2026/02/04 17:03 1/27

LCF903 - Scripting Shell

Version : 2023.01

Derniere mise-a-jour : 2023/07/14 11:26

LCF903 - Scripting Shell

Contenu du Module

e LCF903 - Scripting Shell
o Contenu du Module
o LAB #1 - Les Scripts Shell
= 1.1 - Exécution
1.2 - La commande read
e Code de retour
e La variable IFS
1.3 - La commande test
e Tests de Fichiers
 Tests de chaines de caractere
e Tests sur des nombres
e Les opérateurs
e Tests d'environnement utilisateur
1.4 - La commande [[expression]]
1.5 - Opérateurs du shell
1.6 - L'arithmétique
e La commande expr
o Opérateurs Arithmétiques
o Opérateurs de Comparaison
o Opérateurs Logiques
e La commande let
o Opérateurs Arithmétiques
o Opérateurs de comparaison

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 2/27

LCF903 - Scripting Shell

o Opérateurs Logiques
o Opérateurs travaillant sur les bits
= 1.7 - Structures de contréle

e |If
e case

o Exemple
e Boucles

o for

o while

o Exemple

» 1.8 - Scripts de Démarrage
e ~/.bash_profile
e ~/.bashrc

o LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes,

» Fonction cree_user,
= Fonction modif_user,
= Fonction affiche_user,
= Fonction cree_liste_user,
= Fonction cree_group,
= Fonction modif_group,
= Fonction delete group,
= Fonction affiche_group,
= Menu des choix.
o LAB #3 - Automatiser la Gestion des Sauvegardes,
= Création de la fonction archive_rep,
= Création de la fonction restaure_rep,
= Création de la fonction affiche_archive,
= Création de la fonction compress_archive,
= Création de la fonction decompress_archive,
= Gestion des erreurs.

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 3/27 LCF903 - Scripting Shell

LAB #1 - Les Scripts Shell

Le but de la suite de cette unité est de vous amener au point ou vous étes capable de comprendre et de déchiffrer les scripts, notamment les scripts de
démarrage ainsi que les scripts de contréle des services.

Ecrire des scripts compliqués est en dehors de la portée de cette unité car il nécessite une approche programmation qui ne peut étre adressée que lors

d'une formation dédiée a I'écriture des scripts.

1.1 - Exécution

Un script shell est un fichier dont le contenu est lu en entrée standard par le shell. Le contenu du fichier est lu et exécuté d'une maniere séquentielle.
Afin qu'un script soit exécuté, il suffit qu'il puisse étre lu au quel cas le script est exécuté par un shell fils soit en I'appelant en argument a I'appel du
shell :

/bin/bash myscript
soit en redirigeant son entrée standard :
/bin/bash < myscript

Dans le cas ou le droit d'exécution est positionné sur le fichier script et a condition que celui-ci se trouve dans un répertoire spécifié dans le PATH de
I'utilisateur qui le lance, le script peut étre lancé en I'appelant simplement par son nom :

myscript
Pour lancer le script sans qu'il soit dans un répertoire du PATH, il convient de se placer dans le répertoire contenant le script et de le lancer ainsi :
./ myscript

Dans le cas ou le script doit étre exécuté par le shell courant, dans les mémes conditions que I'exemple précédent, et non par un shell fils, il convient
de le lancer ainsi :

. myscript

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 4/27 LCF903 - Scripting Shell

Dans un script il est fortement conseillé d'inclure des commentaires. Les commentaires permettent a d'autres personnes de comprendre le script.
Toute ligne de commentaire commence avec le caractere #.

Il existe aussi un pseudo commentaire qui est placé au début du script. Ce pseudo commentaire permet de stipuler quel shell doit étre utilisé pour
I'exécution du script. L'exécution du script est ainsi rendu indépendant du shell de I'utilisateur qui le lance. Le pseudo commentaire commence avec les
caracteres #!. Chaque script commence donc par une ligne similaire a celle-ci :

#!/bin/sh

Puisque un script contient des lignes de commandes qui peuvent étre saisies en shell intéractif, il est souvent issu d'une procédure manuelle. Afin de
faciliter la création d'un script il existe une commande, script, qui permet d'enregistrer les textes sortis sur la sortie standard, y compris le prompt
dans un fichier dénommé typescript. Afin d'illustrer I'utilisation de cette commande, saisissez la suite de commandes suivante :

