, les alias définis dans les
fichiers de démarrage du système ainsi que l'alias dir créé par trainee qui n'est que
disponible à trainee dans le terminal courant.

Pour forcer l'exécution d'une commande et non l'alias il faut faire précéder la commande par le caractère \ :

[trainee@centos8 ~]$ \dir
aac abc bca xyz

Pour supprimer un alias, il convient d'utiliser la commande unalias :

2026/02/04 15:08 7/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ unalias dir
[trainee@centos8 ~]$ dir
aac abc bca xyz

1.3 - Définir le Shell d'un Utilisateur

Le shell des utilisateurs est défini par root dans le dernier champs du fichier /etc/passwd :

[trainee@centos8 ~]$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin
systemd-resolve:x:193:193:systemd Resolver:/:/sbin/nologin
tss:x:59:59:Account used by the trousers package to sandbox the tcsd daemon:/dev/null:/sbin/nologin
polkitd:x:998:996:User for polkitd:/:/sbin/nologin
unbound:x:997:994:Unbound DNS resolver:/etc/unbound:/sbin/nologin
libstoragemgmt:x:996:993:daemon account for libstoragemgmt:/var/run/lsm:/sbin/nologin
cockpit-ws:x:995:991:User for cockpit-ws:/nonexisting:/sbin/nologin
sssd:x:994:990:User for sssd:/:/sbin/nologin
setroubleshoot:x:993:989::/var/lib/setroubleshoot:/sbin/nologin

2026/02/04 15:08 8/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
chrony:x:992:988::/var/lib/chrony:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
trainee:x:1000:1000:trainee:/home/trainee:/bin/bash
cockpit-wsinstance:x:991:987:User for cockpit-ws instances:/nonexisting:/sbin/nologin
rngd:x:990:986:Random Number Generator Daemon:/var/lib/rngd:/sbin/nologin
gluster:x:989:985:GlusterFS daemons:/run/gluster:/sbin/nologin
qemu:x:107:107:qemu user:/:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
saslauth:x:988:76:Saslauthd user:/run/saslauthd:/sbin/nologin
radvd:x:75:75:radvd user:/:/sbin/nologin
dnsmasq:x:983:983:Dnsmasq DHCP and DNS server:/var/lib/dnsmasq:/sbin/nologin

Cependant l'utilisateur peut changer son shell grâce à la commande chsh. Les shells disponibles aux utilisateurs du système sont inscrits dans le
fichier /etc/shells. Saisissez la commande cat /etc/shells :

[trainee@centos8 ~]$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash

Ensuite utilisez la commande echo pour afficher le shell actuel de trainee :

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

Important : Notez sous RHEL/CentOS 8 que le système nous informe que le shell courant
de l'utiisateur trainee est /bin/bash et non /usr/bin/bash. Ceci est du au fait que le
répertoire /bin est un lien symbolique pointant vers le répertoire /usr/bin.

2026/02/04 15:08 9/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Changez ensuite le shell de trainee en utilisant la commande chsh en indiquant la valeur de /bin/sh pour le nouveau shell :

[trainee@centos8 ~]$ chsh
Changing shell for trainee.
New shell [/bin/bash]
/bin/sh
Password: trainee
Shell changed.

Important : Notez que le mot de passe saisi ne sera pas visible.

Vérifiez ensuite le shell actif pour trainee :

[trainee@centos8 ~]$ echo $SHELL
/bin/bash

Dernièrement contrôlez le shell stipulé dans le fichier /etc/passwd pour trainee :

[trainee@centos8 ~]$ cat /etc/passwd | grep trainee
trainee:x:1000:1000:trainee:/home/trainee:/bin/sh

Important : Vous noterez que le shell actif est toujours /bin/bash tandis que le shell
stipulé dans le fichier /etc/passwd est le /bin/sh. Le shell /bin/sh ne deviendra le shell
actif de trainee que lors de sa prochaine connexion au système.

Modifiez votre shell à /bin/bash de nouveau en utilisant la commande chsh :

[trainee@centos8 ~]$ chsh

2026/02/04 15:08 10/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Changing shell for trainee.
New shell [/bin/sh]: /bin/bash
Password: trainee
Shell changed.

Important : Notez que le mot de passe saisi ne sera pas visible.

1.4 - Le Prompt

Le prompt d'un utilisateur dépend de son statut :

$ pour un utilisateur normal,
pour root.

1.5 - Rappeler des Commandes

Le shell /bin/bash permet le rappel des dernières commandes saisies. Afin de connaître la liste des commandes mémorisées, utilisez la commande
history :

[trainee@centos8 ~]$ history | more
 1 su -
 2 exit
 3 su -
 4 nmcli c show
 5 stty -a
 6 date
 7 who
 8 df
 9 df -h

2026/02/04 15:08 11/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

 10 free free -h
 11 free
 12 free -h
 13 whoami
 14 su -
 15 pwd
 16 cd /tmp
 17 pwd
 18 ls
 19 su -
 20 touch test
 21 ls
 22 echo fenestros
 23 cp test ~
--More--

Important: L'historique est spécifique à chaque utilisateur.

L'historique des commandes est en mode emacs par défaut. De ce fait, le rappel de la dernière commande se fait en utilisant la touche [Flèche vers
le haut] ou bien les touches [CTRL]-[P] et le rappel de la commande suivante se fait en utilisant la touche [Flèche vers le bas] ou bien les touches
[CTRL]-[N] :

Caractère de Contrôle Définition
[CTRL]-[P] (= flèche vers le haut) Rappelle la commande précédente
[CTRL]-[N] (= flèche vers le bas) Rappelle la commande suivante

Pour se déplacer dans la ligne de l'historique :

Caractère de Contrôle Définition
[CTRL]-[A] Se déplacer au début de la ligne
[CTRL]-[E] Se déplacer à la fin de la ligne

2026/02/04 15:08 12/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère de Contrôle Définition
[CTRL]-[B] Se déplacer un caractère à gauche
[CTRL]-[F] Se déplacer un caractère à droite
[CTRL]-[D] Supprimer le caractère sous le curseur

Pour rechercher dans l'historique il convient d'utiliser les touches :

Caractère de Contrôle Définition

[CTRL]-[R] chaine Recherche en arrière de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[S] chaine Recherche en avant de chaine dans l'historique. L'utilisation successive de la combinaison de touches par la suite recherche
d'autres occurences de chaine

[CTRL]-[G] Sortir du mode recherche

Il est aussi possible de rappeler la dernière commande de l'historique en utilisant les caractères !!:

[trainee@centos8 ~]$ ls
aac abc bca xyz
[trainee@centos8 ~]$!!
ls
aac abc bca xyz

Vous pouvez rappeler une commande spécifique de l'historique en utilisant le caractère ! suivi du numéro de la commande à rappeler :

[trainee@centos8 ~]$ history
 1 su -
...
 80 history | more
 81 ls
 82 history
[trainee@centos8 ~]$!81
ls
aac abc bca xyz

2026/02/04 15:08 13/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le paramétrage de la fonction du rappel des commandes est fait pour tous les utilisateurs dans le fichier /etc/profile. Dans ce fichier, les variables
concernant le rappel des commandes peuvent être définis. Le plus important est HISTSIZE :

[trainee@centos8 ~]$ cat /etc/profile | grep HISTSIZE
HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

Vous noterez que dans le cas précédent, la valeur de HISTSIZE est de 1000. Ceci implique que les dernières mille commandes sont mémorisées.

