

Version : **2020.01**

Last update: 2020/08/27 16:13

DOE100 - Docker: Implementation

Présentation

Objectives : Master the implementation of Operating-system-level virtualization with Docker.

Who can benefit : Linux Technicians and Administrators.

Prerequisites : One of the following certifications or the equivalent skills: CompTIA Linux+ Powered by LPI or LPIC-1 or SUSE CLA or ITT Debian Linux - Technician or ITT CentOS Linux - Technician.

Learning technique : Clear, theoretical course content divided into lessons and extensive LABS.

Student Progression : Student progression is monitored both in terms of effective attendance and in terms of comprehension using self-assessment tests.

Duration : 2 days (14 hours).

Prerequisites

Hardware

- A computer running MacOS, Linux, Windows™ or Solaris™,
- AZERTY FR or QWERTY US keyboard,
- Minimum 4 GB of RAM,
- Minimum dual-core processor,
- Headphones/Earphones,
- A microphone (optional).

Software

- If Windows™ - Putty and WinSCP,
- Chrome or Firefox web browser.

Internet

- A fast Internet connection (4G minimum) and **no** proxy,
- Unhindered access to the following domains : <https://my-short.link>, <https://ittraining.center>, <https://ittraining.io>, <https://ittraining.institute>, <https://ittraining.support>.

Curriculum

Day #1

- **DOE100 - Docker : Implementation** - 1 hour.
 - Prerequisites
 - Hardware
 - Software
 - Internet
 - Using the Infrastructure
 - Connecting to the Cloud Server
 - Linux, MacOS and Windows 10 with a built-in ssh client
 - Windows 7 and Windows 10 without a built-in ssh client
 - Starting the Virtual Machine
 - Connecting to the Virtual Machine
 - Course Curriculum
- **DOE101 - Operating-system-level virtualization** - 3 hours.
 - What is Operating-system-level virtualization?
 - A brief history
 - What are Namespaces?
 - What are CGroups?
 - LAB #1 - Working with CGroups
 - 1.1 - Capping memory usage
 - 1.2 - The cgroup-tools package
 - The cgcreate command
 - The cgexec command
 - The cgdelete command
 - The /etc/cgconfig.conf file
 - What are Linux Containers?
 - LAB #2 - Working with LXC
 - 2.1 - Installation
 - 2.2 - Creating a simple container
 - 2.3 - Starting a simple container
 - 2.4 - Attaching a terminal to a running container
 - 2.5 - Basic LXC commands
 - The lxc-console command
 - The lxc-stop command
 - The lxc-execute command
 - The lxc-info command
 - The lxc-freeze command
 - The lxc-unfreeze command
 - Other commands
 - 2.6 - Creating an unprivileged container
 - User Namespaces
 - Creating a dedicated user
 - Setting up the mapping
 - Creating the container
 - Checking out the mapping
 - 2.7 - Creating an unpersistant container
 - The lxc-copy command
 - 2.8 - Backing up containers
 - The lxc-snapshot command

- **DOE102 - Getting Started with Docker** - 3 hours.

- What is Docker?
- LAB #1 - Working with Docker
 - 1.1 - Installing Docker
 - 1.2 - Starting a container
 - 1.3 - Viewing a list of containers and images
 - 1.4 - Searching for an image in a repository
 - 1.5 - Deleting a container
 - 1.6 - Creating an image from a modified container
 - 1.7 - Deleting an image
 - 1.8 - Creating a container with a specific name
 - 1.9 - Executing a command within a container
 - 1.10 - Injecting Environment Variables into a container
 - 1.11 - Modifying the hostname of a container
 - 1.12 - Port mapping
 - 1.13 - Starting a container in the background
 - 1.14 - Accessing services from outside the container
 - 1.15 - Starting and stopping a container
 - 1.16 - Using Signals with a Container
 - 1.17 - Deleting a running container
 - 1.18 - Using volumes
 - 1.19 - Downloading an image without creating a container
 - 1.20 - Attaching to a running container
 - 1.21 - Installing a package in a container
 - 1.22 - Using the docker commit command
 - 1.23 - Connecting to a running server within the container

Day #2

- **DOE103 - Managing Docker Images** - 3 hours.

- LAB #1 - Recreating an official Docker image
 - 1.1 - Dockerfiles
 - 1.2 - FROM
 - 1.3 - RUN
 - 1.4 - ENV
 - 1.5 - VOLUME
 - 1.6 - COPY
 - 1.7 - ENTRYPOINT
 - 1.8 - EXPOSE
 - 1.9 - CMD
 - 1.10 - Other commands
- LAB #2 - Creating a simple Dockerfile
 - 2.1 - Create and test the script
 - 2.2 - Cache management

- **DOE104 - Managing volumes, the network and resources** - 3 hours.

- LAB #1 - Managing volumes
 - 1.1 - Automatically
 - 1.2 - Manually
- LAB #2 - Managing the network

- 2.1 - Docker networks
 - Bridge
 - Host
 - None
 - Links
- 2.2 - Wordpress in a container
- 2.3 - Managing microservices
- LAB #3 - Monitoring
 - 3.1 - Logs
 - 3.2 - Processus
 - 3.3 - Activity
- LAB #4 - Managing resources
 - 4.1 - Memory

• **DOE105 - Course completion - 1 hour.**

- What's next?
 - Training materials
 - What you need
 - Hardware
 - Software
 - Virtual Machine
- What we covered
 - Day #1
 - Day #2
- Resetting the course infrastructure
- Evaluate the training session
- Thanks

<html> <DIV ALIGN="CENTER"> Copyright © 2020 Hugh Norris

 Non-contractual document. The curriculum can be changed without notice. </div> </html>

From:
<https://ittraining.team/> - **www.ittraining.team**

Permanent link:
<https://ittraining.team/doku.php?id=elearning:dockeren:start>

Last update: **2020/08/27 16:13**