[trainee@centos8 ~]$ script

Script started, file is typescript

[trainee@centos8 ~1$ pwd

/home/trainee

[trainee@centos8 ~1$ 1s

aac abc bca codes errorlog file filel file2 +training typescript xyz
[trainee@centos8 ~]$ exit

exit

Script done, file is typescript

[trainee@centos8 ~]$ cat typescript

Script started on 2021-04-20 10:59:58-04:00

[trainee@centos8 ~]$ pwd

/home/trainee

[trainee@centos8 ~]$ 1s

aac abc bca codes errorlog file filel file2 +training typescript xyz
[trainee@centos8 ~]$ exit

exit

Script done on 2021-04-20 11:00:09-04:00

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 5/27

LCF903 - Scripting Shell

Cette procédure peut étre utilisée pour enregistrer une suite de commandes longues et compliquées afin d'écrire un script.

Pour illustrer I'écriture et I'exécution d'un script, créez le fichier myscript avec vi :

[trainee@centos8 ~]$ vi myscript
[trainee@centos8 ~]$ cat myscript

pwd
1s

Sauvegardez votre fichier. Lancez ensuite votre script en passant le nom du fichier en argument a /bin/bash :

[trainee@centos8 ~]$ /bin/bash myscript

/home/trainee
aac bca errorlog filel myscript typescript

abc codes file file2 +training xyz
Lancez ensuite le script en redirigeant son entrée standard :

[trainee@centos8 ~]$ /bin/bash < myscript

/home/trainee
aac bca errorlog filel myscript typescript

abc codes file file2 +training xyz

Pour lancer le script en I'appelant simplement par son nom, son chemin doit étre inclus dans votre PATH:
[trainee@centos8 ~]$ echo $PATH
/home/trainee/.local/bin:/home/trainee/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
Dans le cas de RHEL/CentOS, méme si PATH contient $HOME/bin, le répertoire n'existe pas :

[trainee@centos8 ~]$ s
aac bca errorlog filel myscript typescript

abc codes file file2 training xyz

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 6/27 LCF903 - Scripting Shell

Créez donc ce répertoire :
[trainee@centos8 ~]$ mkdir bin
Ensuite déplacez votre script dans ce répertoire et rendez-le exécutable pour votre utilisateur :

[trainee@centos8 ~]$ mv myscript ~/bin
[trainee@centos8 ~]$ chmod u+x ~/bin/myscript

Exécutez maintenant votre script en I'appelant par son nom a partir du répertoire /tmp :

[trainee@centos8 ~]$ cd /tmp
[trainee@centos8 tmpl$ myscript
/tmp

expand

expandl

filepartaa

filepartab

filepartac

filepartad

filepartae

greptest

greptestl

greptest.patch

newfile

sales.awk

sales.txt

scriptawk

sedtest

sedtestl
systemd-private-d9ff2376a8a44f0392f860d80c839bed-chronyd.service-6im4Ii

Placez-vous dans le répertoire contenant le script et saisissez les commandes suivantes :

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 7/27 LCF903 - Scripting Shell

[trainee@centos8 tmpl$ cd ~/bin
[trainee@centos8 bin]$./myscript
/home/trainee/bin

myscript

[trainee@centos8 bin]$. myscript
/home/trainee/bin

myscript

£ A faire : Notez bien la différence entre les sorties de cette derniére commande et la
&7 précédente. Expliquez pourquoi.

1.2 - La commande read

La commande read lit son entrée standard et affecte les mots saisis dans la ou les variable(s) passée(s) en argument. La séparation entre le contenu
des variables est I'espace. Par conséquent il est intéressant de noter les exemples suivants :

[trainee@centos8 bin]$ read varl var2 var3 var4d
fenestros edu is great!

[trainee@centos8 bin]$ echo $varl

fenestros

[trainee@centos8 bin]$ echo $var2

edu

[trainee@centos8 bin]$ echo $var3

is

[trainee@centos8 bin]$ echo $vard

great!

* . Important: Notez que chaque champs a été placé dans une variable différente. Notez

-

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 8/27 LCF903 - Scripting Shell

_ aussi que par convention les variables déclarées par des utilisateurs sont en miniscules
I . afin de les distinguer des variables systéeme qui sont en majuscules.
[

[trainee@centos8 bin]$ read varl var?2
fenestros edu is great!
[trainee@centos8 bin]$ echo $varl
fenestros

[trainee@centos8 bin]$ echo $var2

edu is great!

| Important : Notez que dans le deuxieme cas, le reste de la ligne apres le mot fenestros
est mis dans $var2.