Les commandes mémorisées sont stockées dans le fichier ~/.bash_history. Les commandes de la session en cours ne sont sauvegardées dans ce
fichier qu'à la fermerture de la session :

[trainee@centos8 ~]$ nl .bash_history | tail
 54 ls
 55 ls | sort
 56 ls | sort -r
 57 more /etc/services
 58 less /etc/services
 59 find acc
 60 find aac
 61 su -
 62 sleep 10
 63 su -

Important : Notez l'utilisation de la commande nl pour numéroter les lignes de l'affichage
du contenu du fichier .bash_history.

1.6 - Générer les fins de noms de fichiers

Le shell /bin/bash permet la génération des fins de noms de fichiers. Celle-ci est accomplie grâce à l'utilisation de la touche [Tab]. Dans l'exemple qui

2026/02/04 15:08 14/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

suit, la commande saisie est :

$ ls .b [Tab][Tab][Tab]

[trainee@centos8 ~]$ ls .bash
.bash_history .bash_logout .bash_profile .bashrc

Important : Notez qu'en appuyant sur la touche Tab trois fois le shell propose 4
possibilités de complétion de nom de fichier. En effet, sans plus d'information, le shell ne
sait pas quel fichier est concerné.

La même possibilité existe pour la génération des fins de noms de commandes. Dans ce cas saisissez la commande suivante :

$ mo [Tab][Tab]

Appuyez sur la touche Tab deux fois. Vous obtiendrez une fenêtre similaire à celle-ci :

[trainee@centos8 ~]$ mo
modinfo more mount.nfs4
modprobe mount mountpoint
modulemd-validator mount.fuse mountstats
modulemd-validator-v1 mount.nfs

1.7 - Le shell interactif

Lors de l'utilisation du shell, nous avons souvent besoin d'exécuter une commande sur plusieurs fichiers au lieu de les traiter individuellement. A cette
fin nous pouvons utiliser les caractères spéciaux.

2026/02/04 15:08 15/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère Spéciaux Description
* Représente 0 ou plus de caractères
? Représente un caractère
[abc] Représente un caractère parmi ceux entre crochets
[!abc] Représente un caractère ne trouvant pas parmi ceux entre crochets
?(expression1|expression2| …) Représente 0 ou 1 fois l'expression1 ou 0 ou 1 fois l'expression2 …
*(expression1|expression2| …) Représente 0 à x fois l'expression1 ou 0 à x fois l'expression2 …
+(expression1|expression2| …) Représente 1 à x fois l'expression1 ou 1 à x fois l'expression2 …
@(expression1|expression2| …) Représente 1 fois l'expression1 ou 1 fois l'expression2 …
!(expression1|expression2| …) Représente 0 fois l'expression1 ou 0 fois l'expression2 …

Caractère *

Dans votre répertoire individuel, créez un répertoire training. Ensuite créez dans ce répertoire 5 fichiers nommés respectivement f1, f2, f3, f4 et f5 :

[trainee@centos8 ~]$ mkdir training
[trainee@centos8 ~]$ cd training
[trainee@centos8 training]$ touch f1 f2 f3 f4 f5
[trainee@centos8 training]$ ls
f1 f2 f3 f4 f5

Afin de démontrer l'utilisation du caractère spécial *, saisissez la commande suivante :

[trainee@centos8 training]$ echo f*
f1 f2 f3 f4 f5

Important : Notez que le caractère * remplace un caractère ou une suite de caractères.

2026/02/04 15:08 16/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Caractère ?

Créez maintenant les fichiers f52 et f62 :

[trainee@centos8 training]$ touch f52 f62

Saisissez ensuite la commande suivante :

[trainee@centos8 training]$ echo f?2
f52 f62

Important : Notez que le caractère ? remplace un seul caractère.

Caractères []

L'utilisation peut prendre plusieurs formes différentes :

Joker Description
[xyz] Représente le caractère x ou y ou z
[m-t] Représente le caractère m ou n …. t
[!xyz] Représente un caractère autre que x ou y ou z
[!m-t] Représente un caractère autre que m ou n …. t

Afin de démontrer l'utilisation des caractères [et], créez le fichier a100 :

[trainee@centos8 training]$ touch a100

Ensuite saisissez les commandes suivantes et notez le résultat :

2026/02/04 15:08 17/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ echo [a-f]*
a100 f1 f2 f3 f4 f5 f52 f62

Important : Notez ici que tous les fichiers commençant par les lettres a, b, c, d, e ou f
sont affichés à l'écran.

[trainee@centos8 training]$ echo [af]*
a100 f1 f2 f3 f4 f5 f52 f62

Important : Notez ici que tous les fichiers commençant par les lettres a ou f sont affichés
à l'écran.

[trainee@centos8 training]$ echo [!a]*
f1 f2 f3 f4 f5 f52 f62

Important : Notez ici que tous les fichiers sont affichés à l'écran, à l'exception d'un fichier
commençant par la lettre a .

[trainee@centos8 training]$ echo [a-b]*
a100

Important : Notez ici que seul le fichier commençant par la lettre a est affiché à l'écran
car il n'existe pas de fichiers commençant par la lettre b.

2026/02/04 15:08 18/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ echo [a-f]
[a-f]

Important : Notez que dans ce cas, il n'existe pas de fichiers dénommés a, b, c, d, e ou f.
Pour cette raison, n'ayant trouvé aucune correspondance entre le filtre utilisé et les objets
dans le répertoire courant, le commande echo retourne le filtre passé en argument, c'est-
à-dire [a-f].