Code de retour

La commande read renvoie un code de retour de 0 dans le cas ou elle ne regoit pas l'information fin de fichier matérialisée par les touches CtrI|+g.
Le contenu de la variable var peut étre vide et la valeur du code de retour 0 grace a l'utilisation de la touche Entrée| ;

[trainee@centos8 bin]$ read var

o Entrée|

[trainee@centos8 bin]$ echo $?
0
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]$

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 9/27 LCF903 - Scripting Shell

Le contenu de la variable var peut étre vide et la valeur du code de retour autre que 0 grace a I'utilisation des touches @Hg :
[trainee@centos8 bin]$ read var

cirl+o

[trainee@centos8 bin]$ echo $7?
1
[trainee@centos8 bin]$ echo $var

[trainee@centos8 bin]l$
La variable IFS

La variable IFS contient par défaut les caractéres Espacel, Tab| et Entrée] :

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 A\t \n \n
0000004

Important : La commande od (Octal Dump) renvoie le contenu d'un fichier ou de I'entrée
: standard au format octal. Ceci est utile afin de visualiser les caracteres non-imprimables.
£\ L'option -c permet de sélectionner des caractéres ASCII ou des backslash dans le fichier ou
dans le contenu fourni a I'entrée standard.

La valeur de cette variable définit donc le séparateur de mots lors de la saisie des contenus des variables avec la commande read. La valeur de la
variable IFS peut étre modifiée :

[trainee@centos8 bin]$ OLDIFS="$IFS"
[trainee@centos8 bin]$ IFS=":"

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 10/27 LCF903 - Scripting Shell

[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 :\n
0000002

De cette facon I'espace redevient un caractere normal :

[trainee@centos8 bin]$ read varl var2 var3
fenestros:edu is:great!

[trainee@centos8 binl$ echo $varl
fenestros

[trainee@centos8 bin]$ echo $var2

edu is

[trainee@centos8 bin]$ echo $var3

great!

Restaurez I'ancienne valeur de IFS avec la commande IFS="“$OLDIFS”

[trainee@centos8 bin]$ IFS="$O0LDIFS"
[trainee@centos8 bin]$ echo "$IFS" | od -c
0000000 \t \n \n

0000004

1.3 - La commande test

La commande test peut étre utilisée avec deux syntaxes :
test expression

ou

[Espace|expression Espace|]

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03

11/27

LCF903 - Scripting Shell

Tests de Fichiers

Test Description

-f fichier Retourne vrai si fichier est d'un type standard

-d fichier Retourne vrai si fichier est d'un type répertoire

-r fichier Retourne vrai si I'utilisateur peut lire fichier

-w fichier Retourne vrai si l'utilisateur peut modifier fichier

-x fichier Retourne vrai si l'utilisateur peut exécuter fichier

-e fichier Retourne vrai si fichier existe

-s fichier Retourne vrai si fichier n'est pas vide

fichierl -nt fichier2|Retourne vrai si fichierl est plus récent que fichier2
fichierl -ot fichier2|Retourne vrai si fichierl est plus ancien que fichier2
fichierl -ef fichier2 |Retourne vrai si fichierl est identique a fichier2

Testez si le fichier al00 est un fichier ordinaire :

[trainee@centos8 bin]$ cd ../training/
[trainee@centos8 trainingl$ test -f aloo
[trainee@centos8 training]$ echo $?

0

[trainee@centos8 trainingl$ [-f aloo]
[trainee@centos8 trainingl$ echo $?

0

Testez si le fichier al01 existe :

[trainee@centos8 trainingl$ [-f alll]
[trainee@centos8 trainingl$ echo $?

1

Testez si /home/trainee/training est un répertoire :

[trainee@centos8 trainingl$ [-d /home/trainee/training]

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 12/27

LCF903 - Scripting Shell

[trainee@centos8 training]$ echo $7?
0

Tests de chaines de caractere

Test Description
-n chaine Retourne vrai si chaine n'est pas de longueur 0
-z chaine Retourne vrai si chaine est de longueur 0

stringl = string2 |Retourne vrai si stringl est égale a string2
stringl != string2|Retourne vrai si stringl est différente de string2
stringl Retourne vrai si stringl n'est pas vide

Testez si les deux chaines sont égales :

[trainee@centos8 trainingl]$ stringl="root"
[trainee@centos8 training]$ string2="fenestros"
[trainee@centos8 training]$ [$stringl = $string2]
[trainee@centos8 training]$ echo $?