1.8 - L'option extglob

Activez l'option extglob du shell bash afin de pouvoir utiliser ?(expression), *(expression), +(expression), @(expression) et !(expression) :

[trainee@centos8 training]$ shopt -s extglob

La commande shopt est utilisée pour activer ou désactiver les options du comportement optional du shell. La liste des options peut être visualisée en
exécutant la commande shopt sans options :

[trainee@centos8 training]$ shopt
autocd off
cdable_vars off
cdspell off
checkhash off
checkjobs off
checkwinsize on
cmdhist on
compat31 off
compat32 off
compat40 off
compat41 off

2026/02/04 15:08 19/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

direxpand off
dirspell off
dotglob off
execfail off
expand_aliases on
extdebug off
extglob on
extquote on
failglob off
force_fignore on
globstar off
gnu_errfmt off
histappend on
histreedit off
histverify off
hostcomplete off
huponexit off
interactive_comments on
lastpipe off
lithist off
login_shell on
mailwarn off
no_empty_cmd_completion off
nocaseglob off
nocasematch off
nullglob off
progcomp on
promptvars on
restricted_shell off
shift_verbose off
sourcepath on
xpg_echo of

2026/02/04 15:08 20/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

?(expression)

Créez les fichiers f, f.txt, f123.txt, f123123.txt, f123123123.txt :

[trainee@centos8 training]$ touch f f.txt f123.txt f123123.txt f123123123.txt

Saisissez la commande suivante :

[trainee@centos8 training]$ ls f?(123).txt
f123.txt f.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 0 ou 1
occurence de la chaîne 123.

*(expression)

Saisissez la commande suivante :

[trainee@centos8 training]$ ls f*(123).txt
f123123123.txt f123123.txt f123.txt f.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant de 0
jusqu'à x occurences de la chaîne 123.

2026/02/04 15:08 21/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

+(expression)

Saisissez la commande suivante :

[trainee@centos8 training]$ ls f+(123).txt
f123123123.txt f123123.txt f123.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant entre
1 et x occurences de la chaîne 123.

@(expression)

Saisissez la commande suivante :

[trainee@centos8 training]$ ls f@(123).txt
f123.txt

Important : Notez ici que la commande affiche les fichiers ayant un nom contenant 1
seule occurence de la chaîne 123.

!(expression)

Saisissez la commande suivante :

[trainee@centos8 training]$ ls f!(123).txt

2026/02/04 15:08 22/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

f123123123.txt f123123.txt f.txt

Important : Notez ici que la commande n'affiche que les fichiers ayant un nom qui ne
contient pas la chaîne 123.

Caractères d'Échappement

Afin d'utiliser un caractère spécial dans un contexte littéral, il faut utiliser un caractère d'échappement. Il existe trois caractères d'échappement :

Caractère Description
\ Protège le caractère qui le suit
' ' Protège tout caractère, à l'exception du caractère ' lui-même, se trouvant entre les deux '
“ ” Protège tout caractère, à l'exception des caractères “ lui-même, $, \ et ', se trouvant entre les deux “

Afin d'illustrer l'utilisation des caractères d'échappement, considérons la commande suivante :

$ echo * est un caractère spécial [Entrée]

Lors de la saisie de cette commande dans votre répertoire training, vous obtiendrez une fenêtre similaire à celle-ci :

[trainee@centos8 training]$ echo * est un caractère spécial
a100 f f1 f123123123.txt f123123.txt f123.txt f2 f3 f4 f5 f52 f62 f.txt est un caractère spécial

[trainee@centos8 training]$ echo * est un caractère spécial
* est un caractère spécial

[trainee@centos8 training]$ echo "* est un caractère spécial"
* est un caractère spécial

2026/02/04 15:08 23/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ echo '* est un caractère spécial'
* est un caractère spécial

1.9 - Codes Retour

Chaque commande retourne un code à la fin de son exécution. La variable spéciale $? sert à stocker le code retour de la dernière commande
exécutée.

Par exemple :

[trainee@centos8 training]$ cd ..
[trainee@centos8 ~]$ mkdir codes
[trainee@centos8 ~]$ echo $?
0
[trainee@centos8 ~]$ touch codes/exit.txt
[trainee@centos8 ~]$ rmdir codes
rmdir: failed to remove ‘codes’: Directory not empty
[trainee@centos8 ~]$ echo $?
1

Dans cette exemple la création du répertoire codes s'est bien déroulée. Le code retour stocké dans la variable $? est un zéro.

La suppression du répertoire a rencontré une erreur car codes contenait le fichier retour. Le code retour stocké dans la variable $? est un un.

Si le code retour est zéro la dernière commande s'est déroulée sans erreur.

Si le code retour est autre que zéro la dernière commande s'est déroulée avec une erreur.

1.10 - Redirections

Votre dialogue avec le système Linux utilise des canaux d’entrée et de sortie. On appelle le clavier, le canal d’entrée standard et l’écran, le canal
de sortie standard :

2026/02/04 15:08 24/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Autrement dit, en tapant une commande sur le clavier, vous voyez le résultat de cette commande à l’écran.

Parfois, cependant il est utile de re-diriger le canal de sortie standard vers un fichier. De cette façon, le résultat d’une commande telle free peut être
stocké dans un fichier pour une consultation ultérieure :

Cet effet est obtenu en utilisant une redirection :

[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ cd training
[trainee@centos8 training]$ free > file
[trainee@centos8 training]$ cat file
 total used free shared buff/cache available
Mem: 500780 192692 38916 4824 269172 260472
Swap: 2096124 0 2096124

Si le fichier cible n’existe pas, il est créé et son contenu sera le résultat de la commande free.

https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Acentos%3A8%3Autilisateur%3Al105&media=free:stdin.png
https://ittraining.team/lib/exe/detail.php?id=elearning%3Aworkbooks%3Acentos%3A8%3Autilisateur%3Al105&media=free:redirection.png

2026/02/04 15:08 25/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Par contre si le fichier existe déjà, il sera écrasé :

[trainee@centos8 training]$ date > file
[trainee@centos8 training]$ cat file
Mon 28 Nov 15:48:09 CET 2016

Pour ajouter des données supplémentaires au même fichier cible, il faut utiliser une double redirection :

[trainee@centos8 training]$ free >> file
[trainee@centos8 training]$ cat file
Mon 28 Nov 15:48:09 CET 2016
 total used free shared buff/cache available
Mem: 500780 192792 38516 4824 269472 260376
Swap: 2096124 0 2096124

De cette façon, la date du jour sera rajoutée à la fin de votre fichier après les informations de la commande free.

Important : Notez que la sortie standard ne peut être redirigée que dans une seule
direction.

Les canaux d’entrées et de sorties sont numérotés :

0 = Le Canal d’entrée Standard
1 = Le Canal de Sortie Standard
2 = Le Canal d’erreur

La commande suivante créera un fichier nommé errorlog qui contient les messages d’erreur de l’exécution de la commande rmdir :

[trainee@centos8 training]$ cd ..
[trainee@centos8 ~]$ rmdir training/ 2>errorlog
[trainee@centos8 ~]$ cat errorlog

2026/02/04 15:08 26/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

rmdir: failed to remove ‘training/’: Directory not empty

En effet l'erreur est générée parce que le répertoire training n'est pas vide.

Nous pouvons également réunir des canaux. Pour mettre en application ceci, il faut comprendre que le shell traite les commandes de gauche à
droite.