1

Testez si la stringl n'a pas de longueur 0 :
[trainee@centos8 training]$ [-n $stringl]
[trainee@centos8 trainingl$ echo $?

0

Testez si la stringl a une longueur de 0 :

[trainee@centos8 trainingl$ [-z $stringl]
[trainee@centos8 training]$ echo $?
1

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 13/27 LCF903 - Scripting Shell

Tests sur des nombres

Test Description

valuel -eq value2|Retourne vrai si valuel est égale a value2

valuel -ne value2|Retourne vrai si valuel n'est pas égale a value2

valuel -It value2 |Retourne vrai si valuel est inférieure a value2

valuel -le value2 |[Retourne vrai si valuel est inférieur ou égale a value2
valuel -gt value2 |[Retourne vrai si valuel est supérieure a value2

valuel -ge value2|Retourne vrai si valuel est supérieure ou égale a value2

Comparez les deux nombres valuel et value2 :

[trainee@centos8 trainingl$ read valuel

35

[trainee@centos8 trainingl$ read value2

23

[trainee@centos8 trainingl$ [$valuel -1t $value2]
[trainee@centos8 trainingl$ echo $?

1

[trainee@centos8 trainingl$ [$value2 -1t $valuel]
[trainee@centos8 training]$ echo $7?

0

[trainee@centos8 trainingl]$ [$value2 -eq $valuel]
[trainee@centos8 trainingl$ echo $?

1

Les opérateurs

Test Description

lexpression Retourne vrai si expression est fausse

expressionl -a expression2|Représente un et logique entre expressionl et expression2
expressionl -0 expression2|Représente un ou logique entre expressionl et expression2

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03

14/27

LCF903 - Scripting Shell

Test

Description

\(expression\)

Les parentheses permettent de regrouper des expressions

Testez si $file n'est pas un répertoire :

[trainee@centos8 training]$ file=al00
[trainee@centos8 training]$ [! -d $file]
[trainee@centos8 trainingl$ echo $?

0

Testez si $directory est un répertoire et si l'utilisateur a le droit de le traverser :

[trainee@centos8 training]$ directory=/usr
[trainee@centos8 training]$ [-d $directory -a -x $directory]
[trainee@centos8 trainingl$ echo $?

0

Testez si |'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [-w al0O -a \(-d /usr -o -d /tmp \) |

[trainee@centos8 trainingl$ echo $?

0

Tests d'environnement utilisateur

Test Description

-0 option|Retourne vrai si I'option du shell “option” est activée

[trainee@centos8 training]$ [-o allexport]
[trainee@centos8 training]$ echo $?

1

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 15/27 LCF903 - Scripting Shell

1.4 - La commande [[expression]]

La commande [[Espace|expression Espace|]] est une amélioration de la commande test. Les opérateurs de la commande test sont compatibles avec
la commande [[expression 1] sauf -a et -0 qui sont remplacés par && et || respectivement :

Test Description

lexpression Retourne vrai si expression est fausse

expressionl && expression2|Représente un et logique entre expressionl et expression2
expressionl || expression2 |Représente un ou logique entre expressionl et expression2
(expression) Les parenthéses permettent de regrouper des expressions

D'autres opérateurs ont été ajoutés :

Test Description

string = modele |Retourne vrai si chaine correspond au modele

string != modele|Retourne vrai si chaine ne correspond pas au modele

stringl < string2|Retourne vrai si stringl est lexicographiguement avant string2
stringl > string2|Retourne vrai si stringl est lexicographiquement apres string2

Testez si I'utilisateur peut écrire dans le fichier al00 et /usr est un répertoire ou /tmp est un répertoire :

[trainee@centos8 training]$ [[-w al0® && (-d /usr || -d /tmp)]]
[trainee@centos8 trainingl$ echo $?
0

1.5 - Opérateurs du shell

Opérateur Description
Commandel && Commande2 Commande 2 est exécutée si la premiere commande renvoie un code vrai
Commandel || Commande2 |Commande 2 est exécutée si la premiere commande renvoie un code faux

[trainee@centos8 trainingl]$ [[-d /root]] && echo "The root directory exists"

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 16/27 LCF903 - Scripting Shell

The root directory exists
[trainee@centos8 trainingl$ [[-d /root]]1 || echo "The root directory exists"
[trainee@centos8 training]$