Dans l’exemple suivant, nous réunissons le canal de sortie et le canal d’erreurs :

[trainee@centos8 ~]$ free > file 2>&1

La syntaxe 2>&1 envoie la sortie du canal 2 au même endroit que le canal 1, à savoir le fichier dénommé file.

Il est possible de modifier le canal d'entrée standard afin de lire des informations à partir d’un fichier. Dans ce cas la redirection est obtenue en
utilisant le caractère < :

[trainee@centos8 ~]$ wc -w < errorlog
8

Dans cet exemple la commande wc compte le nombre de mots (-w) dans le fichier errorlog et l’affiche à l’écran :

D'autres redirections existent :

Caractères Définition
&> Rediriger les canaux 1 et 2 au même endroit

<< Permet d'utiliser le texte taper ensuite en tant que entrée standard. Par exemple programme << EOF utilisera le texte taper après en
tant qu'entrée standard jusqu'à l'apparition de EOF sur une ligne seule.

<> Permet d'utiliser le fichier specifié en tant que entrée standard et sortie standard

1.11 - Pipes

Il est aussi possible de relier des commandes avec un pipe | .

Dans ce cas, le canal de sortie de la commande à gauche du pipe est envoyé au canal d’entrée de la commande à droite du pipe :

2026/02/04 15:08 27/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ ls | wc -w
7

Cette commande, lancée dans votre répertoire personnel, prend la sortie de la commande ls et demande à la commande wc de compter le nombre de
mots inclus dans la sortie de ls :

Important : Il est à noter qu'il est possible de relier plusieurs tubes dans la même
commande.

Rappelez-vous que la sortie standard ne peut être redirigée que dans une seule direction. Afin de pouvoir rediriger la sortie standard vers un fichier et
la visualiser à l'écran, nous devons utiliser la commande tee avec un pipe :

[trainee@centos8 ~]$ date | tee file1
Tue 20 Apr 10:39:47 EDT 2021
[trainee@centos8 ~]$ cat file1
Tue 20 Apr 10:39:47 EDT 2021

Cette même technique nous permet de créer deux fichiers :

[trainee@centos8 ~]$ date | tee file1 > file2
[trainee@centos8 ~]$ cat file1
Tue 20 Apr 10:40:36 EDT 2021
[trainee@centos8 ~]$ cat file2
Tue 20 Apr 10:40:36 EDT 2021

Important : Par défaut la commande tee écrase le fichier de destination. Pour ajouter des
données supplémentaires au même fichier cible, il convient d'utiliser l'option -a de la
commande tee.

2026/02/04 15:08 28/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

1.12 - Substitutions de Commandes

Il est parfois intéressant, notamment dans les scripts, de remplacer une commande par sa valeur de sa sortie. Afin d'illustrer ce point, considérons les
commandes suivantes :

[trainee@centos8 ~]$ echo date
date
[trainee@centos8 ~]$ echo $(date)
Tue 20 Apr 10:41:33 EDT 2021
[trainee@centos8 ~]$ echo `date`
Tue 20 Apr 10:41:45 EDT 2021

Important : Notez le format de chaque substitution $(commande) ou `commande`. Sur
un clavier français, l'anti-côte est accessible en utilisant les touches Alt Gr et 77 .

1.13 - Chainage de Commandes

Il est possible de regrouper des commandes à l’aide d’un sous-shell :

$ (ls -l; ps; who) > list [Entrée]

Cet exemple envoie le résultat des trois commandes vers le fichier list en les traitant en tâches de fond.

Les commandes peuvent être aussi chainées en fonction du code retour de la commande précédente.

&& est utilisé afin de s’assurer que la deuxième commande s’exécute dans le cas où la valeur du statut de sortie est 0, autrement dit qu’il n’y a pas eu
d’erreurs.

|| est utilisé afin de s’assurer de l’inverse.

2026/02/04 15:08 29/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Le syntaxe de cette commande est :

Commande1 && Commande2

Dans ce cas, Commande 2 est exécutée uniquement dans le cas où Commande1 s’est exécuté sans erreur

Ou :

Commande1 || Commande2

Dans ce cas, Commande2 est exécuté si Commande1 a rencontré une erreur.

1.14 - Affichage des variables du shell

Une variable du shell peut être affichée grâce à la commande :

$ echo $VARIABLE [Entrée]

Les variables principales

Variable Description
BASH Le chemin complet du shell.
BASH_VERSION La version du shell.
EUID EUID de l'utilisateur courant.
UID UID de l'utilisateur courant.
PPID Le PID du processus père.
PWD Le répertoire courant.
OLDPWD Le répertoire avant la dernière commande cd. Même chose que la commande cd -.
RANDOM Un nombre aléatoire entre 0 et 32767
SECONDS Le nombre de scondes écoules depuis le lancement du shell
LINES Le nombre de lignes de l'écran.

2026/02/04 15:08 30/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Variable Description
COLUMNS La largeur de l'écran.
HISTFILE Le fichier historique
HISTFILESIZE La taille du fichier historique
HISTSIZE Le nombre de commandes mémorisées dans le fichier historique
HISTCMD Le numéro de la commande courante dans l'historique
HISTCONTROL ignorespace ou ignoredups ou ignoreboth
HOME Le répertoire de connexion.
HOSTTYPE Le type de machine.
OSTYPE Le système d'exploitation.
MAIL Le fichier contenant le courrier.
MAILCHECK La fréquence de vérification du courrier en secondes.
PATH Le chemin de recherche des commandes.
PROMPT_COMMAND La commande exécutée avant chaque affichage du prompt.
PS1 Le prompt par défaut.
PS2 Le deuxième prompt par défaut
PS3 Le troisième prompt par défaut
PS4 Le quatrième prompt par défaut
SHELL Le shell de préférence.
SHLVL Le nombre d'instances du shell.
TMOUT Le nombre de secondes moins 60 d'inactivité avant que le shell exécute la commande exit.

Les Variables de Régionalisation et d'Internationalisation

L'Internationalisation, aussi appelé i18n car il y a 18 lettres entre la lettre I et la lettre n dans le mot Internationalization, consiste à adapter un
logiciel aux paramètres variant d'une région à l'autre :

longueur des mots,
accents,
écriture de gauche à droite ou de droite à gauche,
unité monétaire,

2026/02/04 15:08 31/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

styles typographiques et modèles rédactionnels,
unités de mesures,
affichage des dates et des heures,
formats d'impression,
format du clavier,
etc …

Le Régionalisation, aussi appelé l10n car il y a 10 lettres entre la lettre L et la lettre n du mot Localisation, consiste à modifier l'internalisation en
fonction d'une région spécifique.

Le code pays complet prend la forme suivante : langue-PAYS.jeu_de_caractères. Par exemple, pour la langue anglaise les valeurs de langue-PAYS
sont :

en_GB = Great Britain,
en_US = USA,
en_AU = Australia,
en_NZ = New Zealand,
en_ZA = South Africa,
en_CA = Canada.

Les variables système les plus importants contenant les informations concernant le régionalisation sont :

Variable Description
LC_ALL Avec une valeur non nulle, celle-ci prend le dessus sur la valeur de toutes les autres variables d'internationalisation
LANG Fournit une valeur par défaut pour les variables d'environnement dont la valeur est nulle ou non définie.
LC_CTYPE Détermine les paramètres régionaux pour l'interprétation de séquence d'octets de données texte en caractères.

Par exemple :

[trainee@centos8 ~]$ echo $LC_ALL

[trainee@centos8 ~]$ echo $LC_CTYPE

[trainee@centos8 ~]$ echo $LANG

2026/02/04 15:08 32/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

en_GB.UTF-8
[trainee@centos8 ~]$ locale
LANG=en_GB.UTF-8
LC_CTYPE="en_GB.UTF-8"
LC_NUMERIC="en_GB.UTF-8"
LC_TIME="en_GB.UTF-8"
LC_COLLATE="en_GB.UTF-8"
LC_MONETARY="en_GB.UTF-8"
LC_MESSAGES="en_GB.UTF-8"
LC_PAPER="en_GB.UTF-8"
LC_NAME="en_GB.UTF-8"
LC_ADDRESS="en_GB.UTF-8"
LC_TELEPHONE="en_GB.UTF-8"
LC_MEASUREMENT="en_GB.UTF-8"
LC_IDENTIFICATION="en_GB.UTF-8"
LC_ALL=

Les variables spéciales

Variable Description
$LINENO Contient le numéro de la ligne courante du script ou de la fonction
$$ Contient le PID du shell en cours
$PPID Contient le PID du processus parent du shell en cours
$0 Contient le nom du script en cours tel que ce nom ait été saisi sur la ligne de commande
$1, $2 … Contient respectivement le premier argument, deuxième argument etc passés au script
$# Contient le nombre d'arguments passés au script
$* Contient l'ensemble des arguments passés au script
$@ Contient l'ensemble des arguments passés au script

1.15 - La Commande env

La commande env envoie sur la sortie standard les valeurs des variables système de l'environnement de l'utilisateur qui l'invoque :

2026/02/04 15:08 33/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ env
LS_COLORS=rs=0:di=38;5;33:ln=38;5;51:mh=00:pi=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38;5;11:cd=48;5;232;38;
5;3:or=48;5;232;38;5;9:mi=01;05;37;41:su=48;5;196;38;5;15:sg=48;5;11;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5
;16:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5;40:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj=38;5;9:*.taz=38
;5;9:*.lha=38;5;9:*.lz4=38;5;9:*.lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5;9:*.tzo=38;5;9:*.t7z=38;5;9:*.z
ip=38;5;9:*.z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.zst=38;5;9:*.tzs
t=38;5;9:*.bz2=38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*.tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9:*
.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cpio=38;5;9:*.7z=38;5
;9:*.rz=38;5;9:*.cab=38;5;9:*.wim=38;5;9:*.swm=38;5;9:*.dwm=38;5;9:*.esd=38;5;9:*.jpg=38;5;13:*.jpeg=38;5;13:*.mj
pg=38;5;13:*.mjpeg=38;5;13:*.gif=38;5;13:*.bmp=38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;13:*.tga=38;5;13:*.
xbm=38;5;13:*.xpm=38;5;13:*.tif=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38;5;13:*.svgz=38;5;13:*.mng=38;5;13:*
.pcx=38;5;13:*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5;13:
.mp4=38;5;13:.m4v=38;5;13:*.mp4v=38;5;13:*.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38;5;13:*.asf=38;5;13:*
.rm=38;5;13:*.rmvb=38;5;13:*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv=38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xc
f=38;5;13:*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf=38;5;13:*.ogv=38;5;13:*.ogx=38;5;13:*.aac=38;5;45:*.au=
38;5;45:*.flac=38;5;45:*.m4a=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38;5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg
=38;5;45:*.ra=38;5;45:*.wav=38;5;45:*.oga=38;5;45:*.opus=38;5;45:*.spx=38;5;45:*.xspf=38;5;45:
SSH_CONNECTION=10.0.2.2 42834 10.0.2.15 22
LANG=en_GB.UTF-8
HISTCONTROL=ignoredups
GUESTFISH_RESTORE=\e[0m
HOSTNAME=centos8.ittraining.loc
GUESTFISH_INIT=\e[1;34m
XDG_SESSION_ID=9
USER=trainee
GUESTFISH_PS1=\[\e[1;32m\]><fs>\[\e[0;31m\]
SELINUX_ROLE_REQUESTED=
PWD=/home/trainee
HOME=/home/trainee
SSH_CLIENT=10.0.2.2 42834 22
SELINUX_LEVEL_REQUESTED=
SSH_TTY=/dev/pts/0
MAIL=/var/spool/mail/trainee
TERM=xterm-256color

2026/02/04 15:08 34/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

SHELL=/bin/bash
SELINUX_USE_CURRENT_RANGE=
SHLVL=1
LOGNAME=trainee
DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/1000/bus
XDG_RUNTIME_DIR=/run/user/1000
PATH=/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
GUESTFISH_OUTPUT=\e[0m
HISTSIZE=1000
LESSOPEN=||/usr/bin/lesspipe.sh %s
_=/usr/bin/env
OLDPWD=/home/trainee/training

La commande peut aussi être utilisée pour fixer une variable lors de l'exécution d'une commande. Par exemple, pour lancer xterm avec la variable
EDITOR fixée à vi :

$ env EDITOR=vim xterm

1.16 - Options du Shell Bash

Pour visualiser les options du shell bash, il convient d'utiliser la commande set :

$ set -o [Entrée]

Par exemple :

[trainee@centos8 ~]$ set -o
allexport off
braceexpand on
emacs on
errexit off
errtrace off

2026/02/04 15:08 35/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

functrace off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
pipefail off
posix off
privileged off
verbose off
vi off
xtrace off

Pour activer une option il convient de nouveau à utiliser la commande set :

[trainee@centos8 ~]$ set -o allexport
[trainee@centos8 ~]$ set -o
allexport on
braceexpand on
...

Notez que l'option allexport a été activée.

Pour désactiver une option, on utilise la commande set avec l'option +o :

2026/02/04 15:08 36/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

$ set +o allexport [Entrée]

[trainee@centos8 ~]$ set +o allexport
[trainee@centos8 ~]$ set -o
allexport off
braceexpand on
...