1.6 - L'arithmétique
La commande expr

La commande expr prend la forme :

expr Espace| valuel Espace| opérateur Espace| value2 Entrée|

ou
expr Tab| valuel Tab| opérateur Tab| value2 Entrée|
ou

expr Espace| chaine Espace| : Espace| expression_réguliére Entrée|

ou

expr Tab| chaine Ta b| : Ta b| expression_réguliere Entrée|

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction

* Multiplication
/ Division

% Modulo

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03

17/27

LCF903 - Scripting Shell

Opérateur|Description
\(\) Parenthéses

Opérateurs de Comparaison

Opérateur|Description

\< Inférieur

\<= Inférieur ou égal
\> Supérieur

\>= Supérieur ou égal
= égal

I= inégal

Opérateurs Logiques

Opérateur|Description
\| ou logique
\& et logique

Ajoutez 2 a la valeur de $x :

[trainee@centos8 trainingl$ x=2
[trainee@centos8 trainingl$ expr $x + 2
4

Si les espaces sont retirés, le résultat est tout autre :

[trainee@centos8 trainingl$ expr $x+2
242

Les opérateurs doivent étre protégés :

[trainee@centos8 training]$ expr $x * 2

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 18/27 LCF903 - Scripting Shell

expr: syntax error
[trainee@centos8 trainingl$ expr $x * 2
4

Mettez le résultat d'un calcul dans une variable :

[trainee@centos8 training]$ resultat="expr $x + 10°
[trainee@centos8 trainingl]$ echo $resultat
12

La commande let

La commande let est I'équivalent de la commande ((expression)). La commande ((expression)) est une amélioration de la commande expr :

plus grand nombre d'opérateurs

pas besoin d'espaces ou de tabulations entre les arguments

pas besoin de préfixer les variables d'un $

les caracteres spéciaux du shell n'ont pas besoin d'étre protégés
les affectations se font dans la commande

exécution plus rapide

Opérateurs Arithmétiques

Opérateur|Description
+ Addition

- Soustraction
* Multiplication
/ Division

% Modulo

~ Puissance

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03

19/27

LCF903 - Scripting Shell

Opérateurs de comparaison

Opérateur|Description

< Inférieur
Inférieur ou égal
Supérieur
Supérieur ou égal
égal

inégal

VIV /|A

Opérateurs Logiques

Opérateur|Description
&& et logique

Il ou logique

! négation logique

Opérateurs travaillant sur les bits

Opérateur|Description
~ négation binaire

>> décalage binaire a droite
<< décalage binaire a gauche
& et binaire

| ou binaire

PN

ou exclusif binaire

[trainee@centos8 training]$ x=2
[trainee@centos8 trainingl$ ((x=$x+10))
[trainee@centos8 trainingl$ echo $x

12

[trainee@centos8 trainingl$ ((x=$x+20))
[trainee@centos8 trainingl$ echo $x

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 20/27 LCF903 - Scripting Shell

32

1.7 - Structures de controle

If

La syntaxe de la commande If est la suivante :

if condition
then
commande(s)
else
commande(s)
fi

ou:

if condition
then
commande(s)
commande(s)
fi

ou encore :

if condition
then

commande(s)
elif condition
then

commande(s)
elif condition

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 21/27

LCF903 - Scripting Shell

then
commande(s)
else
commande(s)

fi
Créez le script user_check suivant :

[trainee@centos8 trainingl$ vi user check
[trainee@centos8 training]$ cat user check
#!/bin/bash
if [$# -ne 1] ; then

echo "Mauvais nombre d'arguments"

echo "Usage : $0 nom utilisateur"

exit 1
fi
if grep "7$1:" /etc/passwd > /dev/null
then

echo "Utilisateur $1 est défini sur ce systeme"

else

echo "Utilisateur $1 n'est pas défini sur ce systeme"

fi
exit O

Testez-le :

[trainee@centos8 training]$ chmod 770 user check
[trainee@centos8 training]$./user check

Mauvais nombre d'arguments

Usage : ./user check nom utilisateur
[trainee@centos8 training]$./user check root
Utilisateur root est défini sur ce systeme

[trainee@centos8 trainingl]$./user check mickey mouse

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 22/27

LCF903 - Scripting Shell

Mauvais nombre d'arguments

Usage : ./user check nom utilisateur

[trainee@centos8 training]$./user_check "mickey mouse"
Utilisateur mickey mouse n'est pas défini sur ce systeme

case

La syntaxe de la commande case est la suivante :

case $variable in
modelel) commande

..
r

modele2) commande

..
r

modele3 | modeled4 | modele5) commande

r

esac
Exemple

case "$1" in
start)
start
stop)
stop

restart|reload)