Parmi les options, voici la description des plus intéressantes :

Option Valeur par Défaut Description
allexport off Le shell export automatiquement toute variable
emacs on L'édition de la ligne de commande est au style emacs
history on L'historique des commandes est activé
noclobber off Les simples re-directions n'écrasent pas le fichier de destination
noglob off Désactive l'expansion des caractères génériques
nounset off Le shell retourne une erreur lors de l'expansion d'une variable inconnue
verbose off Affiche les lignes de commandes saisies
vi off L'édition de la ligne de commande est au style vi

Exemples

noclobber

[trainee@centos8 ~]$ set -o noclobber
[trainee@centos8 ~]$ pwd > file
-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd > file
-bash: file: cannot overwrite existing file
[trainee@centos8 ~]$ pwd >| file
[trainee@centos8 ~]$ set +o noclobber

2026/02/04 15:08 37/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Important : Notez que l'option noclobber peut être contournée en utilisant la redirection
suivi par le caractère |.

noglob

[trainee@centos8 ~]$ set -o noglob
[trainee@centos8 ~]$ echo *
*
[trainee@centos8 ~]$ set +o noglob
[trainee@centos8 ~]$ echo *
aac abc bca codes Desktop Documents Downloads errorlog file file1 Music Pictures Public Templates training Videos
vitext xyz

Important : Notez que l'effet du caractère spécial est annulé sous l'influence de l'option
noglob.

nounset

[trainee@centos8 ~]$ set -o nounset
[trainee@centos8 ~]$ echo $FENESTROS
-bash: FENESTROS: unbound variable
[trainee@centos8 ~]$ set +o nounset
[trainee@centos8 ~]$ echo $FENESTROS

2026/02/04 15:08 38/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$

Important : Notez que la variable inexistante $FENESTROS est identifiée comme telle
sous l'influence de l'option nounset. Or le comportement habituel de Linux est de
retourner une ligne vide qui n'indique pas si la variable n’existe pas ou si elle est
simplement vide.

LAB #2 - Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point où vous êtes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contrôle des services.

Écrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut être adressée que lors
d'une formation dédiée à l'écriture des scripts.

2.1 - Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une manière séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse être lu au quel cas le script est exécuté par un shell fils soit en l'appelant en argument à l'appel du
shell :

/bin/bash myscript

soit en redirigeant son entrée standard :

/bin/bash < myscript

Dans le cas où le droit d'exécution est positionné sur le fichier script et à condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
l'utilisateur qui le lance, le script peut être lancé en l'appelant simplement par son nom :

2026/02/04 15:08 39/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

myscript

Pour lancer le script sans qu'il soit dans un répertoire du PATH, il convient de se placer dans le répertoire contenant le script et de le lancer ainsi :

./myscript

Dans le cas où le script doit être exécuté par le shell courant, dans les mêmes conditions que l'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent à d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractère #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit être utilisé pour
l'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de l'utilisateur qui le lance. Le pseudo commentaire commence avec les
caractères #!. Chaque script commence donc par une ligne similaire à celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent être saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer l'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@centos8 ~]$ script
Script started, file is typescript
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit
Script done, file is typescript

[trainee@centos8 ~]$ cat typescript

2026/02/04 15:08 40/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Script started on 2021-04-20 10:59:58-04:00
[trainee@centos8 ~]$ pwd
/home/trainee
[trainee@centos8 ~]$ ls
aac abc bca codes errorlog file file1 file2 training typescript xyz
[trainee@centos8 ~]$ exit
exit

Script done on 2021-04-20 11:00:09-04:00

Cette procédure peut être utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer l'écriture et l'exécution d'un script, créez le fichier myscript avec vi :

[trainee@centos8 ~]$ vi myscript
[trainee@centos8 ~]$ cat myscript
pwd
ls

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument à /bin/bash :

[trainee@centos8 ~]$ /bin/bash myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Lancez ensuite le script en redirigeant son entrée standard :

[trainee@centos8 ~]$ /bin/bash < myscript
/home/trainee
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Pour lancer le script en l'appelant simplement par son nom, son chemin doit être inclus dans votre PATH:

2026/02/04 15:08 41/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Dans le cas de RHEL/CentOS, même si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@centos8 ~]$ ls
aac bca errorlog file1 myscript typescript
abc codes file file2 training xyz

Créez donc ce répertoire :

[trainee@centos8 ~]$ mkdir bin

Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@centos8 ~]$ mv myscript ~/bin
[trainee@centos8 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en l'appelant par son nom à partir du répertoire /tmp :

[trainee@centos8 ~]$ cd /tmp
[trainee@centos8 tmp]$ myscript
/tmp
expand
expand1
filepartaa
filepartab
filepartac
filepartad
filepartae
greptest
greptest1
greptest.patch

2026/02/04 15:08 42/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

newfile
sales.awk
sales.txt
scriptawk
sedtest
sedtest1
systemd-private-d9ff2376a8a44f0392f860d80c839be4-chronyd.service-6im4Ii

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

[trainee@centos8 tmp]$ cd ~/bin
[trainee@centos8 bin]$./myscript
/home/trainee/bin
myscript
[trainee@centos8 bin]$. myscript
/home/trainee/bin
myscript

A faire : Notez bien la différence entre les sorties de cette dernière commande et la
précédente. Expliquez pourquoi.

2.2 - La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est l'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@centos8 bin]$ read var1 var2 var3 var4
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros

2026/02/04 15:08 43/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 bin]$ echo $var2
edu
[trainee@centos8 bin]$ echo $var3
is
[trainee@centos8 bin]$ echo $var4
great!

Important: Notez que chaque champs a été placé dans une variable différente. Notez
aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
afin de les distinguer des variables système qui sont en majuscules.

[trainee@centos8 bin]$ read var1 var2
fenestros edu is great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is great!

Important : Notez que dans le deuxième cas, le reste de la ligne après le mot fenestros
est mis dans $var2.

Code de retour

La commande read renvoie un code de retour de 0 dans le cas où elle ne reçoit pas l'information fin de fichier matérialisée par les touches Ctrl+D .
Le contenu de la variable var peut être vide et la valeur du code de retour 0 grâce à l'utilisation de la touche Entrée :

2026/02/04 15:08 44/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 bin]$ read var

↵ Entrée

[trainee@centos8 bin]$ echo $?
0
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

Le contenu de la variable var peut être vide et la valeur du code de retour autre que 0 grâce à l'utilisation des touches Ctrl+D :

[trainee@centos8 bin]$ read var

Ctrl+D

[trainee@centos8 bin]$ echo $?
1
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

La variable IFS

La variable IFS contient par défaut les caractères Espace , Tab et Entrée :

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de l'entrée

2026/02/04 15:08 45/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

standard au format octal. Ceci est utile afin de visualiser les caractères non-imprimables.
L'option -c permet de sélectionner des caractères ASCII ou des backslash dans le fichier ou
dans le contenu fourni à l'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut être modifiée :

[trainee@centos8 bin]$ OLDIFS="$IFS"
[trainee@centos8 bin]$ IFS=":"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 : \n
0000002

De cette façon l'espace redevient un caractère normal :

[trainee@centos8 bin]$ read var1 var2 var3
fenestros:edu is:great!
[trainee@centos8 bin]$ echo $var1
fenestros
[trainee@centos8 bin]$ echo $var2
edu is
[trainee@centos8 bin]$ echo $var3
great!

Restaurez l'ancienne valeur de IFS avec la commande IFS=“$OLDIFS”

[trainee@centos8 bin]$ IFS="$OLDIFS"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n
0000004

2026/02/04 15:08 46/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

2.3 - La commande test

La commande test peut être utilisée avec deux syntaxes :

test expression

ou

[EspaceexpressionEspace]

Tests de Fichiers

Test Description
-f fichier Retourne vrai si fichier est d'un type standard
-d fichier Retourne vrai si fichier est d'un type répertoire
-r fichier Retourne vrai si l'utilisateur peut lire fichier
-w fichier Retourne vrai si l'utilisateur peut modifier fichier
-x fichier Retourne vrai si l'utilisateur peut exécuter fichier
-e fichier Retourne vrai si fichier existe
-s fichier Retourne vrai si fichier n'est pas vide
fichier1 -nt fichier2 Retourne vrai si fichier1 est plus récent que fichier2
fichier1 -ot fichier2 Retourne vrai si fichier1 est plus ancien que fichier2
fichier1 -ef fichier2 Retourne vrai si fichier1 est identique à fichier2

Testez si le fichier a100 est un fichier ordinaire :

[trainee@centos8 bin]$ cd ../training/
[trainee@centos8 training]$ test -f a100
[trainee@centos8 training]$ echo $?
0
[trainee@centos8 training]$ [-f a100]
[trainee@centos8 training]$ echo $?

2026/02/04 15:08 47/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

0

Testez si le fichier a101 existe :

[trainee@centos8 training]$ [-f a101]
[trainee@centos8 training]$ echo $?
1

Testez si /home/trainee/training est un répertoire :

[trainee@centos8 training]$ [-d /home/trainee/training]
[trainee@centos8 training]$ echo $?
0

Tests de chaînes de caractère

Test Description
-n chaîne Retourne vrai si chaîne n'est pas de longueur 0
-z chaîne Retourne vrai si chaîne est de longueur 0
string1 = string2 Retourne vrai si string1 est égale à string2
string1 != string2 Retourne vrai si string1 est différente de string2
string1 Retourne vrai si string1 n'est pas vide

Testez si les deux chaînes sont égales :

[trainee@centos8 training]$ string1="root"
[trainee@centos8 training]$ string2="fenestros"
[trainee@centos8 training]$ [$string1 = $string2]
[trainee@centos8 training]$ echo $?
1

Testez si la string1 n'a pas de longueur 0 :

2026/02/04 15:08 48/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ [-n $string1]
[trainee@centos8 training]$ echo $?
0

Testez si la string1 a une longueur de 0 :

[trainee@centos8 training]$ [-z $string1]
[trainee@centos8 training]$ echo $?
1

Tests sur des nombres

Test Description
value1 -eq value2 Retourne vrai si value1 est égale à value2
value1 -ne value2 Retourne vrai si value1 n'est pas égale à value2
value1 -lt value2 Retourne vrai si value1 est inférieure à value2
value1 -le value2 Retourne vrai si value1 est inférieur ou égale à value2
value1 -gt value2 Retourne vrai si value1 est supérieure à value2
value1 -ge value2 Retourne vrai si value1 est supérieure ou égale à value2

Comparez les deux nombres value1 et value2 :

[trainee@centos8 training]$ read value1
35
[trainee@centos8 training]$ read value2
23
[trainee@centos8 training]$ [$value1 -lt $value2]
[trainee@centos8 training]$ echo $?
1
[trainee@centos8 training]$ [$value2 -lt $value1]
[trainee@centos8 training]$ echo $?
0

2026/02/04 15:08 49/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ [$value2 -eq $value1]
[trainee@centos8 training]$ echo $?
1

Les opérateurs

Test Description
!expression Retourne vrai si expression est fausse
expression1 -a expression2 Représente un et logique entre expression1 et expression2
expression1 -o expression2 Représente un ou logique entre expression1 et expression2
\(expression\) Les parenthèses permettent de regrouper des expressions

Testez si $file n'est pas un répertoire :

[trainee@centos8 training]$ file=a1OO
[trainee@centos8 training]$ [! -d $file]
[trainee@centos8 training]$ echo $?
0

Testez si $directory est un répertoire et si l'utilisateur à le droit de le traverser :

[trainee@centos8 training]$ directory=/usr
[trainee@centos8 training]$ [-d $directory -a -x $directory]
[trainee@centos8 training]$ echo $?
0

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [-w a100 -a \(-d /usr -o -d /tmp \)]
[trainee@centos8 training]$ echo $?
0

2026/02/04 15:08 50/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Tests d'environnement utilisateur

Test Description
-o option Retourne vrai si l'option du shell “option” est activée

[trainee@centos8 training]$ [-o allexport]
[trainee@centos8 training]$ echo $?
1

2.4 - La commande [[expression]]

La commande [[EspaceexpressionEspace]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression]] sauf -a et -o qui sont remplacés par && et || respectivement :

Test Description
!expression Retourne vrai si expression est fausse
expression1 && expression2 Représente un et logique entre expression1 et expression2
expression1 || expression2 Représente un ou logique entre expression1 et expression2
(expression) Les parenthèses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description
string = modele Retourne vrai si chaîne correspond au modèle
string != modele Retourne vrai si chaîne ne correspond pas au modèle
string1 < string2 Retourne vrai si string1 est lexicographiquement avant string2
string1 > string2 Retourne vrai si string1 est lexicographiquement après string2

Testez si l'utilisateur peut écrire dans le fichier a100 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [[-w a100 && (-d /usr || -d /tmp)]]
[trainee@centos8 training]$ echo $?