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 23/27

LCF903 - Scripting Shell

stop
start

status)
status

*) r
echo $"Usage: $0 {start|stop|restart|status}"
exit 1

esac

Important : L'exemple indique que dans le cas ou le premier argument qui suit le nom du
script contenant la clause case est start, la fonction start sera exécutée. La fonction start
n'a pas besoin d'étre définie dans case et est donc en regle générale définie en début de
script. La méme logique est appliquée dans le cas ou le premier argument est stop,
restart ou reload et status. Dans tous les autres cas, représentés par une étoile, case
affichera la ligne Usage: $0 {start|stop|restart|status} ou $0 est remplacé par le nom
du script

1.8 - Boucles

for

La syntaxe de la commande for est la suivante :

for variable in liste variables
do

commande(s)
done

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 24/27 LCF903 - Scripting Shell

while

La syntaxe de la commande while est |a suivante :

while condition
do

commande(s)
done

Exemple

U=1

while [$U -1t $MAX ACCOUNTS]

do

useradd fenestros"$U" -c fenestros"$U" -d /home/fenestros"$U" -g staff -G audio,fuse -s /bin/bash 2>/dev/null
useradd fenestros"$U"$ -g machines -s /dev/false -d /dev/null 2>/dev/null

echo "Compte fenestros$U créé"

let U=U+1

done

2.8 - Scripts de Démarrage

Quand Bash est appelé en tant que shell de connexion, il exécute des scripts de démarrage dans I'ordre suivant :

* /etc/profile,
e ~/.bash_profile ou ~/.bash_login ou ~/.profile selon la distribution,

Dans le cas de RHEL/CentOS, le systeme exécute le fichier ~/.bash_profile.

Quand un shell de login se termine, Bash exécute le fichier ~/.bash_logout si celui-ci existe.

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 25/27 LCF903 - Scripting Shell

Quand bash est appelé en tant que shell interactif qui n'est pas un shell de connexion, il exécute le script ~/.bashrc.

A faire : En utilisant vos connaissances acquises dans ce module, expliquez les scripts
suivants ligne par ligne.

~/.bash_profile

[trainee@centos8 trainingl]$ cat ~/.bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

~/.bashrc

[trainee@centos8 trainingl$ cat ~/.bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

User specific environment

www.ittraining.team - https://ittraining.team/

2026/02/04 17:03 26/27 LCF903 - Scripting Shell

PATH="$HOME/ .local/bin:$HOME/bin: $PATH"
export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD PAGER=

User specific aliases and functions

LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes

A faire : Etudiez les fonctions cree_user, modif _user, affiche_user, cree_liste user,
&7 cree_group, modif group, delete_group, affiche_group, et le menu des choix.

LAB #3 - Automatiser la Gestion des Sauvegardes

A faire : Créez les fonctions archive rep, restaure rep, affiche_archive, compress_archive,
&7 decompress_archive en incluant la gestion des erreurs.

From:
https://ittraining.team/ - www.ittraining.team

Permanent link:
https://ittraining.team/doku.php?id=elearning:workbooks:centos:8:1cf800:1703

Last update: 2023/07/14 11:26

www.ittraining.team - https://ittraining.team/

https://ittraining.team/
https://ittraining.team/doku.php?id=elearning:workbooks:centos:8:lcf800:l703

2026/02/04 17:03 27/27 LCF903 - Scripting Shell

www.ittraining.team - https://ittraining.team/

	LCF903 - Scripting Shell
	Contenu du Module
	LAB #1 - Les Scripts Shell
	1.1 - Exécution
	1.2 - La commande read
	Code de retour
	La variable IFS

	1.3 - La commande test
	Tests de Fichiers
	Tests de chaînes de caractère
	Tests sur des nombres
	Les opérateurs
	Tests d'environnement utilisateur

	1.4 - La commande [[expression]]
	1.5 - Opérateurs du shell
	1.6 - L'arithmétique
	La commande expr
	Opérateurs Arithmétiques
	Opérateurs de Comparaison
	Opérateurs Logiques

	La commande let
	Opérateurs Arithmétiques
	Opérateurs de comparaison
	Opérateurs Logiques
	Opérateurs travaillant sur les bits

	1.7 - Structures de contrôle
	If
	case
	Exemple

	1.8 - Boucles
	for
	while
	Exemple

	2.8 - Scripts de Démarrage
	~/.bash_profile
	~/.bashrc

	LAB #2 - Automatiser la Gestion des Utilisateurs et Groupes
	LAB #3 - Automatiser la Gestion des Sauvegardes