2026/02/04 15:08 51/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

0

2.5 - Opérateurs du shell

Opérateur Description
Commande1 && Commande2 Commande 2 est exécutée si la première commande renvoie un code vrai
Commande1 || Commande2 Commande 2 est exécutée si la première commande renvoie un code faux

[trainee@centos8 training]$ [[-d /root]] && echo "The root directory exists"
The root directory exists
[trainee@centos8 training]$ [[-d /root]] || echo "The root directory exists"
[trainee@centos8 training]$

2.6 - L'arithmétique

La commande expr

La commande expr prend la forme :

expr Espace value1 Espace opérateur Espace value2 Entrée

ou

expr Tab value1 Tab opérateur Tab value2 Entrée

ou

expr Espace chaîne Espace : Espace expression_régulière Entrée

ou

expr Tab chaîne Tab : Tab expression_régulière Entrée

2026/02/04 15:08 52/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction
* Multiplication
/ Division
% Modulo
\(\) Parenthèses

Opérateurs de Comparaison

Opérateur Description
\< Inférieur
\<= Inférieur ou égal
\> Supérieur
\>= Supérieur ou égal
= égal
!= inégal

Opérateurs Logiques

Opérateur Description
\| ou logique
\& et logique

Ajoutez 2 à la valeur de $x :

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

2026/02/04 15:08 53/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ expr $x+2
2+2

Les opérateurs doivent être protégés :

[trainee@centos8 training]$ expr $x * 2
expr: syntax error
[trainee@centos8 training]$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@centos8 training]$ resultat=`expr $x + 10`
[trainee@centos8 training]$ echo $resultat
12

La commande let

La commande let est l'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs
pas besoin d'espaces ou de tabulations entre les arguments
pas besoin de préfixer les variables d'un $
les caractères spéciaux du shell n'ont pas besoin d'être protégés
les affectations se font dans la commande
exécution plus rapide

Opérateurs Arithmétiques

Opérateur Description
+ Addition
- Soustraction

2026/02/04 15:08 54/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

Opérateur Description
* Multiplication
/ Division
% Modulo
^ Puissance

Opérateurs de comparaison

Opérateur Description
< Inférieur
<= Inférieur ou égal
> Supérieur
>= Supérieur ou égal
== égal
!= inégal

Opérateurs Logiques

Opérateur Description
&& et logique
|| ou logique
! négation logique

Opérateurs travaillant sur les bits

Opérateur Description
~ négation binaire
>> décalage binaire à droite
<< décalage binaire à gauche
& et binaire
| ou binaire
^ ou exclusif binaire

2026/02/04 15:08 55/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ x=2
[trainee@centos8 training]$ ((x=$x+10))
[trainee@centos8 training]$ echo $x
12
[trainee@centos8 training]$ ((x=$x+20))
[trainee@centos8 training]$ echo $x
32

2.7 - Structures de contrôle

If

La syntaxe de la commande If est la suivante :

if condition
then
 commande(s)
else
 commande(s)
fi

ou :

if condition
then
 commande(s)
 commande(s)
fi

ou encore :

2026/02/04 15:08 56/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

if condition
then
 commande(s)
elif condition
then
 commande(s)
elif condition
then
 commande(s)
else
 commande(s)

fi

Créez le script user_check suivant :

[trainee@centos8 training]$ vi user_check
[trainee@centos8 training]$ cat user_check
#!/bin/bash
if [$# -ne 1] ; then
 echo "Mauvais nombre d'arguments"
 echo "Usage : $0 nom_utilisateur"
 exit 1
fi
if grep "^$1:" /etc/passwd > /dev/null
then
 echo "Utilisateur $1 est défini sur ce système"
else
 echo "Utilisateur $1 n'est pas défini sur ce système"
fi
exit 0

Testez-le :

2026/02/04 15:08 57/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

[trainee@centos8 training]$ chmod 770 user_check
[trainee@centos8 training]$./user_check
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos8 training]$./user_check root
Utilisateur root est défini sur ce système
[trainee@centos8 training]$./user_check mickey mouse
Mauvais nombre d'arguments
Usage : ./user_check nom_utilisateur
[trainee@centos8 training]$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce système

case

La syntaxe de la commande case est la suivante :

case $variable in
modele1) commande
 ...
 ;;
modele2) commande
 ...
 ;;
modele3 | modele4 | modele5) commande
 ...
 ;;
esac

Exemple

 case "$1" in

2026/02/04 15:08 58/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 stop
 start
 ;;
 status)
 status
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status}"
 exit 1
esac

Important : L'exemple indique que dans le cas où le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'être définie dans case et est donc en règle générale définie en début de
script. La même logique est appliquée dans le cas où le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} où $0 est remplacé par le nom
du script.

2.8 - Boucles

2026/02/04 15:08 59/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

for

La syntaxe de la commande for est la suivante :

for variable in liste_variables
do
 commande(s)
done

while

La syntaxe de la commande while est la suivante :

while condition
do
 commande(s)
done

Exemple

U=1
while [$U -lt $MAX_ACCOUNTS]
do
useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null
echo "Compte fenestros$U créé"
let U=U+1
done

2026/02/04 15:08 60/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

2.8 - Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans l'ordre suivant :

/etc/profile,
~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL/CentOS, le système exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts
suivants ligne par ligne.

~/.bash_profile

[trainee@centos8 training]$ cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

2026/02/04 15:08 61/61 LCF405 - La Ligne de Commande

www.ittraining.team - https://ittraining.team/

~/.bashrc

[trainee@centos8 training]$ cat ~/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

Copyright © 2024 Hugh Norris.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:centos:8:utilisateur:l105

Last update: 2024/04/28 15:11

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:centos:8:utilisateur:l105

	LCF405 - La Ligne de Commande
	Contenu du Module
	Le Shell
	LAB #1 - Le Shell /bin/bash
	1.1 - Les Commandes Internes et Externes au shell
	1.2 - Les alias
	1.3 - Définir le Shell d'un Utilisateur
	1.4 - Le Prompt
	1.5 - Rappeler des Commandes
	1.6 - Générer les fins de noms de fichiers
	1.7 - Le shell interactif
	Caractère *
	Caractère ?
	Caractères []

	1.8 - L'option extglob
	?(expression)
	*(expression)
	+(expression)
	@(expression)
	!(expression)
	Caractères d'Échappement

	1.9 - Codes Retour
	1.10 - Redirections
	1.11 - Pipes
	1.12 - Substitutions de Commandes
	1.13 - Chainage de Commandes
	1.14 - Affichage des variables du shell
	Les variables principales
	Les Variables de Régionalisation et d'Internationalisation
	Les variables spéciales

	1.15 - La Commande env
	1.16 - Options du Shell Bash
	Exemples
	noclobber
	noglob
	nounset

	LAB #2 - Les Scripts Shell
	2.1 - Exécution
	2.2 - La commande read
	Code de retour
	La variable IFS

	2.3 - La commande test
	Tests de Fichiers
	Tests de chaînes de caractère
	Tests sur des nombres
	Les opérateurs
	Tests d'environnement utilisateur

	2.4 - La commande [[expression]]
	2.5 - Opérateurs du shell
	2.6 - L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits

	2.7 - Structures de contrôle
	If
	case
	Exemple

	2.8 - Boucles
	for
	while
	Exemple

	2.8 - Scripts de Démarrage
	~/.bash_profile
	~/.bashrc

